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Abstract: Several techniques have been used with Shack-Hartmann wave-
front sensors to determine the local wave-front gradient across each lenslet. 
In this article we introduce an iterative weighted technique which is 
specifically targeted for open-loop applications such as aberrometers and 
metrology. In this article the iterative centroiding technique is compared to 
existing techniques such as center-of-mass with thresholding, weighted 
center-of-gravity, matched filter and cross-correlation. Under conditions of 
low signal-to-noise ratio, the iterative weighted centroiding algorithm is 
demonstrated to produce a lower variance in the reconstructed phase than 
existing techniques. The iteratively weighted algorithm was also compared 
in closed-loop and demonstrated to have the lowest error variance along 
with the weighted center-of-gravity, however, the iteratively weighted 
algorithm removes the bulk of the aberration in roughly half the iterations 
than the weighted center-of-gravity algorithm. This iterative weighted 
algorithm is also well suited to applications such as guiding on telescopes.
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1. Introduction

Shack-Hartmann wave-front sensors are the most prolific wave-fronts sensors currently in use 
in closed-loop adaptive optics systems.1 Their popularity is also growing in a number of 
metrology applications and in the case of aberrometers, used to measure aberrations in the 
eye, they represent the foundation for the majority of the commercially available instruments. 
Other metrology applications for which Shack-Hartmann wave-front sensors are also utilized 
include; optical metrology2, diagnosing aberrations present in lasers3, wafer inspection and in 
determining density and magnetic field profiles in plasmas.4,5 In these applications, the Shack-
Hartmann wave-front sensor is not being used in a closed-loop adaptive optics system but 
rather as a stand alone measurement of the wave-front. The aberrations measured by these 
systems can be large and noisy. Often times in aberrometers a large number of CCD pixels are 
used for every subaperture in the lenslet array, which can lead to extremely noisy 
measurements due to read noise, dark current and scattered light. Each of these noise terms
wreaks havoc with conventional centre-of-mass centroiding techniques. In this article current 
algorithms used to determine the wave-front gradients across the Shack-Hartmann lenslet 
array are reviewed. Techniques such as noise filtering and, in the case of matched filtering and 
correlation sensing, utilizing simulated references to improve the performance of these 
algorithms is examined. An iterative weighted algorithm is then presented which, as is shown 
in later sections, is particularly well suited for open-loop measurements of aberrated beams. A 
comparison of the iteratively weighted algorithm with existing algorithms is then presented
both in open-loop, as well as in closed-loop. The results are then summarized in the last
section of the article.

2. Existing algorithms



The most basic and widely used technique for determining the gradients from the spot pattern 
produced by a Shack-Hartmann lenslet array is the centre-of-mass (COM) centroiding 
algorithm. This technique is expressed mathematically in equations 2 a-c and 3 below with the 
weighting function, w(x,y), set to unity. The x and y centroids are simply the sum of the 
intensity pattern multiplied by x and y, respectively, divided by the sum of the intensity 
pattern. The problems that arise with this technique are due to the read noise, dark current and 
background light associated with each of the pixels on the wave-front sensor camera. As is 
readily apparent from Eq. 2 below, the pixels far away from the centre are multiplied by a 
larger number. As a consequence, the noise contribution far from the centre can quickly 
corrupt or overwhelm the actual signal when a large number of detector pixels, greater than 
the minimum four pixels, are used.

One technique that improves upon the centre-of-mass algorithm when noise is present is 
to utilize thresholding (T-COM) prior to the application of the COM algorithm.6 This 
thresholding process identifies the noise level, subtracts the noise level from the subaperture 
array and sets all of the resulting negative pixels to zero. This algorithm can be expressed by
Eq. 2 a-c and Eq. 3 below with the intensity, I(x,y), in these equations replaced by the 
intensity minus the noise level. The weighting function in these equations is replaced by a 
binary mask with the location of all positive pixels(I – noise level) set to 1 and all negative 
pixels set to 0. 

Another variation that has recently been proposed is to implement the centroiding 
algorithm with Gaussian weighting to overcome the limitations due to noise.7,8 This technique 
has been called weighted centre-of-gravity (WCOG). In this technique, the authors use a 
Gaussian weighting function, which is fully characterized by its full-width-at-half-maximum 
(FWHM), to determine the local gradients in each of the subapertures. This would then 
correspond to equations 1, 2 a-c and 3 below, however, the Gaussian weighting function of 
Eq. 1 would not have the ability change its centroid location, xc=0 and yc=0. By choosing the 
FWHM of the Gaussian weighting function to be less than the size of the subaperture, the 
noise contribution from those pixels far from the reference spot is reduced significantly. The 
application of Gaussian weighting was demonstrated by these authors to greatly reduce the 
effects of noise on determining the local gradients. 

A separate technique to determine the wave-front gradients was developed by the solar 
physics community which came to be known as correlation sensing.9 The solar physics 
community utilizes Shack-Hartmann wave-front sensors in closed-loop adaptive optics 
systems to look at an extended object, the sun. For this application researchers needed a 
technique that would allow the gradients in each of the subapertures to be determined but they 
could not utilize the conventional centre-of-mass technique. Their solution was to use cross-
correlation to determine the local gradients in each of the subapertures. Cross-correlation is 
performed between a given subaperture and all of the remaining subapertures to determine the 
local displacement of the spots in each of the subapertues, i.e. the displacement of the 
reference image that provides the maximum correlation. This technique has also been applied 
to the post-analysis of open-loop intracavity laser and telescope adaptive optics systems.10

Analogous to this technique is matched filtering, which is very similar to correlation sensing.
In this case a convolution in the spatial domain is performed and the peak of the resultant 
signal is used to determine the gradients in a given subaperture.11 For both of these techniques 
the subpixel shift is determined by fitting the correlation peak using parabolic 
interpolation.12,13 In this process a three-by-three subarray is extracted from the correlation 
array with the correlation peak located at the central pixel. The x and y subpixel shifts are 
given by the x and y derivative(second order) of the correlation peak divided by its x and y 
Laplacian at the central pixel, respectively. For a symmetric object, these techniques should 
perform equivalently.

A separate technique that has recently been developed examines the similarity between 
Shack-Hartmann sensing and carrier frequency interferometry to determine the phase.14,15,16 In 



this case the spot pattern formed by the Hartmann sensor is treated like an interference pattern 
and Fourier transformed. The resulting spots to the right and left of the central “dc” spot have 
encoded the x gradients and the spots above and below the central “dc” spot contain the y 
gradient information. By shifting one of the x spots to the centre and filtering out all the 
information outside of a circle placed about this spot, an inverse Fourier transform returns the 
wrapped x gradient. Repeating this process with one of the y spots returns the wrapped y 
gradient. By performing an unwrapping procedure, the gradients at each of the subapertures 
are determined. In a regime where the aberrations are small, this approach has been further
simplified.17

An iterative windowing technique has also been developed to reduce the noise in 
situations where a large number of pixels is contained within a given subaperture.18 This 
windowing technique estimates the centroid by conventional centre-of-mass techniques and 
then decreases the window size by one pixel, catered about the estimated centroid location. 
The authors continue this process until the window size is approximately the theoretical size 
of the first lobe of the diffraction pattern. This technique is equivalent to Eq. 2 a-c and Eq. 3 
below with the weighting function equal to one within the area of the window and zero 
outside of the window. The window is then iteratively decreased in size and kept centred on 
the previous centre-of-mass estimate.

3. Iterative weighted algorithm

The basis of this algorithm finds its roots in the weak lensing astrophysics community. In this 
case the desire is to determine the ellipticity correlations between galaxies in an effort to map 
out the dark matter in the universe. One such weak lensing data pipeline uses a Gaussian 
weighting function which is characterized by its FWHM and by its centroid location, both of 
which can be iteratively adjusted.19,20 From this weighted distribution, the moments, up to 
second order, of the intensities in each of the subapertures can be found. The x and y centroids
are simply the sum of the intensity pattern multiplied by the weighting function and x and y, 
respectively, divided by the sum of the intensity pattern multiplied by the weighting function. 
These can then be iteratively applied to the centre-of-mass of the original weighting Gaussian 
function to refine the location of the centroid of the Gaussian and minimize the noise. In 
addition, using the higher order moments of the intensity pattern provides an estimation of the 
FWHM of the Gaussian which can also be iterated upon along with the centroid of the 
Gaussian. This then forms the basis for an iterative scheme which sets the centroid and 
FWHM of the weighting function in the presence of noise. In the limit that the ability to 
iteratively change the location of the centroid and its FWHM is removed, this method reduces
to the weighted centre-of-gravity (WCOG) algorithm described above. By allowing the 
iterative process to occur, however, the algorithm is able to more accurately locate the
centroids in cases of large aberrations where the Hartmann spots are not close to the reference 
spots and noise is present. In addition, this technique could be used to more quickly bring the 
AO system to the null operating point when operating in closed-loop as discussed below.

The weighting function, w(x, y), is expressed by a Gaussian distribution centred at (xc,yc) 
with a full-width-at-half-maximum equal to 2σSQRT(2ln2). The weighting function is given 
by
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with σ representing the root-mean-square (RMS) deviation of position from the mean. This 
definition of the weighting function results in a normalization of the integral over all space of 
unity. For the simulations, this integral is approximated by a sum of the weighting function 



over the given subaperture. In this expression x, xc, y, yc and σ represent real numbers. The 
various position moments, up to second order, are expressed as
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where Sw, Sx, Sy, Sxx and Syy represent the different moments of the lenslet spot pattern, I(x,y),
on the CCD camera with the weighting function. The average location of the Gaussian, or its 
centroid, is simply

   wycwxc /SSy,/SSx ==     (3)

where xc and yc represent the x and y centroid locations. For a Gaussian spot, the RMS 
deviation of position from the mean corresponds to the weighted (x-xc)2 + (y-yc)2 = σ2 or
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This set of equations form the basis for the iteratively weighted centroiding algorithm in 
which the centroid location and the FWHM of the weighting function can be adaptively 
changed.

As pointed out by the referee, this technique could also be utilized using a recentred 
average of the Hartmann spots as the weighting function rather than a Gaussian or Sinc2

function. This technique is also applicable to extended scenes as in the case of correlation 
sensing. For this choice of the weighting function the FWHM would not be changed such that 
Eqs. 2 a-c and 3 would be iterated upon with the weighting function consisting of a 
normalized average of the recentred Hartmann images/spots. For the simulations presented in 
this article, however, a Gaussian weighting function was used and Eqs. 1-4 were utilized for 
the iterative weighted algorithm. It is also the case that σ can be fixed and not iterated upon 
with a Gaussian or Sinc2 weighting function as well.

To investigate the convergence of the iteratively weighted algorithm, numerical wave 
optics simulations were performed. The simulations consisted of a lenslet array with 16 
lenslets across the diameter of a circular pupil. The phase aberration used to test the iteratively 
weighted algorithm was based on a scaled version of Zernike coefficients measured in a 
human eye.21 The Hartmann spots were then formed by Fourier transforming the electric field 
at each of the lenslets in the array and multiplying by the complex conjugate to obtain the 
intensities. Both photon noise and read noise were then introduced to the focal plane 
containing the Hartmann spots. The iteratively weighted algorithm was used to estimate the 
slopes which were then reconstructed. The variance between the original and reconstructed 



phases was then calculated. The variance in the reconstructed wavefront, as a function of the 
number of iterations was then used to test the convergence of the iteratively weighted 
algorithm. Figure 1 shows the residual variance as a function of iterations through Eqs. 1-4. 
This figure shows that the algorithm converges within about four steps for this initial 
aberration(peak-to-valley ~ 15 radians). Based on this result, all of the simulations in this 
article which use the iteratively weighted algorithm were performed with four iterations. 

Fig. 1. Residual variance as a function of the number of iterations performed with the 
iteratively weighted algorithm.

The numerical simulations can also be utilized to test the width of the Gaussian weighting 
function after the four iterations as a function of the initial guess. Figure 2 shows the width of 
the Gaussian weighting function, σ, after four iterations, solid red line, as a function of the 
initial starting value, σinit, for the Gaussian width. The spread in starting values for σ ranged 
over a factor of close to 5, from 1.26 to 6 pixels. The resultant values for the weighting 
functions, σ, after four iterations varied by less than seven percent. The simulated Hartmann 
spots had a full-width-at-half-maximum of 3.8 pixels which corresponds to a Gaussian σs of 
1.6 pixels. Figure 2 also shows the reconstructed wavefront variance, solid black line, using 
four iterations of the iterative weighted algorithm as a function of the initial value for the 
weighting function, σinit. The weighting function σ that resulted in the lowest reconstructed 
wavefront variance was σ = 1.62 pixels. This illustrates for this particular phase profile that 
over a broad range of initial starting values of the weighting function, σinit, both larger and
smaller, that after four iterations the algorithm converges to a σ value that is within several 
percent of the Hartmann spot full-width-at-half-maximum. With this particular phase profile, 
an initial starting value, σinit = 2.25 pixels, that was slightly larger than the spot size, σs = 1.6 
pixels, resulted in the lowest variance.



Fig. 2. Weighting function σ and reconstructed wavefront variance after four iterations as a 
function of the initial starting value, σinit, for the Gaussian width.

The iteratively weighted algorithm is very effective at placing the weighting function in 
the correct location. Once the weighting function is correctly positioned over the Hartmann 
spot, then the noise characteristics of the iteratively weighted algorithm are identical to the 
weighted centre-of-gravity algorithm discussed above. The authors of the WCOG technique7,8

analyzed the noise properties of using a Gaussian weighting function and derived the 
following two expressions for the noise variance in the case of photon noise,  σph

2, and 
detector noise,  σdet
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where Nph is the number of photons, NW is the FWHM of the Gaussian weighting function, NT 
is the Full Width at Half Maximum (FWHM) of the seeing-limited Point Spread Function
(PSF) in pixels, ND is the FWHM of the diffraction limited point spread function and σdetector is 
the standard deviation of the detector noise.

The iteratively weighted algorithm could also be applied to the functions of field 
acquisition and guiding on astronomical telescopes. The weighting function in Eq. 1 could 
also be different in each of the subapertures to include effects such as laser guide star parallax 
for the next generation of large diameter astronomical telescopes. A more general expression 
for the Gaussian weighting function would then be expressed as w(x,y)=(2πσxσy)-1EXP{-[(x-
xc)cosθ-(y-yc)sinθ]2/(2σx

2)-[(x-xc)sinθ+(y-yc)cosθ]2/(2σy
2)} with σx and σy representing the 

root-mean-square (RMS) deviation of position from the mean along the x and y axes, 
respectively. The angle θ represents the rotation of the Gaussian from the x-axis. For the 
results presented in this article, a symmetric weighting function was assumed such that θ = 0 



degrees and σx = σy = σ. In this case, the more general weighting function reduces to the form 
given in Eq. 1 above.

4.  Noise filtering and reference generation

Nearly all of the centroiding techniques, except for the conventional centre-of-mass algorithm, 
perform better after filtering when the spots formed by the lenslet array are larger than a 
single pixel. In this case, the noise, which varies at the spatial scale of an individual pixel, can 
be reduced by filtering the signal prior to analysis by the above mentioned gradient 
determining algorithms without affecting the signal itself. This is not the case when the spot 
size from the lenslet array is chosen to be a single pixel in width such that its spatial variation 
is comparable with the background noise. In this case filtering will affect both the noise and 
the signal you are trying to detect. For this article, where the spot size was larger than a single 
pixel, several filtering techniques were investigated for their utility in reducing the noise and 
improving the reconstructed wave-front variance. The techniques examined included filtering 
with wavelet transforms, Fourier transforms and spatial convolution with Gaussians. In 
general the wavelet transform resulted in the lowest residual variance followed by Fourier 
transforms and then filtering using a spatial convolution with a Gaussian. Other authors have 
used filters previously including triangular and square convolutions in real space22 and box car 
averaging in Fourier space,14,22 which was required for this particular algorithm.

The wavelet transform that was evaluated for noise filtering was specifically the C trous 
algorithm, which is for use with discreet data.23 The image to be filtered in this case is the 
intensity spot pattern recorded on the wave-front sensor due to the lenslet array. The different 
scales of the image are formed by taking convolutions of the image with a scaling function 
that maintains its discreet shape but doubles in spatial scale between successive wavelet scales 
or convolutions. A B3-spine was chosen as the scaling function such that the coefficients of 
the convolution mask are given by the one-dimensional array, (1/16, 1/4, 3/8, 1/4, 1/16), for a 
vector and the two-dimensional array,

  



































⊗







16
1

4
1
8
3
4
1
16
1

16
1

4
1

8
3

4
1

16
1

,                             (6)

for images, where ⊗ represents the Kronecker product.23 From the above description, it is 
readily apparent that the method of removing noise using spatial convolution with a Gaussian 
is quite similar to the implementation of the C trous wavelet transform. Fourier transforms 
were also investigated as a means of removing the high spatial frequencies associated with the 
detector noise. In this case the image was Fourier transformed and a circular binary mask 
applied to block out the high spatial frequencies before inverse Fourier transforming back.
This is similar to the filtering method used in carrier frequency interferometry.16 The spatial 
filtering in this article was applied to the focal plane containing all of the Hartmann spots, as 
opposed to each of the subapertures separately. This focal plane was larger than the pupil and 



so no zero padding was utilized as the distance between the outer Hartmann spots and the 
edge of the focal plane was greater than the extent of the filters.

The three filtering schemes were tested on the reconstruction of a phase profile with a 
circular aperture. The read noise on the detector was set at 20 e- root-mean-square and the 
number of photons per subaperture was varied between 50 and 1000. The results, shown in 
Fig. 1 below, demonstrate the utility of filtering the signal before determining the gradients 
when the signal-to-noise-ratio decreases as the unfiltered signal, the solid green line, had the 
highest residual variance. The C trous wavelet transform, dashed black line, had slightly better 
performance, particularly at the lowest SNR, than the Fourier transform filter, solid blue line,
which performed slightly better than the method utilizing convolution with Gaussians, dashed
red line.

Fig. 3. Residual variance as a function of noise for the three different filtering techniques and 
the unfiltered case.

In addition to filtering the noise, centroid locating techniques such as correlation sensing 
and matched-filter also need a reference image. This reference can be taken from one of the 
subapertures, filtered or unfiltered, or it can be generated analytically without noise. This can 
lead to better performance for high noise scenarios and also enables the techniques to 
accurately reconstruct the tip/tilt component of the phase aberration, a feature which is 
compromised when comparing to one of the subapertures. If one of the Hartmann spots from 
the lenslet array is used as the reference, then that spot can still be compared to a simulated 
spot to recentre the reference before that spot is compared with all of the remaining spots in 
the lenslet array to allow determination of the tip/tilt information. Figure 4 below shows the 
residual variance as a function of photons/subap for the cases where the reference is 
simulated(dashed black line), taken from the noise filtered centre subaperture(solid blue line)
and taken from the unfiltered centre subaperture(dashed red line). The intensity profile on the 



CCD camera was filtered with the Fourier transform filter and the correlation sensing method 
was used to determine the centroids. The tip/tilt was also removed from the gradients before
and after reconstruction to place all three reference generation methods on a comparable 
footing. As Fig. 4 shows, the simulated reference performed better than the technique of using 
one of the subapertures at lower SNRs. The overall variance is lower in Fig. 4, relative to Fig.
3, due to the subtraction of the tip/tilt aberration.

Fig. 4. Residual variance as a function of noise for the three different reference generation 
methods.

5. Comparison of algorithms

A comparison of the algorithms discussed above was performed. This comparison involved 
starting from an initial phase aberration, expressed as Zernike coefficients, at a circular 
aperture. At this plane a lenslet array was simulated such that there were a total of sixteen 
lenslets across the diameter of the circular aperture and the electric field across each of the 
lenslets was parsed into 32 by 32 phase elements. In addition, each lenslet represented 16 by 
16 pixels on the CCD wave-front camera. The Hartmann spots were then formed by Fourier 
transforming the electric field at each of the lenslets in the array and multiplying by the 
complex conjugate to obtain the intensities. Both photon noise and read noise were then 
introduced to the focal plane containing the Hartmann spots. In all of the simulations the read 
noise was fixed at 20 e- rms and the number of photons-per-pixel was varied. The residual 
variance between the original phase and the reconstructed phase was then determined as a 
function of the number of photons-per-pixel. The different algorithms were then used to 
identify the displacement of the Hartmann spots caused by the phase aberration and a 
Multigrid reconstructor24 was used to reconstruct the phase based on the local gradients 
determined by the different algorithms. The initial phase aberration used to test the various 
centroiding algorithms was based on a scaled version of Zernike coefficients measured in a 
human eye.21 Through filtering the noise and utilizing a simulated reference spot, the cross-



correlation, matched filtering, centre-of-mass, windowed and centre-of-mass threshold 
algorithms detailed above were optimized before comparing them to the weighted centre-of-
gravity and the weighted iterative algorithm expressed in Eqs.1-4. 

The results from the various algorithms are shown below in Fig. 5. At the higher photons-
per-subaperture end of the graph, all of the algorithms except the weighted centre-of-gravity 
(WCOG) algorithm, solid black line, converge as expected. This algorithm is higher than the 
others simply because the aberration is large such that the spots are displaced from the 
nominal centre of the CCD pixels representing the lenlset array. To encompass the displaced 
spot, the WCOG algorithm must have a large FWHM Gaussian weighting function which 
makes it much more like the conventional centre-of-mass algorithm and thus very susceptible 
to noise. As shown below, when the WCOG algorithm is operated in closed-loop the spot 
displacement is brought to zero allowing a much smaller FWHM to be used. This enables the 
WCOG algorithm to achieve the best performance along with the iteratively weighted 
algorithm. As the number of photons-per-subaperture is decreased, the measurements become 
noisier and the remaining algorithms begin to diverge in their performance. After the WCOG 
algorithm, the threshold centre-of-mass (T-COG) algorithm, dashed blue line, and the 
windowed algorithm, solid red line, have the next largest variance. This is followed by the 
matched filter, solid green line, and cross-correlation algorithms, solid grey line. These two 
algorithms have virtually identical performance except at the noisiest point in the graph where 
the matched filter algorithm has a slightly higher variance than the cross-correlation 
algorithm. This is expected as the Hartmann spots are symmetric and both techniques use 
parabolic interpolation to achieve subpixel accuracy. The best performance is achieved by the 
iteratively weighted algorithm, dashed black line, presented in this article. The performance 
improvement over the existing algorithms is particularly high under conditions of low signal-
to-noise ratio as can be seen in Fig. 5. As the number of photons decreases, the slope of the 
variance vs. photon number, Nph, for the iterative weighted algorithm closely matches the 
(1/Nph)2, dashed grey line, behaviour expected form Eq. 5b above.

Fig. 5. Comparison of the different centroid locating algorithms in open-loop.



It is also of interest to determine how well these algorithms operate in closed-loop since 
nearly all adaptive optics(AO) systems operate in this manner and AO systems represent a 
large fraction of the Shack-Hartmann wave-front sensors in operation. The same phase 
aberration discussed above was used to test the closed-loop operation of the algorithms. The 
phase was reconstructed as detailed above, but a gain multiplier of 0.8 was applied to it before 
being subtracted from the original phase. A comparison of the iteratively weighted, WCOG, 
cross-correlation and centre-of-mass algorithms was undertaken and the results are shown 
below in Fig. 6. Figure 6a represents the lower signal-to-noise-ratio of the two figures at 105 
photons-per-subaperture and 20 e- rms noise. The centre-of-mass, dashed grey line, exhibits 
the worst performance followed by an approximately equivalent performance by the cross-
correlation algorithm, solid grey line, the threshold centre-of-mass algorithm, solid blue line, 
and the windowing algorithm, solid red line. The iteratively weighted, dashed black line, and 
WCOG algorithms, solid black line, converge to the same nominal level. The iterative 
functionality of the iterative weighted algorithm was turned off after the first three iterations 
to reduce the computational load. By incorporating the iterative capability in the first few 
times through the loop, however, the rate at which the aberrations are removed is accelerated 
considerably over the WCOG algorithm as seen in Fig. 6a and 6b. Figure 6b represents a 
higher signal-to-noise ratio such that there is less of a disparity between the cross-correlation 
algorithm and the iteratively weighted and WCOG algorithms. Again the iteratively weighted 
algorithm removes the bulk of the phase aberrations in roughly half the iterations through the 
loop, at gain=0.8, than the WCOG algorithm.

Fig. 6. Comparison between different algorithms in closed-loop. Figure 4a illustrates the results 
with 105 photons/sub-aperture and Fig. 4b represents the case of 500 photons/sub-aperture.

6. Summary

In this article an iteratively weighted centroiding algorithm was developed for wave-front
sensors that measure the gradient of the wave-front, such as Shack-Hartmann and shearing 
interferometers. This algorithm was specifically designed to mitigate the deleterious effects of 
noise and is ideally suited for use in open-loop applications where the Hartmann spots are far 
from their unaberrated positions. A comparison between the iteratively weighted centroiding 
algorithm was performed with other commonly used centroiding algorithms including; center-
of-mass, center-of-mass threshold, cross-correlation, matched filter, windowing and weighted 



center-of-gravity. In order to provide the best comparison between the algorithms, methods 
such as filtering the noise on the simulated CCD wave-front camera and using simulated 
reference spots were investigated to improve the performance of algorithms such as center-of-
mass threshold, cross-correlation and matched-filter. In the case of filtering the noise on the
simulated CCD wave-front camera, Fourier filtering, filtering with C trous wavelet transform
and filtering by Gaussian convolution were investigated. The best performance was achieved 
with the C trous wavelet transform, however, all three methods of filtering out-performed the 
unfiltered case. The filtering was performed for the case where the full-width-at-half-
maximum of the Hartmann spots on the CCD wave-front camera was several pixels, 3.8, in 
width. The matched-filter and cross-correlation algorithms were also compared using 
simulated reference spots and using a spot from one of the lenslets as a reference, both noise 
filtered and unfiltered. Because the method of using one of the spots from a lenslet as a 
reference is more susceptible to tilt errors, the tilt was removed for these comparisons. The 
results indicated that using a simulated spot as the reference resulted in a lower error variance 
in the reconstructed wave-front than using a spot from one of the lenslets as a reference.

The performance of all of the algorithms compared was significantly better than the 
traditional center-of-mass algorithm in both open and closed-loop as expected. The open-loop 
comparison showed that the iteratively weighted algorithm achieved the lowest residual 
variance of all of the algorithms tested, as shown in Figs.5, under conditions of low signal-to-
noise ratio. This was the case even when the optimizing techniques discussed above were used 
on the other algorithms. The iteratively weighted centroiding algorithm was also investigated 
in closed-loop operation, the most common mode of operation for adaptive optics systems. In 
this case the iteratively weighted and weighted center-of-gravity centroiding algorithms gave 
comparable levels of performance and resulted in a lower variance than the other algorithms. 
The iteratively weighted centroiding algorithm did, however, remove the bulk of the phase 
aberrations in roughly half the iterations than the WCOG algorithm.
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