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Overview
BarriersTimeline

• A. Durability
• B. Cost
• Targets (2010)

– resistivity < 10 mohm-cm2

– corrosion < 1 x10-6 A/cm2

– cost < $6/kW

• Start- Oct 2001 (small 
exploratory $ in 1999/2000)

• Finish- Sept 2006
• 90% complete

• Total project funding 
– $1650K

• Funding for FY05
– $300K

• Funding for FY 06
– $300K

Budget

– Addtl. $150K linked w/NREL

• DANA Corp., Fuel Cell 
Energy, GM, GenCell Corp., 
Jadoo Power Systems

• Los Alamos National Lab,  
TN Tech, Ecole des Mines 
de Paris (nitride characterization)

Primary Interactions
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Objective: Surface Treatment to Protect 
Metallic Bipolar Plates 

• Overall Goal: Demonstrate potential for metallic bipolar 
plates to meet 5000 h durability goals at cost < $6/kW

• FY 06 Goals:
– Demonstrate cyclic fuel cell test durability for thermally 

grown Cr-nitride surfaces (nitrided Ni-base alloys)
– Demonstrate protective Cr-nitride on Fe-base alloys to 

meet cost goals
• establish mechanism of nitride formation on Fe-base alloys 

to provide basis for scale up (cost, repeatability, robustness) 
• deliver plates for single-cell fuel cell testing by collaborators

• Completion of effort in FY06 to provide basis for Go/No 
Go decision for scale-up activities (proposal submitted)
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Approach: Thermally Grown 
Cr-Nitride for Protection

Cr-Nitride

Cr-Containing
Bipolar Plate Alloy

Cr

Nitrogen-containing gas

Cr-Nitride

Cr-Containing
Bipolar Plate Alloy

Cr

Nitrogen-containing gas

Protective Cr-Nitride Layer

Metal

Protective Cr-Nitride Layer

Metal

10 µm

•Surface conversion, not a deposited coating: High 
temperature favors reaction of all exposed metal surfaces

-No pin-hole defects (other issues to overcome)
-Amenable to complex geometries (flow field grooves)

•Stamp then nitride: Industrially established and cheap 4



Durability/Performance Studied with CrN/Cr2N 
Surfaces Formed on  Ni-Cr Alloys

•Protective Cr-nitride surfaces achieved for model and 
commercial Ni-(30-50)Cr base alloys

-Used to establish whether thermally grown CrN/Cr2N can 
meet DOE corrosion, contact resistance, and durability goals

•Formation of similar Cr-nitride surfaces on Fe-base 
alloys needed to meet cost goals (Ni-base high $)

-More difficult to do than for Ni-base alloys
-Lower Cr level alloys, interference from Fe
-Focus of FY 05 and 06 efforts
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Good Single-Cell Drive-Cycle Durability Test 
Results for Nitrided Ni-50Cr Plates

• 1160 h of drive-cycle testing (after initial 500 h/0.7V/80°C test screening)
-0.94V/1 min; 0.60V/30 min; 0.70V/20 min; 0.50V/20 min
-additional 24 full shutdowns superimposed

•No performance degradation/No attack of the Cr-nitride
-trace level (2x10-6 g/cm2) of Ni detected in MEA, suspect local CrNiN spots

Collaboration with LANL
M. Wilson and F. Garzon

0 0.2 0.4 0.6
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Good Single-Cell Performance of Nitrided
G35™(Ni-30Cr base) for Dry/Wet Cycling

(40%/100% RH) Test at GM
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•Dry/wet cycling accelerates MEA degradation/high fluoride release rate
to produce aggressive bipolar plate conditions
•No metal ion contamination and low resistance: comparable behavior
to Poco graphite plates (post-test examination of plates underway) 7



Need Fe-Base Alloys to Meet 
$6/kW Bipolar Plate Cost Goals

Status at FY05 Review

•Dense Cr-nitride formation demonstrated on Fe-Cr
base alloy

-low corrosion current densities in 1st polarization screenings
-low interfacial contact resistance

•At that time:
-repeatability issues encountered
-surface layer microstructure not well characterized
-mechanism of formation not well understood
(needed to improve repeatability and optimize)
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Problem: Internal Nitridation Partitions 
Nitrogen Away from Surface Layer Growth in 

Fe-Cr Base Alloys
Typical Nitrided Cross-Section
for a Fe-27Cr wt.% Base Alloy

Typical Nitrided Fe-27Cr Polarization
(aerated pH3 H2SO4 80°C)
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•Mechanical property, cost, and phase stability issues limit viable range
of Fe-Cr base alloys to < 30 wt.% Cr
•High alloy N2 permeability prevents dense Cr-nitride surface 9



Vanadium Additions to Fe-27Cr Result
in Protective Cr-Nitride Surface
Polarization in Aerated pH 3 Sulfuric Acid at 80°C

•Corrosion resistance comparable to nitrided Ni-50Cr observed for
nitrided Fe-27Cr-2V and Fe-27Cr-6V (850-900°C, < 24 h, N2-4H2)

-Meets goal corrosion current density up to ∼ 900mV range
-Low corrosion current densities also observed under anodic conditions
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Nitrided Fe-27Cr+V Meets and Maintains
Contact Resistance Goal

Nitrided Fe-27Cr-6V in pH 0 
H2SO4 + 2ppm F-, 70°C
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•Nitridation significantly reduces interfacial contact resistance (ICR)
•Slight increase in ICR on polarization-still meets goal
•Untreated stainless steels don’t meet ICR goals 11



Little Effect of Polarization on Surface
Chemistry of Nitrided Fe-27Cr-6V

Auger Electron Spectroscopy of Nitrided Fe-27Cr-6V
After Polarization
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•Polarized 7 h at 0.84 V SHE in pH 0 H2SO4 + 2 ppm F- air purged at 
70 °C (similar results under H2-purged anodic conditions)

•No Fe detected in nitrided surface, oxygen present in surface 12



Surface Layer on Nitrided Fe-27Cr-6V
Contained Nitrides and Oxides

Cross-Section of Fe-27Cr-6V wt.%, 900°C, 24 h, N2-4H2

(V,Cr)2O3 (dark)(Cr,V)2N (light)

2.5 µm

Alloy

•O2 Impurity level in nitriding gas sufficient to form oxides

•Nitrogen stayed at surface, no internal nitridation

•(Cr,V)2N overlying mixed (V,Cr)2O3 + (Cr,V)2N at 900°C
13



Reducing O2 in Nitriding Gas Resulted in  
Surface Gaps/Extensive Internal Nitridation

Fe-27Cr-6V Nitrided at 900°C for 4 h in Purified N2-4H2

10 µm

Surface

Cr2NGaps

10 µm

10 µm

Cross-Section

Internal Nitrides

•Indicates O2 impurity/oxide formation favors dense Cr-nitride
surface formation by reducing N2 penetration into the alloy
•Variations in O2 impurity level cause of initial repeatability issues 14



Initially Formed Oxide Converted to
Nitride:  Easier with Vanadium

SEM Cross-Sections after 24 h at 850°C in N2-4H2

CrN

0.5 µm
0.5 µm

CrN

(V,Cr)2O3 (dark)

Fe-27Cr Fe-27Cr-6V

Cr2O3

•Oxide formed initially during heat up followed by conversion to nitride 
-V and Cr co-segregate into initially-formed (V,Cr)2O3 oxide
-V addition adds extra degree of freedom- intermixed morphology

•Nitrided Fe-27Cr showed inadequate corrosion resistance due to
many non-uniform areas and thin spots 15



V Additions Destabilize Oxide Relative
to Nitride Compared to Cr
900°C Predominance Diagrams
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•Order of magnitude greater O2 impurity stability for VN relative to
CrN at 900°C in N2-4H2 (100 vs 10 ppm O2)
•V works because Cr2O3-V2O3; Cr2N-V2N; CrN-VN all mutually soluble
•V2O3 and Cr-doped V2O3 also conductive-combined with intermixed
morphology and N2-doping yields good ICR values 16



Insights for Alloy/Nitridation Optimization
•Use of O2 to segregate Cr and V to the surface may permit
significant decrease in Cr and V level to minimize alloy cost

-Fe-27Cr-6V studied as model (Fe-27Cr-2V also worked)
-Decrease to 18-20 wt.% Cr and 1-2 wt.% V likely, possibly lower
(Cr-V oxides very stable, low O2 permeability in Fe)

•Positive early results with pre-oxidation followed by nitridation
-800°C, < 20 minutes to form oxide (want ≤ 0.2-0.5 micron thick)
-May be accomplished on commercial scale by heat up in O2
containing purge gas followed by introduction of nitriding gas
(can also leverage shifting oxide/nitride boundary with temperature)

•Total temp./time cycle < 900°C and < 24 h 
-cost estimates difficult at this stage
-not a conventional hardening cycle (cheaper), only need few microns
-very dependent on # and size of plates, furnace size, exact cycle,..
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Stamped Fe-Cr-V Alloys Can Meet 
$6/kW Transportation Cost Goals

GenCell Corp Cost Estimates for Stamped Bipolar Plates
(Nitriding Costs Not Included)

Foil Density
Thick. (in) kg/kW $3/lb Alloy $5/lb Alloy $7/lb Alloy

0.002 0.26 $2.31 $3.47 $4.58
0.004 0.38 $3.15 $4.26 $6.57
0.008 0.64 $4.86 $7.69 $10.51

Bipolar Plate Cost ($/kW)

•High Cr ferritic alloys $3-7/lb: potentially viable nitriding costs
-E-BRITE® (Fe-26Cr-1Mo wt.%): $5-7/lb commercial price for foil
-Alloy 444 (Fe-18Cr-2Mo wt.%): $3-5/lb commercial price for foil
-Above alloys comparable to Fe-Cr-V alloys as Mo and V costs similar

Assumptions: 360 cm2 active area plate (494 cm2 total area), 2 mil secondary foil
for cooling (nested stacking), parallel flow field 0.025” depth, 2010 MEA target power density 18



Future Work
•Delivery of nitrided Fe-27Cr-6V plates for fuel cell testing with 
collaborators (thick machined plates for comparison with graphite)

•Better establish range of oxygen-nitrogen conditions that lead to
protective Cr-nitride base surfaces

-Includes exploration of lower Cr and V alloys

•Manufacture foil for stamping assessment with GenCell Corp

•Complete post fuel cell test microstructure analysis of nitrided
Ni-Cr plates run with collaborators

-Establish limits of Cr-nitride by cycling nitrided Ni-50Cr 
plates at > 1V (such conditions can be encountered in stacks)

•Project ends in Sept 2006: Go/No Go decision for scale up via
proposal submitted for recent DOE fuel cell call
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Summary

•Single-cell fuel cell testing of model nitrided Ni-Cr alloys indicates
good performance and durability of thermally grown CrN/Cr2N
surfaces under cyclic test conditions (voltage, relative humidity)

•Promising results with protective Cr-nitride  formation on 
V-modified Fe-Cr alloys that can meet DOE cost goals

-Behavior in range of contact resistance and polarization
corrosion screening targets met
-Dense Cr-nitride surface formation aided by oxide formation
to reduce nitrogen penetration/internal nitridation
-Key to V effectiveness is mutual solubility in Cr-V-O and Cr-V-N, 
and high relative stability of V-nitride, V2O3 also conductive 
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Responses to Previous Year Reviewers’ 
Comments

•Need for coatings for metal plates not established/no baseline
fuel cell tests with untreated metal plates

-Under some mild/static conditions and applications uncoated metals 
may be acceptable: not the case for automotive applications which is 
primary focus of this program
-Limited $/time prevent fuel cell testing of untreated control metal 
plates (collaborators use past graphite plate performance as benchmark)

i) extensive corrosion and ICR studies of untreated coupons
ii) no untreated stainless steel can meet ICR goals

•Limited alloy, cost estimate, road mapping details, good 
collaborations but proactively seek more stack developers

-Project wrapping up development stage, not yet in scale up
-Cost estimate details added this year with GenCell Corp

i) Input also obtained from alloy manufacturers
ii) Exploratory discussions w/many fuel cell OEM’s (not all listed)
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Publications
Publications/Manuscripts: 9 journal papers published, in press, or in manuscript for effort 
since 2002 
 
1) M.P. Brady, B. Yang, H. Wang, J.A. Turner, K.L. More, M. Wilson, F.Garzon, “Growth of 
Protective Nitride Layers for PEM Fuel Cell Bipolar Plate Applications”, invited overview paper 
for the August 2006 Issue of JOM 
2) B. Yang, M.P. Brady, D.J. Young, K.L. More, P.F. Tortorelli, E.A. Payzant, H. Wang, and 
J.A. Turner, “Growth of  Multi-Functional Protective Nitride Layers on Fe-Cr Base Alloys for 
PEM Fuel Cell Bipolar Plates”,  to be submitted to Acta Materialia  
3) M.P. Brady, H. Wang, B. Yang, J.A. Turner, K.L. More, M. Bordignon, R. Molins, 
“Nitridation of Comercial Ni-Cr and  Fe-Cr Base Alloys for PEM Fuel Cell Bipolar Plate 
Applications”, to be submitted to International Journal of Hydrogen Energy 
4) I. Paulauskas, M.P. Brady, H. M.Meyer III , R.A. Buchanan, L.R. Walker, “Corrosion 
Behavior of CrN, Cr2N and π Phase Surfaces Formed on Nitrided Ni-50Cr with Application to 
Proton Exchange Membrane Fuel Cell Bipolar Plates”, Corrosion Science (in press) 
5) M.P. Brady, P.F. Tortorelli, K.L. More, E.A Payzant, B.L. Armstrong, H.T. Lin, M.J. Lance, 
F. Huang, and M.L Weaver, “Coating and Surface Modification Design Strategies for Protective 
and Functional Surfaces”, Materials and Corrosion, 56 (11), 748-755 (2005) 
6) M.P. Brady, K. Weisbrod, I. Paulauskas, R.A. Buchanan, K.L. More, H. Wang, M. Wilson, F. 
Garzon, L.R. Walker, “Preferential Thermal Nitridation to Form Pin-Hole Free Cr-Nitrides to 
Protect Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates”, Scripta Materialia, 50(7) 
pp.1017-1022  (2004). 
7) H. Wang, M P. Brady, K.L. More, H.M. Meyer,  and J. A. Turner, “Thermally Nitrided 
Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 2: Beneficial 
Modification of Passive Layer on AISI446”, Journal of Power Sources 138 (1-2), 75 (2004) 
8) H. Wang, M. P. Brady, and J. A. Turner, “Thermally Nitrided Stainless Steels for Polymer 
Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1 Model Ni-50Cr and Austenitic 349TM 
alloys”, Journal of Power Sources , 138 (1-2), 86 (2004) 
9) M. P. Brady K. Weisbrod,  C. Zawodzinski I. Paulauskas,R. A. Buchanan,and L. R. Walker, “ 
Assessment of Thermal Nitridation to Protect Metal Bipolar Plates in Polymer Electrolyte 
Membrane Fuel Cells”, Electrochemical and Solid-State Letters, 5, 11 2002 

Since Last Review
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Presentations
Presentations: 2 Conference Presentations with Proceedings Papers, 9 total oral 
presentations not including DOE Hydrogen Program Reviews, 3 poster presentations, 
several additional university/student presentations not listed for effort since 2002 
 
1) B. Yang, M. P. Brady, P.F. Tororoelli, K. L. More, H. Wang, J. A. Turner and D.J. Young, 
“Nitrided Stainless Steels for PEM Fuel Cell Bipolar Plates”, TMS Annual Meeting San 
Antonio, TX, March 15, 2006 
2) (Invited) M.P. Brady, B. Yang, Peter Tortorelli, K. L. More, H. Wang and J. A. Turner, 
“Thermally Nitrided Metallic Bipolar Plates for PEM Fuel Cells”, Materials Science and 
Technology 2005, Pittsburgh, PA, September 26, 2005. 
3) B. Yang, M. P. Brady, D. J. Young, K. L. More, H. Wang and J. A.Turner, “Thermally 
Nitrided Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells”, 208th 
Meeting of the Electrochemical Society, October 22-26, Los Angles, CA, USA, 2005, paper No. 
1007. 
4) (Invited) M.P. Brady, “Multi-component/multi-phase alloys as precursors to 
protective/functional surfaces via gas reactions", Gordon Research Conference on High 
Temperature Corrosion”, July 2005 Colby Sawyer, NH. 
5) M.P. Brady, H. Wang, I. Paulauskas, B. Yang, P. Sachenko, P.F. Tortorelli, J.A. Turner, R.A. 
Buchanan, “Nitrided Metallic Bipolar Plates for PEM Fuel Cells”, Proceedings of The 2nd 
International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY 
(June 14-16, 2004). 
6) M. P. Brady, I. Paulauskas, R. A. Buchanan,  K. Weisbrod, H. Wang, L. R. Walker, L. S. 
Miller “Evaluation of Thermally Nitrided Metallic Bipolar Plates for PEM Fuel Cells “, in 
Proceedings of 2nd European Fuel Cell Forum, Lucerne, Switzerland,  June 30-July 4, 2003.  
7,8) Two presentations at Spring Electrochemical Society, Orlando, FL (2003). 
9) ASM, Pittsburgh, PA (2003)  
10) Fall Meeting of The Materials Research Society (2002). 
11,12) Fuel Cell Seminar 2003, 2004 poster presentations 

Since Last Review
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Critical Assumptions and Issues
•Potential for warping of thin stamped foil during nitriding

-significant warping not observed thus far
-slight warping at corners: could cause stack sealing issues (not expected)
-bigger issue appears to be nitridation embrittlement of foil: can
be controlled by limiting internal nitridation

a) b)

a) Oxidized 2 mil FeCrAlY Foil (20-500 h cycles/800°C/10,000 h total)
b)  Stamped and nitrided G-35™ foil (Ni-30Cr alloy; collaboration w/GenCell)
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Critical Assumptions and Issues (Cont).

•Durability of Cr-nitride surface under stack conditions
- transient excursions > 1V could degrade nitride surface
- 10-5 A/cm2 corrosion current densities in coupon tests: pH 0 H2SO4
+ 2 ppm F- at 70°C and 1.4 vs SHE (dynamic scan, not hold)

- literature suggests transpassive dissolution via Cr2O7
2- above 1.2 V

- vanadium additions may further stabilize Cr-nitride
- will examine via > 1V cycling at LANL
- current MEAs and carbon supports degrade at > 1V 

•Repeatability of protective nitride on Fe-Cr-V alloys on scale up
-a concern but use of initial formation of oxide to control appears
promising
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