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Abstract

The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be 

$6-75/t CO2. In the absence of a mandate to reduce greenhouse gas emissions or some other significant 

incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche 

markets and stymies the potential for further technological development through learning-by-doing until 

these disincentives for the free venting of CO2 are in place.  By far, the largest current fraction of these 

costs is capture (including compression and dehydration), commonly estimated at $25-60/t CO2 for power 

plant applications followed by CO2 transport and storage, estimated at $0-15/t CO2. Of the storage costs, 

only a small fraction of the cost will go to accurate geological characterization. These one-time costs are 

probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons 

likely to be injected into a field over many decades.

Geologic assessments include information central to capacity prediction, risk estimation for the target 

intervals, and development facilities engineering. Since assessment costs are roughly 2 orders of 



magnitude smaller than capture costs, and assessment products carry other tangible societal benefits such 

as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private-

public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage 

deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also 

likely to improve the knowledge base upon which the first commercial CCS deployments will rest.

Introduction

Carbon dioxide capture (CO2) and storage (CCS) has emerged as a critical technology pathway to 

reduction of greenhouse gas (GHG) emissions [1]. This is because the option provides an opportunity for 

substantial emissions reduction while minimizing the cost of obtaining those reductions by allowing for 

the continued use of abundant high quality energy stocks, e.g., coal. CCS has also been shown to be a key 

enabling technology for a hydrogen economy [1,2] and it is this potential promise of CCS technologies 

that form the rationale behind large-scale public-private sector efforts such as FutureGen [3] and the 

Carbon Sequestration Leadership Forum [4].  

Conventional wisdom holds that one of the factors currently limiting the deployment of CCS technology is 

the cost of employing this technology. Although the cost of employing CCS is certainly higher than the

cost of today’s current practice of freely venting CO2 to the atmosphere, it is not clear that is the relevant 

basis of comparison. If a decision is made to attempt the level of sustained large-scale greenhouse gas 

emissions abatement needed to bring about a stable concentration of CO2 in the atmosphere, then the cost 

of employing CCS would likely be comparable or lower relative to other carbon abatement technologies 

such as deploying a fully decarbonized transportation sector [1].  Nonetheless, cost reduction and in 

particular reducing the cost of capture is a worthwhile and prominent goal in CCS research as lower cost 

for deploying CCS imply lower overall GDP losses due to mitigation of greenhouse gas emissions [5]. 

There are indications that a well-chosen combination of CCS and early investments into renewable energy 



sources could in fact lower GDP losses of an emissions mitigation policy to such an extent that these 

losses could become insignificant (about 0.5 to 1% net present value GDP losses compared to a business-

as usual scenario without mitigation policy for the next hundred years [6-8].

In contrast, relatively little effort has gone into scientific assessments of storage capacity. The nascent US 

Department of Energy–led (USDOE) public private sector Carbon Sequestration Regional Partnerships are 

a rare example of a dedicated government-led effort to better assess at a national level CO2 storage 

capacity [4]. Others include Australia’s GEODISC effort [9] and the European Union’s Joule II effort 

[10]. These storage assessments have demonstrated the viability of CCS as a solution to local and regional 

emissions, and have galvanized public and private sector interest on how CCS technology could enter the 

marketplace. They have also provided the data infrastructure needed to being developing sites where 

storage might be deployed, and have additional value to decision makers for long-term planning in other 

areas, including water, hydrocarbon, and environmental applications.

Such efforts should take place at least on a basin scale, and ideally on the scale of individual target 

reservoirs. The cost of geologic CO2 storage assessment is much smaller than the costs of capture or 

storage and is therefore much easier to initiate and execute. Indeed, these kinds of assessments can and 

likely should be launched before commercial deployment of CCS technologies begins. This makes the 

value of assessment high relative to its costs, making it an attractive early policy option for nations and 

regions confronted with uncertainties in geological storage. 

The Cost of Employing CCS Systems

There are numerous and varied cost estimates employing CCS systems with various power production and 

industrial facilities.  The range spanned by these cost estimates reflects two different unknowns about the 

commercial deployment of CCS-enabled systems.  First, there is a broad consensus in the literature that 

the cost of employing CCS systems (and in particular the capture/separations cost component) should 



decrease with time as we accumulate more experience with commercially deployed CCS systems.  The 

degree to which these cost might decline is unclear and is difficult to estimate given the truly small scale 

of today’s deployment of CCS systems in comparison to the magnitude of their likely commercial 

deployment in a greenhouse gas constrained world.  Second, these cost estimates also contain a degree of 

variability due to the highly site specific costs of employing CCS in the real world.  This variability due to 

site specific considerations (e.g., is the source of CO2 high purity, is there a so called value added reservoir 

nearby, how far is it and over what kind of terrain must the CO2 be transported from the large CO2 point 

source to a suitable geologic storage reservoir) component could be quite large for some potential CCS 

configurations.

Nonetheless, it is from data such as those presented in Table 1 that an oft-stated conclusion emerges: the 

costs of transport and storage are much less than the costs of capture. This conclusion has prompted 

significant focus and research in two areas. The first is reduction of capture costs, including new designs 

for zero-emissions power plants. The second is economic research into regulation, emissions caps, or other 

government-driven incentives that would ultimately make the cost of venting carbon emissions 

unattractive.

Although it represents a smaller percentage of the lifecycle cost of a CCS project, the cost of storage is 

nonetheless important.  And the good news is that a significant amount of research has gone into 

geological storage. Due to the low cost of storage relative to capture, most of this research has not focused 

on assessing the quality and quantity of the geologic CO2 storage resource. Rather, the primary efforts 

have been to resolve uncertainties associated with storage efficacy, since they may limit the deployment of 

storage options. These included characterization of target sites [11,12], development and testing of 

monitoring and verification tools (e.g., [13]), and risks associated with leakage from subsurface reservoirs 

[14,15]. 



Table 1: Typical Costs for Various Components of Employing an Integrated CCS System

CO2 Capture and 

Compression [16]

CO2 Transport 

and Injection 

[5]

Measurement, 

Monitoring and 

Verification [17]

Steam Rankine Power Plant (chemical 

absorption with amines)
$25-$60/tCO2 $0-15/ton CO2 $0.03/tonCO2

IGCC Power Plant (physical absorption) $25-$40/tCO2 “” “”

Typical Refinery Flue Gas, Steel Plant, 

Cement Plant (Chemical Absorption / Flue 

Gas Recycling)

$20-$55/tCO2 “” “”

Gas Stripped from the Fermenter in an 

Ethanol Plant, Process Streams from 

Ethylene and Ethylene Oxide Plants,  Gas 

Stripped from the Reformer in an 

Ammonia Plant (principally compression)

$6-$12/tCO2 “” “”

Prior Assessments and their basic costs and benefits

Ultimately, the success of geological storage will depend heavily on reservoir and risk characterization. 

These in turn will require careful surface and subsurface mapping of target geological sites. However, 

despite the importance of and need for proper characterization, there has been little focused effort on 

basin-wide or local assessment. This is particularly surprising given the low relative costs of assessment.



GEODISC

Following a workshop with industry, academia, and governmental stakeholders in 1998, a proposal for 

GEODISC was funded in 1999 and began in July of that year. The 4-year program cost $10 M and has 

produced a nationwide estimate for geological storage capacity in Australia. The assessment was iterative, 

basin specific, detailed, and incorporated prior estimates from individual large oil and gas fields and basin-

wide studies of hydrocarbon systems [9]. These results were sufficiently specific to produce a preliminary 

risk analysis and ranking of prospective candidate CO2 storage formations (e.g., [12, 18]). The results of 

this modest effort have already been put to use in helping to inform the siting of a proposed liquefied 

natural gas (LNG) plant, proposed CO2 storage projects associated with natural gas production, and the 

creation of the follow-on public/private sector collaborative geological sequestration project known as the 

CO2CRC. The GEODISC program demonstrates that rapid, low-cost, high-quality assessment is possible 

on a national scale even given great geological complexity.

ALBERTA BASIN

The Alberta basin has served as a focus for hydrocarbon exploration and production for over 100 years. 

The government of Canada requires that cores and wells from hydrocarbon exploration and production 

enter the public domain rapidly. The organization of this data allowed a relatively small team to conduct a 

basin-scale estimate of the storage potential [19,20]. This capability allowed for rapid screening within the 

Alberta basin based on thermodynamic effects of CO2 storage, and rapid estimation of reasonable storage 

volume estimates and high-grading of targets (e.g. [21]). Although the analysis was not keyed to 

individual reservoir or formations, it was extremely low in cost and time and presents planners with 

recommendations for action in further assessment and screening. The work also provides a short list of 

areas and targets likely to succeed and has stimulated new efforts at capture and storage of anthropogenic 

emissions in the region.

IEA GHG NATIONAL CO2 STORAGE COST CURVES



The International Energy Agency’s Greenhouse Gas R&D Programme (IEA GHG) has initiated a program 

of national basin level assessments to examine what the CO2 storage capacity is for Western Europe [22] 

and Canada and the United States [23].  An integral component of this research was the computation of 

theoretical storage potentials in 100s of basins within these regions and modeling the potential use of these 

formations by the variety of large (i.e., greater than 100,000 tons of CO2 per year) anthropogenic point 

sources in both regions.  These studies have established that CCS systems can play a very large role in 

delivering deep and sustained reductions in greenhouse gas emissions.  The IEA GHG intends to extend 

these “national CO2 storage cost curve studies” to other regions of the globe.

REGIONAL PARTNERSHIPS  

The US DOE announced the formation of seven regional carbon sequestration partnerships in 2003. The 

Partnerships cover 40 states and four Canadian provinces, including 160 academic, industrial, 

governmental, and non-governmental entities [24]. The seven groups are charged with assessment and 

ranking of high-grade source-sink matches with the goal of recommendation for new carbon storage 

demonstration projects. The assessment effort will include characterization and capacity estimation of 

important target reservoirs within the regions as well as preliminary risk analysis. Efforts are likely to 

proceed on a sub-basin scale or less and include preliminary capacity estimation for high-value targets. 

The total public budget for this 2-year effort is $9.6 MM, and includes in-kind contributions from many 

groups. The Partnerships demonstrate that it is possible to collect and screen large volumes of data to 

produce preliminary estimates for planning and execution of new projects.

Part of the reason that the costs of assessment as a whole are small is that the volumes of storage are likely 

to be large for many industrialized nations [23,25]. For a nation likely to store 10s to 100s of Gt CO2

geologically over the course of this century, even $1 billion spent on assessment (a very high estimate) 

would only cost $0.1-.001/t CO2. In reality and as shown above, the costs of assessment are likely to be 

much less than that, as seen in the examples above. Even in nations with relatively little geologic CO2



storage potential (e.g., Japan, South Korea), the costs for assessment will be less than the cost of capture 

and the investment in assessing the nation’s CO2 storage potential will help establish the extent to which 

CCS can be relied upon as a cornerstone of the nation’s greenhouse gas mitigation portfolio [23].   

Levels of Geologic CO2 Storage Assessment

Comprehensive assessments of CO2 storage potential must be seen as foundational climate change 

mitigation research undertaking to enable the deployment of these critical technologies.  These geologic 

CO2 storage assessments can be carried out at various levels of detail, with each corresponding to a 

different cost and reward.  We offer here a taxonomy of three levels at which subsurface CO2 storage 

assessments can be performed: by basin, by formation, or by sequence. 

BASIN-LEVEL ASSESSMENTS

Basin assessments (100’s-1000’s of km2 capable of generating CO2 storage estimates accurate within 10’s 

of Gt CO2) proceed using bulk parameters for relatively thick sedimentary intervals and thermodynamic 

constraints of supercritical CO2 injection (e.g., [19,26]). Often, bulk properties for interval thickness and 

porosity are used to determine pore volumes for a given unit or depth interval. Depth, temperature, and 

geothermal gradient data generate contours of temperate at a given depth, which determine the volume, 

density, and state of CO2 at depth. This approach does not provide information on injectivity or 

permeability, but allows for rapid screening of capacity over a large area and provides reasonable 

estimates for likely basin-wide storage volumes.  This type of assessment is needed to put CCS research 

on a nation’s research and climate mitigation agendas, i.e., a nation that knows it has geologic CO2 storage 

potential is likely to invest in CCS research and begin the needed rule making and regulatory steps that 

will define the context into which CCS-enabled systems will begin their commercial deployment.

INDIVIDUAL FORMATION EVALUATIONS AND ASSESSMENTS



Estimates by formation (100’s-1000’s of km2, but within a narrowly defined stratigraphic interval and 

typically accurate to within +/- < 1 Gt CO2) are more data and time intensive, since they require detailed 

knowledge of formation tops, changes in thickness and porosity within a formation, and subtle changes in 

structural geology (formations are mappable geological units). Commonly, detailed formation data will 

include permeability and compositional data, which can be used to define local or regional injectivity 

trends. Similarly, depth/top information can be used to determine structural gradient, local geometric 

closures, and other information help evaluate the forces leading to leakage risk. However, there are 

important advantages to this approach. Specifically, it provides a mechanism to assess capacity and 

injectivity on a more detailed level that can be used to inform site selection and preliminary risk screening 

and cost estimation. In other words, formation mapping is required to calculate the likely specific 

injectivity that will be encountered within the region of interest [11]. Formation mapping commonly 

requires time and work to condense and evaluate the data itself and may require careful evaluation of 

existing subsurface databases. The US Geological Survey has just completed a 3-year, $5 M project of this 

kind for the San Joaquin basin in central California [27].  Knowledge of CO2 storage potential along with 

estimates of specific injectivity at the formation level would most likely be needed to help narrow down a 

list of potential sites for a large potential CO2 source such as a new fossil fired power plant to a smaller list 

of candidate sites that could be examined across more comprehensive range of criteria.1 Under the right 

geological conditions, this kind of assessment may be sufficient for site planning.

INDIVIDUAL GEOLOGIC SEQUENCE EVALUATION AND ASSESSMENTS

Mapping by geological sequence (10’s-1000’s of km2 within a very narrow stratigraphic range and 

typically accurate to within +/- << 1 Gt CO2) requires significantly more geological expertise and 

geological data (e.g., [28]). This approach separates individual formations and geological successions into 

genetically linked packages separated by unconformities and other stratal boundaries. This approach also 

  
1 It is important to note that the existence of a suitable CO2 storage reservoir is only one of a number of criteria that 
would be used to site a CCS-enabled power plant or other large CCS-enabled industrial facility.  Other criteria would 
include access to cooling water, rail and pipeline access to bring in fossil fuel, access to the electricity distribution 
grid, ect.



allows a more accurate and precise rendering of key structural elements such as closures and faults.  

Commonly, geoscientists trained in sequence stratigraphic methods are needed for this level of detail, 

requiring more time and effort in order to map sub-units within a formation. However, sequence 

stratigraphy has been shown to reveal important information about porosity and permeability trends away 

from scarce data, and a sequence stratigraphic framework can serve as a basis for extrapolation, 

interpolation, and geometric prediction. This approach underpins both exploration and production efforts 

in most major oil companies, who rely on this information for detailed reservoir prediction. Commonly,

sequence-based analyses are used to generate static geomodels and flow simulations. This level of 

assessment would likely be undertaken as a firm initiated the injection planning phase for an individual 

project at a specific site.

All three levels of assessment would also surely produce ancillary benefits. For example, detailed pore-

volume and permeability estimates would serve as a basis for extractive industries (e.g., hydrocarbon 

industry, mining) to identify new plays or improve reserves estimates. Information on shallow or deep 

aquifers assessment can be used for long-range planning of water resources and in environmental 

protection. These benefits will ultimately help to obviate the costs for assessment, and encourage industry 

and geological surveys to participate in assessment work.  These assessments, and in particular 

assessments at the geologic sequence level, would provide data that would underlie and inform the 

baseline that would be used for monitoring CO2 during the injection and post-injection phases of a project.

Policy Implications

Assessment and characterization of geologic CO2 storage capacity need to be seen and understood to be an 

investment in a nation or region’s future economic and environmental wellbeing in the way that estimates

of hydrocarbon resources/reserves are viewed today. This knowledge of potential CO2 storage capacities is 



integral in helping to define long-term scenarios for how a region’s energy infrastructure might evolve in a 

greenhouse gas constrained regime as the extent and quality of the geologic storage resource present 

speaks to what fraction of the region’s energy mix can be decarbonized through CCS deployment and 

what the transportation and storage costs might be (e.g.,[5]). This allows storage capacity to be treated as 

any other finite natural resource. Assessment information should serve as a resource for policy makers and 

long-range planners. Example includes using capacity assessment products as inputs into plant siting, 

regional energy portfolio determination, or the development of large field experimental facilities [29].

As can be seen the above taxonomy represents a refinement of knowledge about the potential to store CO2

in a specific region as one moves from basin level assessments to assessments of individual sequences.  

The above taxonomy also implicitly suggests a potential allocation of burden sharing between the public 

and private sectors for these various levels of geologic CO2 storage potential.  At the most aggregate level 

that of basin assessment, this would seem to be predominantly the domain of the public sector as it would 

be difficult if not impossible for a firm to fully appropriate the returns of this kind of broad assessment.  

Moreover, the social rate of return would likely be quite high these kinds of assessments can help to “put 

CCS on the table” and therefore allow a broader cross section of industry, nongovernmental bodies and 

government see a pathway forward into a greenhouse gas constrained future.

Assessments at the formation and geologic sequence level on the other hand are more closely linked to the 

needs of individual firms or entities that are considering employing CCS-enabled systems as a part of their 

portfolio of climate mitigation activities.  To be sure, this level of data is also needed by public sector 

bodies and regulatory agencies that would be called upon to assess the suitability and potential efficacy of 

a particular CCS deployment.  But given that there is a strong and obvious private sector need for these 

data, it seems that arguments for public private cost shared assessments are most strong at this end of the 

assessment spectrum. This level of assessment detail may also affect the value of financial instruments for 



carbon storage (e.g., [6]) by conditioning aspects of successful injection, ranging from drilling 

requirements, uncertainty in injectivity, and level of uncertainty in ascertaining risk.

Another element that speaks to the public sector nature of these assessments relates to the added value of 

early assessment in risk avoidance. Apart from pre-existing wells, most risks associated with leakage of 

CO2 from target reservoir are associated with subsurface geology (e.g., [14]). Lithologic, geometric, and 

structural data are fundamental inputs to risking schema, and are likely to be required by regulation and 

certification of injection facilities [30]. These data would flow from assessments and are likely to present 

early low-risk candidates for storage (e.g., [18]).

Recommendations

The value of geologic CO2 storage assessments is large relative their likely costs and perhaps more 

importantly small in comparison to the potential savings of trillions of dollars associated with being able 

to deploy CCS systems on a broad scale as a response to potential future climate change mandates [31].  

The value of the knowledge gained through these assessments is maximized the quicker this information 

can be obtained as these assessments establish the degree to which CCS can play in a nation or a region’s 

portfolio of mitigation options.  By establishing the role for CCS early, these assessments can reduce 

overall welfare losses associated with delaying cost-effective climate change mitigation.

1. Nations with significant current or future GHG emissions should embark on a well planned, 

thorough assessment of storage capacity at the basin scale. To the extent that it is appropriate, 

these basin scale assessments should be done in cooperation with national and regional geological 

surveys and subsurface intensive industries (e.g., hydrocarbon, coal). Specialized international 

bodies such as the IEA GHG may serve as repositories for much of the needed data and supply 



expertise that will be needed to carry out the assessments, and should be considered for early 

involvement.

2. These storage assessments should be initiated now. Rapid deployment will increase the value of 

the supplemental benefits of capacity assessment and reduce costs associated with errors in 

starting CO2 storage projects. The effort should take no more than 3-5 years and produce 

assessments that are basin specific and keyed to formations (at least) and chronostratigraphic 

sequences ideally. Countries such as China and India should be seen as high priorities for this kind 

of assessment.

3. The results of national and regional assessments should be housed in public domain repositories.2

4. Assessments should follow established, peer-reviewed methodologies and should be modified if 

necessary to suit the available data and geological setting.  It should be noted that any assessment 

is predicated on a set of assumptions concerning how CO2 is stored and distributed within a pore 

volume (e.g., [26, 33, 34]). It is important that assessments are clear and transparent in their 

assumptions so that as new geochemical and geophysical studies produce constraints on processes 

and effects, capacity estimates can be readily recalculated.

Given the low cost and relative ease of action, policy makers should embrace the high return of this 

approach quickly. It is highly likely that information generated by early assessment will affect related 

areas, and as such is likely to prompt subsequent assessments with greater detail suited to the task. Since 

assessment information can thus anchor choices in energy decision making and planning, preventing 

waste, error, and uncertainty, early action is recommended.

  
2 Web-based portals such as the NATCARB tool [32] are examples of this kind of public-access repository. 
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