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ABSTRACT

The release of hazardous materials into the atmosphere can
have a tremendous impact on dense populations. We propose
an atmospheric event reconstruction framework that couples
observed data and predictive computer-intensive dispersion
models via Bayesian methodology. Due to the complexity of
the model framework, a sampling-based approach is taken for
posterior inference that combines Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) strategies.

1. INTRODUCTION

Atmospheric event reconstruction refers to the process of es-
timating the characteristics of an unknown release of a chemi-
cal or biological agent into the atmosphere (e.g., when? where?
how much?) and predicting its current and future dispersion.
The first part is accomplished by coupling together an atmo-
spheric dispersion model and (relatively) sparse sensor-data
to extract information about the unknown release input pa-
rameters of the dispersion model. Given a characterization
of the release, the resulting dispersion can be predicted, pro-
viding valuable information for consequence management. A
dynamic atmospheric event reconstruction refers to a constant
revision of our state-of-knowledge of the unknown release,
and its dispersion, as the event unfolds (in real or near-real
time) and more data becomes available.

A team of scientists at Lawrence Livermore National Lab-
oratory is implementing a general framework to carry out dy-
namic atmospheric event reconstruction. The approach is (hi-
erarchical) Bayesian, coupling together observed data anda
given dispersion model, along with prior knowledge about
source parameters, model uncertainty, and data accuracy. The
computational framework is implemented in a (Linux) clus-
ter environment and consists of a posterior-sampler interact-
ing with a dispersion model-server that can carry out multiple
dispersion model runs in parallel.

2. PROBLEM SETUP

Let t = 1, 2, . . . index the time-periods (time-points) for which
we wish to update our model and let:

τt ≡ the end time-point of thet-th characterization.

Tt ≡ (τt−1, τt], thet-th time interval.

The time-points{τt} can either be fixed in advance or, what is
more likely the case, dynamically chosen based on the avail-
ability and coverage of the incoming data.

The unknown atmospheric release can be due to one or
more sources. Let

θt,i ≡ collection of parameters characterizing thei-th
source inTt, and letθt ≡ {θt,i}.

For example, a simple characterization of a single explosive-
type of a source is given by its location (x), time of explo-
sion (T ), and the amount of material being released (m); θ =
{x, T, m}. Other examples include a source with a fixed lo-
cation but a time-dependent release rate (e.g., a “leak”) and
a source with both time-dependent release location and rate
(i.e., a moving source).

The impact of the release can be observed in various ways,
for example by a network of sensor instruments. In that case,
let:

sj ≡ the location of thej-th sensor.

cj,k ≡ thek-th average concentration reported from the
j-th sensor.

Tj,k ≡ (τs
j,k, τe

j,k) ≡ the time interval in whichcj,k was
measured over.

And we denote by

dt ≡ {cj,k : (j, k) ∈ It}, where,

It ≡ {(j, k) : τt−1 < τe
j,k ≤ τt}, indexes the new data

available int-th time period.

Further, letd1:t ≡ {d1, . . . ,dt}.
An atmospheric dispersion computer model is used to re-

late the source parameters to the sensor data. The dispersion



model yields concentration predictions given various input
parameters, including characterization of the emitting source.
Let

Ĉj,k = Ĉj,k(θ1:t) ≡ the model-predicted average con-
centration at locationsj in the time-periodTi,k.

Ĉt ≡ Ĉt(θ1:t∗) ≡ {Ĉj,k : (j, k) ∈ It}, t ≤ t∗, the
model-predicted concentrations corresponding todt.

The chosen dispersion model is not perfect, but an ap-
proximation to the underlying physical dispersion processes.
We therefore define:

Cj,k = C(sj , Tj,k) ≡ the true (unknown) average con-
centration at locationsj over the time periodTj,k.

Ct ≡ {Cj,k : (j, k) ∈ It}.

3. ON ATMOSPHERIC DISPERSION MODELS

A core component of an atmospheric event reconstruction
is an efficient use of atmospheric dispersion models. These
models range in complexity, from simple and fast (Gaussian)
“puff” models, such as the INPUFF model [1] that we use
later in Section 6, to more computationally demanding dis-
persion models, such as the Lagrangian-based LODI code [2].
For the more computationally demanding dispersion models,
it is crucial to minimize the number of model-runs needed
for source characterization. We now briefly describe two ap-
proaches that can help in this regard.

Some dispersion models yield predicted concentration lev-
els that scale linear with the amount of material being re-
leased. If this is the case, then, for example for an explo-
sive sourceθ = {x, T, m}, it is sufficient to carry out asingle
model-run at a proposed explosion location and time (x, T ) to
derive the predicted sensor concentrations (Ĉj,k) for various
release masses (m).

To efficiently take advantage of the above linearity, the
source parameters need to be “mapped” to a spatio-temporal
grid before being used by a simulation-based dispersion model.
For example, the proposed location and release time of an ex-
plosive source would be assigned to the closest source grid-
point. This introduces the idea of spatio-temporal resolution.
Thus, we extend the notation for the predicted concentration
levels to include a resolution indexR and let

Ĉ
(R)
t ≡ the predicted sensor concentrationsĈt at a given
source-resolutionR.

4. MODEL DEVELOPMENT

Given sensor data fromt time periods (batches),d1:t, our pri-
mary goal is to conduct inference on the source parameters,
θ1:t, via the posterior distribution

πt(θ1:t) ≡ p(θ1:t |d1:t);

the probability distribution of the source parameters condi-
tional on the observed data. In addition, as our setup is dy-
namic, we seek a smooth transition from posterior inference
at timet − 1 to timet; from πt−1(θ1:t−1) to πt(θ1:t).

The source terms are not the only parameters of interest.
We also seek posterior inference on the impact of the release,
that is, on the resulting concentration levels,

πt(C(u, τ)) ≡ p(C(u, τ) |d1:t), 0 < τ ≤ τt, u ∈ D,

whereD is our spatial domain of interest. In general, we seek
to have access to the joint posterior

πt(C1:t, θ1:t) ≡ p(C1:t, θ1:t |d1:t).

When proceeding from time periodt − 1 to t, the atmo-
spheric event reconstruction problem has a natural hierarchi-
cal breakdown:

Data Model: A conditional probability distribution describ-
ing the variation in the newly available data,dt, given
the true underlying concentrations and past data,

p(dt |C1:t,d1:t−1). (1)

Process Model: A probability model describing the varia-
tion in the current concentration levels,Ct, given model
predictions and past concentration levels,

p(Ct | Ĉ1:t,C1:t−1) = p(Ct |θ1:t,C1:t−1), (2)

where the second expression follows sinceĈt∗ = Ĉt∗(θ1:t),
t∗ = 1, . . . , t.

Parameter Model: A prior parameter model,

p(θt |θ1:t−1). (3)

Before going further, we note that each of these models might
have a collection of (hyper) parameters. For example, there
might be some parameters that describe the size of the disper-
sion model-error (i.e., additional parameters associatedwith
(2)). Jointly, we have

p(Ct, θt |C1:t−1, θ1:t−1) = p(Ct |C1:t−1, θ1:t)p(θt |θ1:t−1).

The joint (prior) distribution of the model parameters can there-
fore be written as

p(C1:t, θ1:t) =
t∏

t∗=1

p(Ct∗ , θt∗ |C1:t∗−1, θ1:t∗−1),

where we defineC1:0 = θ1:0 = ∅ (an empty set of parame-
ters).

Due to the dynamic setup and the hierarchical breakdown
within each time step, inference flows naturally from time pe-
riod t − 1 to t. Assume at timet − 1 we have access to the
joint posterior distribution of all parameters of interest,

πt−1(C1:t−1, θ1:t−1) = p(C1:t−1, θ1:t−1 |d1:t−1).



The dynamic parameter model (3) for the source terms yields
the one-step-ahead predictive distribution as

πt−1(θ1:t) = p(θt |θ1:t−1)πt−1(θ1:t−1).

More generally, jointly we have that,

πt−1(C1:t, θ1:t) = p(Ct, θt |C1:t−1, θ1:t−1)

× πt−1(C1:t−1, θ1:t−1).

Then, given (potentially) new data at time stept, the joint
posterior att is given by

πt(C1:t, θ1:t) ∝ p(dt |C1:t,d1:t−1)πt−1(C1:t, θ1:t). (4)

5. POSTERIOR INFERENCE

For posterior inference we adopt a sequential Monte Carlo
method. In designing a posterior sampler, we seek robustness,
adaptiveness, and effective use of the (sometimes computa-
tional demanding) atmospheric dispersion prediction code. We
now give a broad description of the sampler’s design.

The sampler consists of three components: (1) Initial-
ization; the generation of the initial sample, (2) Rejuvena-
tion; the refinement and ’cooling’ of the current sample, and
(3) Augmentation; the extension of time-dependent parame-
ters. The design is inspired by the use of annealing (bridg-
ing) methods (as in [3, 4]), the use of auxiliary variables (as
in [5]), the use of MCMC kernels (as in [6, 4]), and by the
adaptability of population Monte Carlo methods [7]. Many of
these approaches are summarized, generalized, and extended
by Del Moral et al. [8] under the name of “Sequential Monte
Carlo Samplers”. What is new, and not covered by above
references, is the implementation of an adaptive annealing
schedule and a constant refinement of the spatial resolution
of the source parameters.

In what follow, we letXt ≡ {θt,Ct}.

(1): Initialization

Given the initial datad1 at t = 1, we seek to draw an im-
portance sample from the ’heated’ and ’coarsened’ posterior
distribution

π
(T1,R1)
1 (X1) ∝ p(R1)(d1 |X1)

1/T1p(R1)(X1), (5)

whereR1 indexes the initial (coarse) spatial resolution of the
source parameters (a provided input parameter) andT1 > 1
is the initial annealing temperature. The algorithm used to
generate the importance sample is as follows:

1. GenerateX(i)
1 ∼ p(R1)(·); i = 1, . . . , N .

2. ComputeL(i)
1 ∝ p(R1)(d1 |X

(i)
1 ).

3. Find a temperatureT1 ≥ 1 that yields importance weights
w

(i)
1 ∝ (L

(i)
1 )1/T1 with effective sample size (ESS) [9]

just above a give threshold, sayN/2.

Let {X(i)
1 , w

(i)
1 } be the resulting importance sample.

(2): Rejuvenation

Let {X(i)
1:t, w

(i)
1:t} be an importance sample from

π
(T,R)
t (X1:t) ∝ p(R)(d1:t |X1:t)

1/T p(R)(X1:t). (6)

We use MCMC kernels to further ’cool’ and refine the current
sample using (broadly) the following steps:

1. Resample the current sample .

2. Select a new source-resolution indexR∗ using the em-
pirical distribution of the current source parameters.

3. Adapt MCMC kernels using the current sample (e.g.,
the “step-sizes” in Metropolis-Hasting-type of a random-
walk kernels) and carry out MCMC proposals.

4. Select a new temperatureT ∗, 1 ≤ T ∗ < T , that results
in an expected MCMC acceptance ratio and ESS just
above given thresholds.

5. Accept/reject M-H proposals using the newT ∗ in (6),
yielding a MCMC-rejuvenated sample{X∗(i)

1:t }

6. Compute the importance weights [8]

w
∗(i)
1:t ∝ π

(T∗,R∗)
t (X

∗(i)
1:t )/π

(T,R)
t (X

∗(i)
1:t ).

This yields an importance sample{X∗(i)
1:t , w

∗(i)
1:t } at tempera-

tureT ∗ and source-resolutionR∗.

(3): Augmentation

Let {X(i)
1:t, w

(i)
1:t} be the current importance sample from (6).

Due to the inherent time delay in what happens at the source
and what is observed at the sensors, any potential new data
dt+1 is mostly informative about the past state of the source.
We therefore adopt auxiliary particle-filter techniques [5] in
extending the current importance sample to time periodt +
1. The only major deviation from the classical auxiliary ap-
proach is the adaptive selection of the annealing temperature,
along the lines of the Initialization step above, except thetem-
perature change is only applied to the new data.

Putting it All Together

In short, we carry out the Initialization step followed by mul-
tiple Rejuvenation steps (the number of Rejuvenations needed
can be determined by monitoring changes in some population
statistics from one iteration to the next; e.g., changes in mean
and variance). The initial sample is then augmented using the
Augmentation step, followed by multiple Rejuvenation steps.
The Augmentation and the Rejuvenation steps are then re-
peated for each new batch of data.



After 1 Rejuvenations

After 4 Rejuvenations

After 14 Rejuvenations

Fig. 1. The annealing and the spatial refinement of the poste-
rior sample of the source location; an open black circle shows
the true location of the source, while black stars (and gray
crosses) show the spatial-grid in use at each time, and gray
stars show ’jittered’ posterior location-realizations.

6. A SMALL EXAMPLE

We now demonstrate the impact of annealing and spatial re-
finement using a small example based on a synthetic setup
and data.

The setup consist of a single explosive-type source that
is upwind from a array of four sensors; see Figure 1. Syn-
thetic sensor data was generated using a simple Gaussian puff
model [1]. Given the first batch of sensor data above the de-
tection limit, we carry out an initial important sampling with
250 particles, followed by MCMC rejuvenation steps that re-
fine the spatial resolution of the source location at ’cooler’
temperatures. The evolution of the source location sample is
shown in Figure 1 at three iteration points, with only the last
one (iteration 14) being conducted at temperatureT = 1. We
note the coarse spatial resolution at high temperatures andthe
subsequent spatial refinement with cooler temperatures.

Not shown is the augmentation and rejuvenation of the
current sample given a new batch of data. In this case, the
spatial resolution is kept fixed at the current resolution, but
the temperature associated with the likelihood of the new data
is selected adaptively, as outlined previously, to yield a good
effective sample size.

7. ACKNOWLEDGMENT

This work was funded by LDRD project number 04-ERD-037
and was performed under the auspices of the U.S. Department
of Energy by the University of California, Lawrence Liver-
more National Laboratory under Contract W-7405-Eng-48.

8. REFERENCES

[1] W.B. Petersen and L.G. Lavdas, “Inpuff 2.0: A multi-
ple source gaussian puff dispersion algorithm — user’s
guide,” Tech. Rep. EPA/600/8-86/024, EPA, 1986.

[2] J. S. Nasstrom, G. Sugiyama, J. M. Leone, and D. L. Er-
mak, “A real-time atmospheric dispersion modeling sys-
tem,” in The Proceedings of the 11th Joint Conference
on the Applications of Air Pollution Meteorology, Long
Beach, CA, 2000, The American Meteorological Society,
pp. 285–289.

[3] R.M. Neal, “Annealed importance sampling,”Statistics
and Computing, vol. 11, pp. 125–139, 2001.

[4] S.N. MacEachern, M. Clyde, and J.S. Liu, “Sequential
importance sampling for nonparametric Bayes models:
The next generation,”Canadian Journal of Statistics, vol.
27, pp. 251–267, 1999.

[5] M.K. Pitt and N. Shephard, “Filtering via simulation:
Auxiliary particle filters,” Journal of the American Sta-
tistical Association, vol. 23, pp. 356–359, 1999.

[6] C. Berzuini and W. Gilks, “RESAMPLE-MOVE fil-
tering with cross-model jumps,” inSequential Monte
Carlo Methods in Practice, A. Doucent, N. de Freitas,
and N. Gordon, Eds., pp. 117–138. Springer, New York,
2001.
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