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Abstract

We present a compact and accurate representation of
a whole-program abstract syntax tree, and use it to
detect a specific security vulnerability in C++ pro-
grams known as a One-Definition Rule (ODR) viola-
tion. The ODR states that types and functions ap-
pearing in multiple compilation units must be de-
fined identically. However, no current compiler can
enforce ODR because doing so requires the ability to
see the full application source at once; where ODR
is violated, the program is incorrect. Moreover, a
lack of ODR enforcement makes a program vulnera-
ble to the so-called VPTR exploit, in which an object’s
virtual function table is replaced by malicious code.
Our representation of the whole program preserves
all features of the source for analysis and transfor-
mation, and permits a million-line application to fit
entirely in the memory of a workstation with 1 GB
of RAM.

1 Introduction

Most whole-program analyses use some form of
summarization, at the loss of analysis precision,
since analysis time complexity is often super-linear.
The traditional unit to analyze and summarize is a
procedure since it does not require the compiler to
see the full source at once [33]. However, suppose
we provide the compiler with a complete view of
the entire program. Then, the compiler may freely
choose any convenient unit regardless of procedure
or module boundaries, and thereby control the size,
contents, and context of the program fragment to an-
alyze [19, 35, 24]. Such techniques permit focused
and efficient analyses of customizable precision. For
software security assurance, improvements in preci-
sion raise the level of assurance we can guarantee.

We describe a scalable whole-program analysis
that requires the full source to verify a fundamen-
tal assumption that all C++ compilers make but no
compiler checks. This assumption is the One Defi-
nition Rule (ODR) [4], which essentially states that
a C++ program is only legal if type and function
definitions appearing in multiple source files are de-
fined identically (Section 2). Code violating ODR is
not legal and may not be translated to a correct exe-
cutable. Nevertheless, no compiler verifies ODR be-
cause each compiles only a subset of an entire pro-
gram at one time, under separate compilation; as it
happens, only a whole-program analysis of the full
source can be used to verify ODR.

A lack of ODR enforcement enables the VPTR ex-
ploit, a virtual function table attack [31]. Though not
yet widely used, this exploit can be implemented as
a simple insider attack, particularly in collaborative
or open-source projects [29] (Section 3). Its use is ex-
pected to grow as defenses against stack smashing
techniques mature [28]. Checking ODR is an essen-
tial preventative measure.

We implement basic support for whole-program
analysis in the form of a compact and accurate
abstract-syntax tree representation of an entire pro-
gram (Section 4). We can store a million-line appli-
cation in the memory of a single workstation having
1 GB of RAM without losing any of the information
present in the original source. We achieve memory-
efficiency for C and C++ programs by merging
common declarations (typically appearing in header
files) that might otherwise be stored redundantly
for each source file. Our representation comple-
ments existing whole-program analyses by provid-
ing a simple, high-level view of the complete source
from which those analyses can be derived.

We are developing this work using ROSE, an open
infrastructure for building compiler-based source-
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to-source analysis and transformation tools [32]
(Section 4). For C and C++, ROSE fully supports
all language features, preserves all source informa-
tion for use in analysis, and permits arbitrarily com-
plex source-level translation via its rewrite system.
Although research in the ROSE project emphasizes
performance optimization, ROSE contains many of
the components common to any compiler infrastruc-
ture, and thus supports the development of gen-
eral source-based analysis and transformation tools.
This paper summarizes aspects of ROSE especially
relevant to security analysis research (Section 5).

2 One-Definition Rule (ODR)

This section summarizes the essential features of the
one-definition rule (ODR). The ODR states that tem-
plates, types, functions, and certain entities can only
be defined “once,” in a sense made precise in the
ANSI/ISO C++ Standard [4, Sec. 3.2, pp. 23–24].
Three of the main conditions of the ODR are:

1. Within a single translation unit (a source file
and its headers), there may be at most one defi-
nition of any variable, function, class type, enu-
meration type, or template.1 All compilers ver-
ify this condition.

2. Within the entire program, there may only be
one definition of every non-inline function or ob-
ject; an inline function must be defined in every
translation unit in which it is used, with all such
definitions being identical as described in Con-
dition 3 below. Because compilers typically pro-
cess only one translation unit at a time, the C++
standard does not require that compilers check
this condition.

3. Some entities, including class types, enumera-
tion types, inline functions with external link-
age, and various template entities, may be de-
fined in more than one translation unit pro-
vided the definitions are “identical.” The C++
standard lays out the meaning of identical pre-
cisely; one notable property is that two defi-
nitions must “consist of the same sequence of
tokens” to be considered the same [4, p. 24].
We use this token-based property in our ODR
checker. Like Condition 2 above, compilers typ-
ically do not or cannot verify whether multiple
definitions are identical as laid out by the C++
standard.

1There may, however, be multiple non-defining declarations,
such as function prototypes, “extern” variable declarations, for-
ward class declarations.

Listing 1: main.cc–A simple program
1 int main () {

extern void runModule (void); // Module to call
3 runModule ();

return 0;
5 }

A legal C++ program must obey the ODR. How-
ever, because the standard assumes that a compiler
will see only one translation unit at a time (Condi-
tion 1), it does not require that a compiler detects
violations across translation units.

The linker can partially verify ODR by detecting,
for instance, multiple definitions of non-inline func-
tions and global variables (Condition 2). However,
inline function ODR violations cannot be detected;
these violations require a whole-program analysis.

3 VPTR Exploit

The VPTR exploit replaces an object’s virtual func-
tion table pointer (“VPTR”) with one containing ma-
licious code [31]. The simplest technique redefines
the existing definition of an inline virtual function;
since a typical compiler does not see the whole pro-
gram, it cannot enforce the ODR to catch instances
of this exploit. This form is most easily imple-
mented as an insider attack, which could occur in
a collaborative software development environment
as demonstrated by the 2003 Linux kernel back-
door [29]. Moreover, the exploit is an instance of
more general pointer subterfuge attacks [28].

Listings 1–3 show a program containing the vul-
nerability. In Listing 1 at line 3, the program executes
a routine defined in an external module. That rou-
tine creates two stack-allocated objects, a and b, both
of type Derived, at line 13 of Listing 3. The Derived
type inherits from an abstract base class (Base), im-
plements the virtual method, Derived::run , at line
7, and declares a 1-byte datum at line 8. How-
ever, because the run method is virtual and defined
as (implicitly) inline, we must redefine the method
in every translation unit in which it is used, albeit
with the same definition (see Condition 3 in Sec-
tion 2). If the compiler cannot enforce this condition,
an attacker can re-implement the method in another
translation unit to execute arbitrarily different code.

We implement a basic VPTR exploit in Listing 4.
This code is a separate module that defines another
malicious version of Derived::run() in lines 6–9.
Most compilers, including GCC, assume ODR holds
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Listing 2: Base.hh–An abstract base class
1 class Base {

public:
3 virtual ˜Base (void) {}

virtual void run (void) = 0;
5 };

Listing 3: Module.cc–An innocuous module
1 #include "Base.hh"

3 // Derived class, intended to be private to this module.
class Derived : public Base {

5 public:
Derived (void) { buf [0] = ’a’ ; }

7 void run (void) { buf [0] = ’z’ ; }
char buf [1];

9 };

11 // Public interface to this module.
void runModule (void) {

13 Derived a, b; // Two instances on the stack
Base ∗pa = &a, ∗pb = &b;

15 pb−>run (); // Expect b.buf [0] == ’z’
pa−>run (); // Expect a.buf [0] == ’z’

17 }

and simply choose the first one encountered at link-
time. That is, when compiling with

g++ main.o Module.o ViolateODR.o ...

the compiler chooses Derived::run() from List-
ing 3, whereas in

g++ main.o ViolateODR.o Module.o ...

it chooses the implementation from Listing 4. More-
over, if the application uses shared or dynamically-
loaded libraries, the malicious module need only ap-
pear first in the shared library path to be executed.

VPTR exploits have more sophisticated forms, as
shown in Listing 5. This example builds on the basic
exploit in Listing 4 by violating ODR and then us-
ing buffer-overrun techniques to rewrite the VPTR
directly. The first step on line 15 of this alternative
Derived::run() has the same behavior as Listing 3
at line 7, perhaps to make the code appear to behave
safely. However, it then executes additional mali-
cious code in lines 16–17.

These additional lines use the fact that a derived
object often stores not just its data, but the VPTR ap-
propriate for that object’s type. For example, the a
and b stack-allocated instances of Derived declared

Listing 4: ViolateODR.cc–Basic VPTR exploit
1 #include <iostream>

#include "Base.hh"
3

class Derived : public Base { // Class violating ODR
5 public:

void run (void) {
7 std :: cout << "*** Hostile takeover ***"

<< std::endl;
9 }
};

11

Derived d; // Instantiate to get malicious ’Derived’

on line 13 of Listing 3 might appear on the stack
as shown in the left-half of Figure 1. Each object
has its 1-byte datum, buf [0] , plus a hidden 4-byte
VPTR. When line 15 of Listing 3 invokes our mali-
cious run() , it does so on data allocated and laid
out according to the definition of Derived in List-
ing 3. Lines 16–17 of Listing 5 use platform-specific
knowledge of how this data is laid out to write be-
yond the bounds of the data and, in this case, into the
VPTR of the next object on the stack, as illustrated in
the right-half of Figure 1. The new VPTR is simply
the address of a compatible VPTR for the Attacker
class defined in Listing 5. The Attacker class con-
tains another malicious implementation of run() .
This additional form of the VPTR exploit builds on
the ODR violation, so checking ODR helps defend
against VPTR exploits generally.

...

VPTR

VPTR

...

Stack

Derived a;

Derived b;

buf_[0]

buf_[12] Malicious overwrite

buf_[0]

buf_[0]

Figure 1: VPTR exploit. The attacker implements
the alternative version of Derived::run() shown
in Listing 5 such that executing b.run() overwrites
a’s VPTR.
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Listing 5: Attacker.cc–A malicious module
#include <iostream>

2 #include "Base.hh"

4 class Attacker : public Base { // More malicious code
public: void run (void) {

6 std :: cout << "*** vtable overwritten! ***"
<< std::endl;

8 // ... Do malicious things here ...
}

10 };

12 class Derived : public Base { // Class violating ODR
public:

14 void run (void) {
buf [0] = ’z’ ; // Looks normal, but see below...

16 Attacker x; // Instantiate to get a vtable to inject
∗((unsigned ∗)(buf +12)) = ∗((const unsigned ∗)(&x));

18 }
char buf [16]; // Buffer used to overwrite vtable

20 } d; // Instantiate to get malicious ’Derived’

4 A Whole-Program Analysis to
Detect ODR Violations

Whole-program analysis is typically implemented
using procedure summaries or by embedding infor-
mation into the object files to use whole-program
context at link-time. Summarization is necessary
to mitigate the impact of super-linear analysis time
costs, and procedures are a convenient unit. How-
ever, a compiler or analysis tool should be free to
analyze any useful, arbitrarily partitioned unit of the
program, given a complete and accurate view of pro-
gram context [35, 36, 24]. This need motivates our
whole-program abstract syntax tree representation.

Below, we describe this representation as imple-
mented in ROSE, an open and extensible infrastruc-
ture for building customized source-to-source anal-
ysis and transformation tools. A typical ROSE-based
tool looks like a traditional compiler, with a front-
end that generates an object-oriented abstract syntax
tree (AST), a “mid-end” performing custom analy-
ses and/or transformations to the AST, and a back-
end to unparse the possibly modified AST back into
source code. This section outlines recent work to ex-
tend the AST to allow the creation of a single, com-
pact AST for the entire program. ODR violations
appear during the construction of such a whole-
program AST. For more information on the complete
ROSE architecture, including features relevant to se-
curity analysis, see Section 5.

4.1 Overview of the whole-program rep-
resentation and ODR test

ROSE’s intermediate representation (IR), SAGEIII,
stores all high-level information from the source
code, sufficient to reproduce the original source code
completely. The IR is space-efficient by design since
we target large-scale physics applications of 100
KLOC per file and up. Current workstation mem-
ory capacities are also quite large (commonly 2–4 GB
and greater), and so are better able to support repre-
sentations of applications consisting of hundreds of
files. For greater space savings, we share parts of the
AST (subtrees) that are determined to be identical.
This test for matching subtrees is where we check
ODR, since identical definitions will by construction
be shared across multiple files in the AST.

ROSE routinely compiles million-line applications
file-by-file. In round numbers, these applications
have on the order of 1000 files containing 75K lines
contributed from header files and 1K lines of source
code in the source file. The effective 76K lines of
code generates an AST with about 500K IR nodes.
Merging the 75K lines over each of the 1000 files
thus saves 75 million lines of code from being rep-
resented redundantly in the AST. Using a 250 KLOC
program, we have estimated that a million-line ap-
plication will fit into approximately 400 MB of mem-
ory after merging header files. The AST holding
the million-line application can also be saved to and
loaded from disk using a custom ROSE-specific bi-
nary file format; on current single-processor desktop
machines, writing one of these binary files to disk
takes roughly 30 sec and reading less than a minute.
Simple traversals of the whole AST in memory take
only a few seconds. Thus, the representation is com-
pact and efficient to operate on once constructed.

We perform the ODR test by unparsing candidate
subtrees and verifying an exact match. Since ROSE
can optionally normalize whitespace and optionally
strip comments and preprocessor directives, simple
string matching verifies token-by-token equivalence
of the original code as required by ODR.

4.2 Whole-program AST construction

Given the ASTs from separate translation units, we
merge them as follows:

1. Build an extended mangled name map
The matching process is based on an extended
form of name mangling that is common for
handling C++ types, variables, and functions.
In short, we traverse all declarations in the
global scope and all namespace scopes, and for
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each declaration, generate and store each dec-
laration’s unique name (i.e., extended mangled
name) into an STL map. The map’s key is the
unique name, and its value is a pointer to the
associated IR node. (There are a number of de-
tails that we omit for simplicity.)

2. Build a replacement multimap
The AST is traversed a second time to match the
unique names generated from declarations with
keys in the mangled name map. All matches are
recorded, and a map of pairs of IR node pointers
is generated (the IR node of the match and the
IR node associated with the matching key from
the mangled name map). The ODR test (see end
of Section 4.1) is applied and must pass to be
included in the replacement multimap.

3. Fixup AST and build the subtree delete list
Using the replacement mutimap we traverse the
AST again and find all pointers to IR nodes and
using the pointer to the IR node as a key we
look them up in the replacement multimap. If
found, we replace the pointer to the key with
the pointer to the value obtained from the mul-
timap using the key and the replaced pointer
value is added to the subtree delete list. All IR
nodes that are shared via the merge process are
explicitly marked as shared in the AST.

4. Delete redundant subtrees
To save space we cannot remove redundant
subtrees in the modified AST; we iterate over
the delete list (which points to redundant sub-
trees) and remove all the nodes in each subtree.

4.3 Merged AST example

Figure 2 (top) shows the AST for the three source
files shown in Listings 1, 3, and 5, with AST sub-
trees colored by file. The ASTs from the files are not
shared. Figure 2 (middle) shows the AST after the
merge process, here the diamond shaped IR nodes
of the AST indicate that those IR nodes are shared.
To be shared, the declaration at the root of the sub-
trees had to generate the same internal name (in C++
this includes standard name mangling plus a num-
ber of other language specific details) and the sub-
trees had to pass the ODR test of equivalence. Fig-
ure 2 (bottom) shows the parts of the AST which had
the same internal name, but which failed the ODR
test. These pairs of subtrees represent the ODR vio-
lation that enables a successful VPTR exploit.

5 The ROSE Infrastructure

We are implementing our security analysis work
within ROSE, a U.S. Department of Energy (DOE)
project to develop an open-source compiler infras-
tructure for optimizing large-scale (1 MLOC or
more) DOE applications [32]. The ROSE framework
enables tool builders who do not necessarily have a
compiler background to build their own source-to-
source translators. The current ROSE infrastructure
can process C and C++ applications, and we are ex-
tending it to support Fortran90.

ROSE provides several components to build
source code analyzers and source-to-source trans-
lators. The C++ front-end generates an object-
oriented abstract syntax tree (AST) as an intermedi-
ate representation. The AST preserves the high-level
C++ language representation so that no information
about the structure of the original application (in-
cluding comments and templates) is lost. This fea-
ture permits accurate analysis and the ability to re-
generate the original source from the AST. The back-
end unparses the AST into source code. The ROSE
tool builder creates a “mid-end” to analyze or trans-
form the AST; ROSE assists by providing a number of
mid-end components, including graph visualization
tools, a predefined traversal mechanism, an attribute
evaluation mechanism, transformation operators to
restructure the AST, program analysis support, and
a number of performance optimizing transforma-
tions. ROSE also provides support for annotations
whether they be contained in pragmas, comments,
or separate annotation files.

Though the traditional emphasis in the ROSE
project is on performance optimization, these basic
components are well-suited to building software se-
curity analysis tools. A recent position paper dis-
cusses how ROSE supports the related area of auto-
mated program testing and debugging [30].

5.1 Front-end

We use the Edison Design Group C++ front-end
(EDG) [13] to parse C and C++ programs. EDG
generates an AST and fully evaluates all types. We
translate the EDG AST into our own object-oriented
AST, SAGEIII, based on Sage II and Sage++ [7].
SAGEIII is used by the mid-end as an intermedi-
ate representation. Full template support permits
all templates to be instantiated in the AST. The AST
passed to the mid-end represents the program and
all the included header files. SAGEIII has 240 types
of IR nodes, as required to represent the original
structure of the application fully.
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6:7
SgFunctionParameterList

0xb47c1008  

10:11
SgNullStatement

0x81c7508  

9:12
SgBasicBlock
0x81bd7b8  

*[0]

8:13
SgFunctionDefinition

0x81adc10  

body

14:15
SgCtorInitializerList

0xb4788008  

5:16
SgMemberFunctionDeclaration

~Base
0xb47fa008  

parameterList definition CtorInitializerList

18:19
SgFunctionParameterList

0xb47c10f0  

20:21
SgCtorInitializerList

0xb47880f0  

17:22
SgMemberFunctionDeclaration

run
0xb47fa164  

parameterList CtorInitializerList definition

4:23
SgClassDefinition

0x816edf0  

*[0] *[1]

3:24
SgClassDeclaration

Base
0xb484f008  

definition

28:29
SgInitializedName

0x81ea610  

initptr

27:30
SgVariableDeclaration

0xb474d008  

*[0]

32:33
SgFunctionParameterList

0xb47c11d8  

36:37
SgNullStatement

0x81c7528  

35:38
SgBasicBlock
0x81bd7e0  

*[0]

34:39
SgFunctionDefinition

0x81adc38  

body

43:44
SgCharVal
0x82159c8  

valueExpressionTree

42:45
SgAssignInitializer

0x8208ea0  

operand_i

41:46
SgInitializedName

0x81ea660  

initptr

40:47
SgCtorInitializerList

0xb47881d8  

*[0]

31:48
SgMemberFunctionDeclaration

Derived
0xb47fa2c0  

parameterList definition CtorInitializerList

50:51
SgFunctionParameterList

0xb47c12c0  

58:59
SgThisExp
0x8221ee8  

60:61
SgVarRefExp
0x822da90  

57:62
SgArrowExp
0x82386c8  

lhs_operand_i rhs_operand_i

63:64
SgCharVal
0x82159f8  

valueExpressionTree

56:65
SgAssignOp
0x8245240  

lhs_operand_i rhs_operand_i

55:66
SgExpressionRoot

0x825aa10  

operand_i

54:67
SgExprStatement

0x8251d68  

expression_root

68:69
SgNullStatement

0x81c7548  

53:70
SgBasicBlock
0x81bd808  

*[0] *[1]

52:71
SgFunctionDefinition

0x81adc60  

body

72:73
SgCtorInitializerList

0xb47882c0  

49:74
SgMemberFunctionDeclaration

run
0xb47fa41c  

parameterList definition CtorInitializerList

26:75
SgClassDefinition

0x816ee1c  

*[0] *[1] *[2]

25:76
SgClassDeclaration

Derived
0xb484f458  

definition

78:79
SgFunctionParameterList

0xb47c13a8  

85:86
SgExprListExp

0x827bcb0  

84:87
SgConstructorInitializer

0x8286898  

args

83:88
SgInitializedName

0x81ea6b0  

initptr

82:89
SgVariableDeclaration

0xb474d0f8  

*[0]

93:94
SgExprListExp

0x827bcdc  

92:95
SgConstructorInitializer

0x82868d4  

args

91:96
SgInitializedName

0x81ea700  

initptr

90:97
SgVariableDeclaration

0xb474d1e8  

*[0]

103:104
SgVarRefExp
0x822dabc  

102:105
SgAddressOfOp

0x82ae140  

operand_i

101:106
SgCastExp
0x82a0588  

operand_i

100:107
SgAssignInitializer

0x8208ed4  

operand_i

99:108
SgInitializedName

0x81ea750  

initptr

98:109
SgVariableDeclaration

0xb474d2d8  

*[0]

115:116
SgVarRefExp
0x822dae8  

114:117
SgAddressOfOp

0x82ae174  

operand_i

113:118
SgCastExp
0x82a05c0  

operand_i

112:119
SgAssignInitializer

0x8208f08  

operand_i

111:120
SgInitializedName

0x81ea7a0  

initptr

110:121
SgVariableDeclaration

0xb474d3c8  

*[0]

126:127
SgVarRefExp
0x822db14  

128:129
SgMemberFunctionRefExp

0x82bc1c0  

125:130
SgArrowExp
0x82386fc  

lhs_operand_i rhs_operand_i

131:132
SgExprListExp

0x827bd08  

124:133
SgFunctionCallExp

0x82c9c88  

function args

123:134
SgExpressionRoot

0x825aa44  

operand_i

122:135
SgExprStatement

0x8251d8c  

expression_root

140:141
SgVarRefExp
0x822db40  

142:143
SgMemberFunctionRefExp

0x82bc1f8  

139:144
SgArrowExp
0x8238730  

lhs_operand_i rhs_operand_i

145:146
SgExprListExp

0x827bd34  

138:147
SgFunctionCallExp

0x82c9cbc  

function args

137:148
SgExpressionRoot

0x825aa78  

operand_i

136:149
SgExprStatement

0x8251db0  

expression_root

150:151
SgNullStatement

0x81c7568  

81:152
SgBasicBlock
0x81bd830  

*[0] *[1] *[2] *[3] *[4] *[5] *[6]

80:153
SgFunctionDefinition

0x81adc88  

body

77:154
SgFunctionDeclaration

runModule
0xb46bf008  

parameterList definition

2:155
SgGlobal

0x80eb000  

*[0] *[1] *[2]

1:156
SgFile

0x80c9cb0  

root

162:163
SgFunctionParameterList

0xb47c1490  

166:167
SgNullStatement

0x81c7588  

165:168
SgBasicBlock
0x81bd858  

*[0]

164:169
SgFunctionDefinition

0x81adcb0  

body

170:171
SgCtorInitializerList

0xb47883a8  

161:172
SgMemberFunctionDeclaration

~Base
0xb47fa578  

parameterList definition CtorInitializerList

174:175
SgFunctionParameterList

0xb47c1578  

176:177
SgCtorInitializerList

0xb4788490  

173:178
SgMemberFunctionDeclaration

run
0xb47fa6d4  

parameterList CtorInitializerList definition

160:179
SgClassDefinition

0x816ee48  

*[0] *[1]

159:180
SgClassDeclaration

Base
0xb484ff20  

definition

184:185
SgFunctionParameterList

0xb47c1660  

188:189
SgNullStatement

0x81c75a8  

187:190
SgBasicBlock
0x81bd880  

*[0]

186:191
SgFunctionDefinition

0x81adcd8  

body

192:193
SgCtorInitializerList

0xb4788578  

183:194
SgMemberFunctionDeclaration

run
0xb47fa830  

parameterList definition CtorInitializerList

182:195
SgClassDefinition

0x816ee74  

*[0]
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0xb47c1ae8  

278:281
SgFunctionDeclaration

runModule
0xb46bf2b8  

parameterList definition

285:286
SgFunctionRefExp

0x840c3b0  

287:288
SgExprListExp

0x827bdb8  

284:289
SgFunctionCallExp

0x82c9cf0  

function args

283:290
SgExpressionRoot

0x825aae0  

operand_i

282:291
SgExprStatement

0x8251df8  

expression_root

294:295
SgIntVal

0x837e208  

valueExpressionTree

293:296
SgExpressionRoot

0x825ab14  

operand_i

292:297
SgReturnStmt

0x8417f38  

expression_root

298:299
SgNullStatement

0x81c7608  

277:300
SgBasicBlock

0x81bd8f8  

*[0] *[1] *[2] *[3]

276:301
SgFunctionDefinition

0x81add50  

body

273:302
SgFunctionDeclaration

main
0xb46bf160  

parameterList definition

272:303
SgGlobal

0x80eb050  

*[0]

271:304
SgFile

0x80c9d68  

root

0:305
SgProject

0x80b08a8  

*[0] *[1] *[2]

Figure 2: (Top) The AST before merging Listings 1 (right-most subtree in light green), 3 (left-most subtree
in red), and 5 (middle subtree in blue). (Middle) The AST after merging. The Base class definition, included
by Listings 3 and 5, is shared, as indicated by the magenta subtree with double-edges between diamond-
shaped nodes. (Bottom) The merged AST, with the two Derived class definitions that violate the ODR
shown by the subtrees with black circular nodes.
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5.2 Mid-end

The mid-end permits analysis and arbitrary restruc-
turing of the AST. Results of program analysis are
accessible from AST nodes. The AST processing
mechanism computes inherited and synthesized at-
tributes on the AST. An AST restructuring operation
specifies a location in the AST where code should be
inserted, deleted, or replaced. Transformation oper-
ators can be built using the AST processing mecha-
nism with AST restructuring operations.

ROSE internally implements a number of forms
of procedural and inter-procedural analysis, withm
uch of this work in current development. ROSE cur-
rently includes support for dependence, call graph,
and control flow analysis. In collaboration with aca-
demic groups, we are extending the analysis infras-
tructure to interface with general analysis tools, in-
cluding PAG [2] OpenAnalysis [34], as well as anal-
ysis tools specifically for automated debugging and
security, such as Osprey for measurement unit val-
idation [22], MOPS for finite state machine-based
temporal specification checking [9], and coverage
analysis tools [12].

To support whole-program analysis, ROSE has ad-
ditional mechanisms to store analysis results persis-
tently in a database (e.g., SQLite), to store ASTs in
binary files, and to merge multiple ASTs from the
compilation of different source files into a single AST
(without losing project, file and directory structure).

ROSE also provides debugging facilities, such as
AST traversals and coloring, and may be used with
visualization tools to aid reverse-engineering [25].

5.3 Back-end

The back-end unparses the AST and generates C++
source code. Either all included (header) files or only
source files may be unparsed; this feature is impor-
tant when transforming user-defined data types, for
example, when adding generated methods. Com-
ments are attached to AST nodes (within the ROSE
front-end) and unparsed by the back-end. Full tem-
plate handling is included with any transformed
templates output in the generated source code.

6 Related Work

Whole-program analysis has traditionally been ap-
plied in performance optimization contexts [5, 35],
but has recently also been used to find bugs and
detect security flaws using global dataflow analy-
ses [6, 18, 20, 14]. Our techniques complement ear-
lier work by providing the basic infrastructure for

accurately representing the source of an entire pro-
gram, from which we could implement these other
analyses. In the case of C++, this representation al-
lows us to verify compliance with ODR, an impor-
tant but never fully-enforced correctness condition.

Our whole-program AST is closest in spirit to the
whole-program control flow graph representation
proposed by Triantafyllis, et al. [35]. However, we
essentially unify the source itself; a whole-program
CFG could be easily constructed from this represen-
tation.

Atkinson and Griswold advocate on-demand gen-
eration of any representations needed for a particu-
lar analysis [5]. By contrast, we assume the exponen-
tial trends in workstation memory capacity [1] and
the need for source-to-source transformation to jus-
tify generating and storing the whole-program AST.

A number of compiler infrastructures can or do
perform whole-program analyses. GCC develop-
ers are adding unified cross-module representations
and precompiled header support in order to pro-
vide inter-module analysis, particularly for C pro-
grams [23, 8]. Our AST merge and file I/O mecha-
nisms are similar in spirit, though we currently pro-
vide full support for C and C++, as well as an in-
termediate representation that accurately represents
the source. Among other open C or C++ infras-
tructures [16, 3, 10] and C++ static analysis infras-
tructures [37, 17], our complete source-level whole-
program representation is unique.

7 Conclusions and Future Work

Our basic support for whole-program analysis en-
ables any number of security analyses with complete
context. The analysis we present for checking com-
pliance with ODR to avoid VPTR exploits is just one
example; the basic mechanisms permit any number
of other global analyses, including whole-program
pattern matching [15], region formation [35], and
hybrid static/dynamic whole-program path analy-
ses [24], among others. We will develop analyses for
additional problems in collaboration with other re-
search groups (e.g., the SAMATE project [26]).

An important issue in software security analysis is
how to present analysis results to users [21]. A sim-
ple textual representation of security issues is often
insufficient because it is difficult to understand the
context to the problem under investigation. We are
investigating this problem using flexible and unique
visualization techniques [27, 25].

We show an example of a program visualization
in Figure 3. The program is an 80 KLOC scien-
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Figure 3: Visualizing security problems in source code.

tific C code, and we plot each function (shown by
a sphere) according to its mathematical operations
complexity, i.e., the number of floating-point oper-
ations along the y-axis and the number of integer
operations along the x-axis. The size of each func-
tion is equivalent to the relative size of each sphere.
Furthermore, the McCabe’s Cyclomatic complexity
measure [11] is represented on the z-axis.

The application-specific vulnerabilities are shown
by green boxes, which indicate possible program
overflow problems. These vulnerable functions do
not appear along either the x- or y-axis. Thus, we
can infer that these vulnerable functions do not oc-
cur within the essential scientific kernels, i.e., within
functions that make heavy use of floating-point or
integer calculations. Indeed, the problem areas
for this program occur entirely within the program
setup. We are pursuing this and other techniques
to help users better understand security analysis re-
sults.
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