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ABSTRACT 

Proton-proton interactions with four o r  more  charged 

particles in the final state a r e  studied over a range of incident 

momenta between 13 and 28.5 G ~ V / C .  Topology cross  sections 

a r e  presented. The center-of -mass  momentum distributions of 

nt and IT- a r e  determined and a r e  successfully parameterized. 

t - 
The IT and IT momentum spectra a r e  found to have approximately 

the same shape. Multiple fireball  production is  not required by 

our data. 

We repor t  the resul ts  of an experiment containing 40 000 inelastic 

proton-proton interactions observed in the Brookhaven National Laboratory 

80-inch hydrogen bubble chamber. We find that the momentum spectra of 

the positive and negative secondary pions a r e  fitted very  well by the simple 

pararneterizatians used by Elbert  e t  al. in their study of interactions, 

and we observe a s imi lar  correlation between the multiplicity of pions and 



the distributions of both longitudinal and t ransverse  momenta. 

The experiment was to study nonstrange -particle production over a 

wide range of incident momenta. Our exposure was divided into five roughly 

equal par ts  corresponding to  incident proton beam momenta of 12.88, 18.00, w 

21.08, 24.12, and 28.44 G ~ V / C .  At each momentum the flux of incident protons 

corresponds to about 1/2 event/pb. Events containing only two charged par-  

ticles in the final state and obvious strange -particle productions were ex- 

cluded f rom this sample of events, although some background of charged K 

mesons i s  contained in  our final sample, On the basis  of other experiments 

we estimate our K-meson contamination a s  about 5% of the secondary tracks. 2 

Thus, our events correspond to unknown combinations of three inter - 
actions : 

p + p - p + p + NIT' + Nr- + possible missing neutrals, 

+ 
p + p - p + n + (Nt1) TT + NIT- + possible missing neutrals,  

+ 
p + p -+ n f n f (Nf2) TT + NIT- + possible missing neutrals,  

where N 2 I. 

Figure 1 shows the topological c ross  sections as  a function of the 

incident momentum. Fi ts  to the four-,  six - , and eight-prong production a r e  

the results of calculations by G. F. Chew and A. Pignotti using a multiperipheral 

bootstrap model containing two parameters.  The fits to the four- and six- 

prong production appear quite good, but because of threshold effects the model 

is unable to accommodate the steeply rising eight-prong cross  section. The 

dashed lines through l o - ,  12-, and 14-prong curves a r e  our freehand curves. 

The principal expe rimental problem involved in  determining the 

secondary pion momentum spect ra  i s  the separation of the nt f rom the protons 

(we assume that al l  negative t racks a r e  IT-). We a r e  able to use the forward- 
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backward symmetry of the proton-proton collision together with the reaction 

t kinematics to subtract the proton contamination f rom the IT sample. The 

following systematic procedure is  used: 

1. Identify all backward tracks in  the laboratory f rame  as pions, since in 

endothermic equal-mass collisions neither the beam nor the target  particle 

may go backwards. Transform this momentum distribution to c. m. to de-  

-I- termine a portion of the backward IT c. m. momentum distribution. 

4- 
2. Reflect this IT c. m. momentum distribution through the origin of the 

c. m. r e s t  f rame to obtain a n  estimate of the corresponding portion of the 

t 
forward IT c. m. momentum distribution, since pp collisions a r e  forward- 

backward symmetric.  

3. Subtract the momentum distribution of these "forward" IT' f r om the 

forward positive t rack distribution to get an  estimate of part  of the forward 

proton distribution. Because of the forward-backward symmetry of the c. m. 

spectrum, the c. m. momentum distribution of the very forward protons in 

the example above can then be used subsequently to estimate the proton back- 

t 
ground for  a new portion of the backward IT c.m. spectrum. 

In other words, this procedure i s  iterative. Starting with the IT 
t 

momentum spect ra  of backward tracks in the laboratory f rame  and using the 

+ 
forward-backward symmetry, one determines the entire backward .rr c. m. 

distribution. 
5 

The longitudinal and transverse momentum distributions of the secondaries 

a r e  presented in Fig. 2 for  one typical charge multiplicity and one typical in- 

cident momentum. These distributions a r e  fitted to functions of the fo rm 1 



where P ,, indicates the component of pion c. m. momentum parallel to the 

beam direction, P indicates the component in  the plane perpendicular to the I 
beam direction, and N i s  the total number of t racks,  Functions containing T 

exponentials in  the momentum components have been suggested and used by a 

number of authors. 6 y  The 3/2-power dependence in Eq. 1 i s  a result  of 

descriptions of the spectra based on the thermodynamic model. 
8 

The pion data were divided by incident beam momentum, number of 

charged prongs, and charge, producing 38 different histograms for  each 

t ransverse  and longitudinal distribution (four - , six-  , and eight-prong events 

were used a t  all  momenta, ten-prong events were used only a t  the four highest 

2 
momenta). For  each sample of data we found that a x minimization in one 

parameter  gave excellent confidence levels (with typically 20 or  more  degrees 

of freedom). Equation 2, which implies a nonzero slope a t  the origin, cannot 

be accurate f o r  values of P very  close to zero. All the data were systematically 
I I 

lower than the fitted distribution in the f i r s t  0.05-G~V/C bin. 

The following observations can be made about the fitted coefficients 

a and a ( seeF ig .  2): 
1 I I 

1. The coefficients a a a t  a given beam momentum have a linear 
1' II 

dependence on the number of charged prongs produced. (Similar behavior in  

24-G~V/C  IT-^ interactions was reported by Elbert  e t  al. ) F o r  example, our 

ir- distributions a t  21  G ~ V / C  a r e  given by a al = (6.54* 0.05) t (0.28 *0.01)n 

and a , ,  = (0.76 * 0.03) t (0.41 * 0.01)n, where n is the number of charged prongs. 



2. The coefficients a describing the longitudinal c. m. momentum distr i -  
II 

butions for  a particular number of charged prongs decrease with increasing 

beam momentum. 

3. The coefficients a describing the t ransverse  c. m. momentum distr i -  
1 

butions for a particular number of charged prongs decrease with increasing 

be am momentum more  slowly than for  the longitudinal momentum distributions , 

appearing to approach a constant value. 

4. The difference between the coefficients describing the c. m. momentum 

distributions of nt and n' f rom a particular beam momentum and number of 

charged prongs i s  always l e ss  than 10% of the values of the coefficients. 

Many of the coefficients a r e  in excellent agreement. 

Fo r  pp interactions a t  12.5 Gev/c, Ratner e t  al. have reported the 

production of pions through the decay of fireballs moving i n  the center of 

mass.  Certain characteris t ics  of fireballs facilitate the observation of their 

presence. A fireball  that decays isotropically gives r i se  to a pion momentum 

spectrum that i s  most  populated, i n  the fireball  r e s t  f r ame  (frf),  around 

(PI, )frf = 0 (corresponding to the maximum P ). Consequently, in the r e -  
1 

action c. m. f rame,  histograms of P should show a maximum away f rom 
I I  

P = 0 ,  the shift being determined by the relative velocity of the frf with 

respect  to the reaction center of mass. This maximum corresponds to pions 

without longitudinal motion in the f r f ,  and therefore should be pronounced if 

one looks only a t  tracks with high transverse momentum. Ratner e t  al. have 

observed such a maximum a t  P = 0.4 G ~ V / C  and PI = 0.63 G ~ V / C  . corre-  I I  

sponding to fireballs of mass  = 2100 GeV, moving with P = 0.5 in the reaction 

center of mass. 
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- 
We searched fo r  a maximum in his tograms of our IT tracks for  each 

topology a t  both 13 and 28.5 G e ~ / c .  Sets of " integral" histograms of IT- 

longitudinal momenta were made for  al l  tracks with P greater  than 0.0 G ~ V / C ,  1 

0.1 G ~ V / C ,  0.2 G ~ V / C ,  up to the point where statistics were insignificant 
C 

(typically 0.8 GeV/c). Similarly, " differential1' his tograms of IT- longitudinal 

momenta were made f o r  a l l  t racks with P lying i n  a 100-M~V/C-wide band 1 

centered around 0.05, 0.15, 0.25, and 0.35 Ciev/c, continuing up to (typically) 

0.65 G~V/C.  We found no statistically significant maxima away f rom PI, = 0 

in  the center of mass.  

Plotting our IT- data f r om 12.88 G ~ V / C  in the coordinate system of 

c f ~ / ( d c o s  edp) vs P we can compare directly with the results of Ratner e t  al. ; c. m. II ' 

see  Fig. 3. 

In conclusion, we find that pion c. m. momenta spect ra  produced in pp 

interactions over a wide range of energies a r e  well fitted by the expressions 

t 
1 and 2. The IT and .n- distributions have very s imi lar  shapes. The co- 

efficients describing the c. m. momentum distributions agree  with a linear 

dependence upon the number of final charged particles f o r  any given beam 

momentum, similar  to that reported fo r   IT-^ interactions. The coefficients 

a r e  seen to decrease with increasing beam momentum. We find our data to 

be inconsistent with a moving fireball  model. 

We wish to thank Mr. Jon Ayrnong fo r  his extensive help in  the analysis 

of the experiment. We have enjoyed many stimulating dis cus sions with 

Professor  Ronald Ross. The support and encouragement of Professor  Luis 

W. Alvarez a r e  since rely appreciated. 
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FIGURE CAPTIONS 

Fig. 1. Nons trange -topology c ross  sections a s  a function of beam momentum. 

The continuous curves through the 4 - ,  6 - ,  and 8-prongs a r e  the results 

of a multiperipheral model f i t  to our data. The dashed curves were 

hand-drawn to distinguish the 1 0 - ,  12-, and 14-prongs. 

- 
Fig. 2. Typical fi ts to the r (a) t ransverse and (b) c. m. longitudinal 

momentum spect ra ,  and similarly (c, d)  to the nt spectra fo r  8-prongs 

a t  21  G ~ V / C .  The e r r o r s  in the number of tracks/bin a re  purely 

statistical fo r  the rr- histograms and a r e  l a rge r  than statistical for  the 

t 
rt histograms that resul t  f r om subtractions. Only half the n t racks 

a r e  shown. Coefficients (e,  f ,  g, h )  resulting f rom fits to our distributions 

( d ~ / d ~ ~ )  , ( d ~ / d ~ , ,  ) according to Eqs. 1 and 2 of the text. 

2 
Fig. 3. Histogram of d N/ (dpdcos s ) ~ .  m. for  negative t rack momenta with 

0.60 G ~ V / C  5 P < 0.66 G ~ V / C  f rom our 12.88 - G ~ V / C  pp interactions. 
1- 

The boxes a r e  s imi lar  data f rom Ratner et al. a t  p2 = 0.4 (G~v /c )  
2 

1 

normalized to the total number of tracks. 



o Cavendish - DESY Topology cross sections 
0 Scandinavian Collab pp hteroct ions 

This experiment 

el- 6 Prongs 

8 Prongs 

- 
10 Prongs 

12 Prongs  

- 

B e a m  momentum ( G e V / c )  

XBL6812 -7383 
Fig .  1 



Component of c.m. Beam momentum 
momentum (GeV/c) (GeV/c) 

XBL698-3562 

Fig. 2 



0 0.2 0.4 0.6 

Longitudinal c.m. momentum (GeV/c) 

Fig .  3 


