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Abstract

Increasing system and algorithmic complexity, combined with a growing number of tuanble applica-
tion parameters, pose significant challenges for analytical performance modeling. This report outlines
a series of robust techniques that enable efficient parameter space exploration based on empirical sta-
tistical modeling. In particular, this report applies statistical techniques such as clustering, association,
correlation analyses to understand the parameter space better. Results from these statistical techniques
guide the construction of piecewise polynomial regression models. Residual and significance tests ensure
the resulting model is unbiased and efficient We demonstrate these techniques in R, a statistical com-
puting environment, for predicting the performance of semicoarsening multigrid. 50 and 75 percent of
predictions achieve error rates of 5.5 and 10.0 percent or less, respectively.

1 Introduction

Parameter space exploration often requires constraining the size or granularity of the space before measuring
the metric of interest for every point in the space. These constraints are most often imposed when per point
measurements are computationally expensive. However, pruning the search space according to particular
criteria prior to a study risks conclusions that simply reinforce the prior criteria and may not generalize to
a broader space. Similarly, reducing granularity or resolution risks obscuring yet unknown trends.

In contrast, techniques in statistical inference enable a scalable exploration framework, modestly reducing
detail for substantial gains in speed and tractability. This trade-off enables the analysis of large parameter
spaces without constraint. Even for applications in which obtaining extensive measurement data is feasible,
efficient analysis of this data often lends itself to statistical modeling. In particular, inference models are
constructed from measurements of sparsely sampled points from the parameter space. This sparse sampling
decouples the number of measurements from the size of the parameter space, thereby allowing arbitrarily
large increases in the number and granularity of parameters considered.

Regression is particularly cost effective, modeling a response as a weighted sum of predictors. Models are
formulated from measured points by solving a linear system in least squares (via Cholesky or QR decom-
position) and unmeasured points are predicted by evaluating a linear system (via matrix multiplication).
Well optimized numerical linear algebra libraries enable computationally efficient regression with models
formulated in less than a second and thousands of predictions performed in a few seconds.

This tutorial provides a theoretical background for relevant statistics and regression theory (Section
2). The R statistical computing environment (Section 3) is used for a case study in model derivation for
semicoarsening multigrid, SMG2000 (Section 4). The statistically rigorous derivation emphasizes the role
of domain-specific knowledge when specifying the model’s functional form, leading to models consistent
with prior intuition about the domain. Furthermore, statistical significance testing prunes unnecessary and
ineffective predictors to improve model efficiency. Specifically, we consider the following design process for
regression modeling:

• Hierarchical Clustering: Clustering examines correlations between potential predictors and enables
elimination of redundant predictors. Predictor pruning controls model size, thereby reducing risk of
over-fitting and improving model efficiency during formulation and prediction.

• Association Analysis: Scatterplots qualitatively capture approximate trends of predictor-response
relationships, revealing the degree of non-monotonicity or non-linearity. Scatterplots with low response
variation as predictor values change may suggest predictor insignificance, enabling further pruning.

• Correlation Analysis: Correlation coefficients quantify the relative strength of predictor-response
relationships observed in scatterplots of association analysis. These coefficients impact our choice in
non-linear transformations for each predictor.

• Model Specification: Domain-specific knowledge is used to specify predictor interaction. The cor-
relation analysis is used to specify the degree of flexibility in non-linear transformations. Predictors
more highly correlated with the response will require more flexibility since any lack of fit for these
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predictors will impact overall model accuracy more. Given the model’s functional form, least squares
determines regression coefficients.

• Assessing Fit: The R2 statistic quantifies the fraction of response variance captured by the model’s
predictors. Larger R2 suggests a better fit to training data. Normality and randomness assumptions
for model residuals are validated using quantile-quantile plots and scatterplots. Residual normality
and randomness are prerequisites for significance testing.

• Significance Testing: Hypothesis testing with the F-statistic assesses the statistical significance of
terms in the model. Given a baseline model and a smaller model obtained by dropping terms from the
baseline, hypothesis tests use p-values to determine the significance of dropped terms. Small p-values
suggest dropped terms non-trivially improve model fit.

Although accurate predictive models might be obtained without the statistical analyses before and after
model specification, the additional statistical rigor contributes to a better understanding of the parameter
space and improved model efficiency. These approaches are complemented by parameter space sampling
optimizations that could further improve model accuracy (Section 5). This modeling process is robust and
has been effective in several domains, capturing trends in microarchitectural power-performance and parallel
scientific computing performance (Section 6). Collectively, sparse spatial sampling and statistical inference
via regression significantly improve the efficiency of parameter space exploration.

2 Statistics and Regression Theory

2.1 Hierarchical Clustering

Data clustering classifies N data elements into clusters based on a measure of similarity represented by a
symmetric N×N matrix S where S(i, j) quantifies the similarity between data elements i and j. Hierarchical
clustering is an iterative approach that identifies successive clusters based on previously identified clusters.
Specifically, the clustering algorithm implements the following steps:

• Initialize: Assign each element to its own cluster to obtain N single-element clusters

• Merge: Combine the most similar pair of clusters into a single cluster

• Iterate: Repeat the merge step until one N -element cluster is obtained

The similarity between two clusters A and B is the maximum similarity between elements of each cluster:
max{S(x, y) : x∈A, y∈B}. We use the squared correlation coefficient to quantify similarity of two variables,
enabling the modeler to identify potential redundancy in the data set. If multiple predictors are highly
correlated, a single representative predictor may capture the cluster’s impact on the response. Similarly, if
multiple responses are highly correlated, a single representative response may be modeled since correlated
responses will likely scale with the modeled response.

Pruning the number of predictors is important to control model size, not only by controlling the number
of predictors, but also by controlling the number of potential interactions between predictors. Smaller models
are preferable as they reduce the number of sampled observations required for model formulation. A number
of studies in which models are validated on independent data sets have shown a fitted regression model is
likely reliable (no over-fitting) when the number of samples is 20 times the number of model terms [1].

2.2 Association and Correlation

Scatterplots qualitatively represent the association between variables. Such plots are useful for examin-
ing association between predictors and the response, revealing potential non-monotonicity or non-linearity.
Scatterplots could quickly identify more significant predictors by showing, for example, a clear monotonic
relationship with the response. Conversely, plots that exhibit low response variation despite a changing
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predictor value might suggest predictor insignificance. Overall, scatterplots allow the modeler to understand
the parameter space quickly at a high level.

The relative strength of scatterplot relationships may be quantified by computing the correlation between
variables. Pearson’s correlation coefficient between two random variables is computed by Equation (1) where
X,Y are random variables with expectations µx,µy and standard deviations σx,σy.

ρ =
E((X − µX)(Y − µY ))

σXσY
(1)

In cases where the distribution of X, Y are unknown, non-parametric statistics may be more robust. We
use the Spearman rank correlation coefficient ρsp that can quantify association independently of variable
distribution. The computationally efficient approximation only requires di, the difference in ordinal rank of
xi in X and yi in Y . Suppose X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). Compute xi’s rank in X and
yi’s rank in Y. Spearman rank correlation computes a coefficient using the n differences in rank.

ρsp =
∑N

i=1 XiYi√∑N
i=1 X2

i

∑N
j=1 Y 2

j

≈ 1− 6
N∑

i=1

d2
i

N(N2 − 1)
(2)

2.3 Regression

We apply regression modeling techniques to obtain empirical estimates for metrics of interest efficiently. We
apply a general class of models in which a response is modeled as a weighted sum of predictor variables plus
random noise. Since basic linear estimates may not adequately capture nuances in the response-predictor
relationship, we also consider more advanced techniques to account for potentially non-linear relationships.

2.3.1 Notation

For a large universe of interest, suppose we have a subset of n observations for which values of the response
and predictor variables are known. Let y = y1, . . . , yn denote the vector of observed responses. For a
particular point i in this universe, let yi denote its response variable and xi = xi,1, . . . , xi,p denote its p
predictors. These variables are constant for a given point in the universe. Let β = β0, . . . , βp denote the
corresponding set of regression coefficients used in describing the response as a linear function of predictors
plus a random error ei as shown in Equation (3). Mathematically, βj may be interpreted as the expected
change in yi per unit change in the predictor variable xi,j . The ei are assumed independent random variables
with zero mean and constant variance; E(ei) = 0 and V ar(ei) = σ2.

f(yi) = βg(xi) + ei

= β0 +
p∑

j=1

βjgj(xij) + ei (3)

Transformations f and g = g1, . . . , gp may be applied to the response and predictors, respectively, to improve
model fit by stabilizing a non-constant error variance or accounting for non-linear correlations between the
response and predictors.

Fitting a regression model to observations, by determining the p + 1 coefficients in β, enables response
prediction. The method of least squares is commonly used to identify the best-fitting model for a set of
observations by minimizing the sum of squared deviations of the predicted responses given by the model
from the actual observed responses. Thus, least squares finds the p + 1 coefficients to minimize S(β) by
solving a system of p + 1 partial derivatives of S with respect to βj , j ∈ [0, p]. The solutions to this
system, β̂j , are estimates of the coefficients in Equation (3). Furthermore, the solutions to this system of
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linear equations may often be expressed in closed form. Closed form expressions enable using the statistical
properties of these estimates to identify the goodness of fit (Section 2.4) and the significance of particular
response-predictor correlations (Section 2.5).

S(β0, . . . , βp) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(4)

2.3.2 Predictor Interaction and Non-Linearity

In some cases, the effect of two predictors xi,1 and xi,2 on the response cannot be separated; the effect of xi,1

on yi depends on the value of xi,2 and vice versa. The interaction between two predictors may be modeled
by constructing a third predictor xi,3 = xi,1xi,2 to obtain yi = β0 + β1xi,1 + β2xi,2 + β3xi,1xi,2 + ei.

Basic linear regression models often assume the response behaves linearly in all predictors. This assump-
tion is often too restrictive and several techniques for capturing non-linearity may be applied. The most
simple of these techniques is a polynomial transformation on predictors suspected of having a non-linear
correlation with the response. However, polynomials have undesirable peaks and valleys. Furthermore, a
good fit in one region of the predictor’s values may unduly impact the fit in another region of values. For
these reasons, we consider splines a more effective technique for modeling non-linearity.

Spline functions are piecewise polynomials used in curve fitting. The function is divided into intervals
defining multiple different continuous polynomials with endpoints called knots. The number of knots can
vary depending on the amount of available data for fitting the function, but more knots generally leads to
better fits. For example, a linear spline (i.e. piecewise linear function) on x with three knots at a, b, and c
is given by Equation (5) where (u)+ = u if u > 0 and (u)+ = 0 otherwise.

y = β0 + β1x + β2(x− a)+ + β3(x− b)+ + β4(x− c)+ (5)

Linear splines may be inadequate for complex, highly curved relationships. Splines of higher order
polynomials may offer better fits [1]. Unlike linear splines, cubic splines may be made smooth at the knots
by forcing the first and second derivatives of the function to agree at the knots. For example, a cubic spline
on x with three knots is given by Equation (6).

y = β0 + β1x + β2x
2 + β3x

3 +
+β4(x− a)3+ + β5(x− b)3+ + β6(x− c)3+ (6)

Cubic splines may have poor behavior in the tails before the first knot and after the last knot [6].
Restricted cubic splines that constrain the function to be linear in the tails are often better behaved. A
restricted cubic spline on x with k knots t1, . . . , tk is given by Equation (7) where j = 1, . . . , k − 2 [6].

y = β0 + β1x1 + β2x2 + . . . + βk−1xk−1 (7)
x1 = x

xj+1 = (x− tj)3+ − (x− tk−1)3+(tk − tj)/(tk − tk−1)
+(x− tk)3+(tk−1 − tj)/(tk − tk−1)

Figure 1 schematically illustrates a restricted cubic spline with five knots and linear tails. The choice and
position of knots are variable parameters when specifying non-linearity with splines. Placing knots at fixed
quantiles of a predictor’s distribution is a good approach in most data sets, ensuring a sufficient number of
points in each interval [6]. In practice, five knots or fewer are generally sufficient for restricted cubic splines.
Fewer knots may be required for small data sets. As the number of knots increases, flexibility improves at
the risk of over-fitting the data. In many cases, four knots offer an adequate fit of the model and is a good
compromise between flexibility and loss of precision from over-fitting.
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Figure 1: Schematic of restricted cubic spline with 5 knots

2.4 Assessing Fit

The model’s fit to data used in formulation is quantified with the multiple correlation statistic, R2, in
Equation (10). This statistic quantifies regression error (SSE) as a fraction of total error (SST ). From
the equation, R2 will be zero when model error is just as large as the error from simply using the mean to
predict responses. Larger values of R2 suggest better fits for the observed data. Thus, R2 is the percentage
of variance in the response captured by the predictors. However, a value too close to one may indicate
over-fitting, a situation in which the model’s worth is exaggerated and future observations may not agree
with the modeled predictions predicted values. Over-fitting typically occurs when too many predictors are
used to estimate relatively small data sets.

SSE =
n∑

i=1

(yi − ŷi)2 (8)

SST =
n∑

i=1

(
yi −

1
n

n∑
i=1

yi

)2

(9)

R2 = 1− SSE

SST
(10)

The model residuals should be examined to ensure predictions exhibit no systematic bias. Significance
tests (e.g., T-tests, F-tests) also make assumptions regarding the distribution of residuals in Equation (11).
In particular, we must validate the following assumptions prior to significance testing:

1. the residuals are not correlated with the predicted response

2. the residuals’ randomness should be the same for all predicted responses

3. the residuals have a normal distribution with zero mean and constant variance

The first two assumptions are typically validated with scatterplots of residuals against predicted responses
since such plots may reveal systematic deviations from randomness. The third assumption is usually validated
by quantile-quantile plots in which the quantiles of one distribution are plotted against another. Practically,
this means ranking the n residuals ê(1), . . . , ê(n), obtaining n ranked samples from the normal distribution
s(1), . . . , s(n), and producing a scatterplot of (ê(i), s(i)) that should appear linear if the residuals follow a
normal distribution.

êi = yi − β̂0 −
p∑

j=0

β̂jxij (11)
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Figure 2: Schematic of p-value computation

2.5 Significance Testing

Suppose we formulate a model with p predictors that allows for interaction and non-linearity. There are
three contributions to a response estimate: (1) primary effects (e.g. xi), (2) interaction effects (e.g. xixj),
and (3) non-linear effects (e.g. a restricted cubic spline of xi with k knots, rcs(xi, k)). The significance
of the association between the response and each of these contributions may be quantified with standard
statistical tests. Relatively insignificant predictors may be pruned to improve model efficiency.

2.5.1 T-Tests

If the errors ei in Equation (3) are independent, normal random variables, then the estimated coefficients
β̂j are also normally distributed. This normality assumption leads to the relationship in Equation (12) that
states the standardized coefficient estimate follows a t distribution with n − p − 1 degrees of freedom. The
estimates β̂j are obtained in closed form by solving a linear system and their standard deviations sβ̂j

may
be obtained analytically from the closed form estimates.

β̂j − βj

sβ̂j

∼ tn−p−1 (12)

A commonly tested null hypothesis states the j-th term in the model has no association with the response
(H0 : βj = 0). This hypothesis is tested by evaluating Equation (12) under the null hypothesis to obtain the
t-statistic, β̂j/sβ̂j

. The t-statistic is computed for coefficient estimate β̂j as a first step toward determining
significance of the j-th term.

The p-value is defined as 2P (X≥|c|) for a random variable X and a constant c. This computation is
illustrated schematically in Figure 2 where the shaded region corresponds to the p-value. In our analyses,
X ∼ tn−p−1 and c is the t-statistic, β̂j/sβ̂j

. The p-value may be interpreted as the probability a t-statistic
value greater than or equal to the value actually observed would occur by chance if the null hypothesis were
true. If this probability is extremely small, either the null hypothesis holds and an extremely rare event has
occurred or the null hypothesis is false. Thus, a small p-value for β̂j casts doubt on the hypothesis βj = 0
and suggests the effect from the j-th term in the model is statistically significant in predicting the response.
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2.5.2 F-Tests

Although T-tests are often used for assessing the significance of individual terms, it is often more useful to
assess a group of terms simultaneously. Consider a model y = β0 + β1x1 + β2x2 + β3x1x2 + e. Testing the
significance of x1 requires testing the null hypothesis H0 : β1 = β3 = 0 with two degrees of freedom. More
generally, performing significance tests on a subset of the β’s is preferable to t-tests for complex models with
interaction and non-linear terms. The F-test compares two nested models (e.g. a full model and a subset
of the full model) using their multiple correlation statistic, R2. Given R2 for the full model and R2

∗ for a
model constructed by dropping a number of terms from the full model, define the F-statistic by Equation
(13) where p is the number of coefficients in the full model excluding the intercept β0 and k is the difference
in degrees of freedom between the models.1 Since the F-statistic follows the F-distribution with parameters
k and n− p− 1, a p-value may be calculated as shown in the previous section for T-tests. Smaller p-values
suggest terms dropped to obtain the smaller model were significant and should have been retained.

Fk,n−p−1 =
R2 −R2

∗
k

× n− p− 1
1−R2

(13)

2.6 Prediction

Once regression coefficients are determined by least squares, evaluating Equation (3) for a given xi will give
the expectation of yi and, equivalently, the estimate ŷi for yi of Equation (14). This result follows from
observing the additive property of expectations, the expectation of a constant is the constant, and random
errors have mean zero.

ŷi = E
[
yi

]
= E

[
β0 +

p∑
j=1

βjxij

]
+ E

[
ei

]
= β0 +

p∑
j=1

βjxij (14)

3 R Statistical Computing Environment

R is a statistical computing environment consisting of a language, run-time interface, scripting functional-
ity, and statistical libraries. The standard R distribution contains functionality for statistical procedures
including linear and generalized linear models, non-linear regression models, time series analysis, classical
parametric and non-parametric tests, clustering and smoothing [7].

3.1 Obtaining and Installing R

Sources, binaries, and documentation for R may be obtained via CRAN, the “Comprehensive R Archive
Network”, at http://www.r-project.org/. If R is already installed, it may be started by typing “R” at the
shell prompt, assuming the executable is in the path. If binaries are available for the target platform, simply
follow the instructions accompanying them.

Instructions for compiling and installing R are included in the install file accompanying the distribution.
In the simplest case, untar the R source code, change to the created directory, and issue the following
commands at the shell prompt.

1The degrees of freedom for a model is a function of the number of predictors and splines in the model. This is computed
in any standard statistics package.
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$ ./configure
$ make
$ make check

If these commands execute successfully, the R binary and shell script front-end called R are created and
copied to the bin directory.

Add-on packages supplement the baseline R distribution. We use two particular packages for regression:
Design and Hmisc. Design is a collection of functions to assist and streamline regression modeling. Hmisc
includes functions useful for data analysis such as variable clustering. These packages may be downloaded
from the same mirror as the baseline. The add-on packages on CRAN come as gzipped tar files of the form
pkg version.tar.gz. The following commands install the packages to the default library tree.

$ R CMD INSTALL <path>/<pkg_version>.tar.gz

Available library packages are displayed with the library() command at the R prompt. An installed
package pkg may be loaded with the library(pkg) command.

3.2 Using R

To use R interactively, start the program with the command R and quit the program with the command
q(). Documentation for any library function may be obtained with the command help(function). To
have R run a script of R commands named commands.R, diverting the output to commands.Rout, invoke the
following command:

\$ R CMD BATCH commands.R

Manuals providing a broad introduction to R commands are available online at R-project website (www.r-
project.org). This report will discuss commands and features as they are introduced for use in regression.

4 Model Design and Construction

4.1 Preliminaries

Load the necessary libraries for regression and graphics support. The lattice library provides support for
trellis graphics. If necessary, specify a file for output redirection using the sink function.

library(Hmisc,T);
library(Design,T);
library(lattice);
sink(‘‘output.txt’’);

4.2 Data Organization

We consider regression modeling for semicoarsening multigrid (SMG2k) with its performance predicted by
the per processor working set size and processor topology. In particular denote the size of local working sets
by nx, ny, nz in three dimensions. Also denote the processor topology by px, py, pz in three dimensions for
a total processor count of px × py × pz (held constant at 512 in our case study). Execution times for each
configuration are broken into initialization (tinit), setup (tset), and solve (tsolve).

Use read.table to read measured performance into a data frame, a structure type that enables named
fields. Column names are specified as an argument in read.table and named fields are accessed with the $
operator. Noting that processor counts are measured in powers of 2, we apply a log transformation on these
columns to improve data linearity.
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----------------------------------------------------------------------------------
tsolve

n missing unique Mean .05 .10 .25 .50 .75 .90
3358 0 3358 23.66 5.138 7.534 13.300 22.214 32.365 41.751
.95

47.698

lowest : 1.353 1.529 1.603 1.713 1.943
highest: 65.171 65.326 66.028 66.731 70.064
----------------------------------------------------------------------------------

Figure 3: Solve Time Data Description

smg.df <- read.table("./data/smg2000-bgl.txt", sep="\t", header=F,
col.names=c("nx","ny","nz","px","py","pz","tinit","tset","tsolve"),
row.names=NULL);

smg.df$px <- log(smg.df$px, 2);
smg.df$py <- log(smg.df$py, 2);
smg.df$pz <- log(smg.df$pz, 2);

describe(smg.df);
dd <- datadist(smg.df); ### uses information about data set distribution
options(datadist=’dd’); ### to set options for other Design, Hmisc functions

Invoking describe provides summary statistics of variables in the data frame. In Figure 3, the entry
for tsolve specifies the number of data observations (3358, 0 missing, all unique). The mean and various
quantiles provide a sense of the data distribution. In this case, the mean is close to the median, suggesting
a symmetric distribution. Lastly, five outliers at both extremes are listed.

4.3 Sampling

Variable n contains the number of rows in our data frame and variable pcount contains the number of
predictions we wish to use for validation. The sample function takes x, a sequential vector of integers from
one to n representing row indices for our data frame, and stores samples obtained uniformly at random into
idx. Since the number of samples equals the size of the set x, this function effectively produces a random
permutation of row indices for our data frame. We will take subsets of idx for training data. For example,
if we want to train with 1,000 random samples, we simply take the first 1,000 values of idx. Similarly,
we obtain pcount samples uniformly at random from x without replacement and store them into psample.
These random samples will be used for model validation.

n <- dim(smg.df)[1];
pcount <- 100;
idx <- sample(x=1:n, size=n, replace=FALSE);
psample <- sample(x=1:n, size=pcount, replace=FALSE);

This code allows overlapping data sets for training and validation. Given the size of the space and the
small number of samples obtained, the probability of significant overlap is small. The possibility of overlap
may be eliminated by taking both training and validation samples from idx without replacement.
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Similarity matrix (Spearman rho^2)
-------------------------------------------------------

nx ny nz px py pz tinit tset tsolve
nx 1.00 0.19 0.19 0.21 0.05 0.05 0.00 0.01 0.00
ny 0.19 1.00 0.19 0.05 0.21 0.05 0.05 0.00 0.00
nz 0.19 0.19 1.00 0.05 0.05 0.21 0.06 0.06 0.20
px 0.21 0.05 0.05 1.00 0.25 0.25 0.00 0.00 0.00
py 0.05 0.21 0.05 0.25 1.00 0.25 0.00 0.00 0.01
pz 0.05 0.05 0.21 0.25 0.25 1.00 0.00 0.00 0.02
tinit 0.00 0.05 0.06 0.00 0.00 0.00 1.00 0.89 0.77
tset 0.01 0.00 0.06 0.00 0.00 0.00 0.89 1.00 0.79
tsolve 0.00 0.00 0.20 0.00 0.01 0.02 0.77 0.79 1.00
-------------------------------------------------------

Figure 4: Variable Clustering Data

4.4 Hierarchical Clustering

Hierarchical clustering examines correlations between a large number of potential predictors to ensure re-
dundant predictors are not included in the model. We perform clustering with varclus on the potential
predictors and responses, specifying variables and the data frame where the variables are defined. The ∼
operator specifies a relationship between x ∼ y + z where x is the response and y, z are the predictors. For
varclus, no response is needed and the sum of terms on the RHS says we want to examine pairwise corre-
lations in a similarity matrix. Storing the clustering results to v allows us to print the numerical results of
the similarity matrix in Figure 4. Entries are the pairwise squared correlation coefficients between variables.

v <- varclus(~ nx + ny + nz + px + py + pz + tinit + tset + tsolve, data=smg.df);
print(v);

The correlations between variables are more easily observed in a clustering figure. Such a figure is
generated by creating a trellis device with the trellis.device function, specifying the figure format, file
name, and figure dimensions. The clustering data v is augmented with additional information about font
size (1.5x the default size) in the plot function. Figure 5 plots elements from the similarity matrix. Close
the device with the dev.off function after plotting the data. The correlation between the p∗ in three
dimensions are a result of the constant product px × py × pz = 512. The correlation between components
of execution time are significant. In particular, solve time is highly correlated with initialization and setup
time, suggesting a model that only predicts solve time would also be representative of the other two smaller
components of total time.

trellis.device("pdf", file="./varclus.pdf", width=9, height=6);
plot(v, cex=1.5, cex.main=1.5, cex.axis=1.5, cex.lab=1.5, cex.sub=1.5);
dev.off();

Thus, we use the clustering analysis to identify redundant responses (tinit and tset). For predictors, the
clustering figure is less interesting for this particular data set since the p∗ and n∗ variables were chosen for
variation in this parameter space study and we are unlikely to eliminate them from consideration. More
generally, such a figure may reveal redundant predictors to be eliminated. This clustering analysis would
be useful if predictor significance were not obvious or small sample sizes required smaller models with fewer
predictors to prevent over-fitting.

4.5 Association Analysis

Hierarchical clustering computes pairwise variable correlation to prune the number of predictors or identify
a response for our model. However, we also qualitatively consider each predictor’s association against the

10



ts
ol

ve

tin
it

ts
et

pz px py

nz nx ny

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
  ρρ

2

Figure 5: Variable Clustering Plot

tsolve N=3358
+-------+---------+----+--------+
| | |N |tsolve |
+-------+---------+----+--------+
|nx | 10 |1003|24.59354|
| |[ 30, 90)| 909|23.49165|
| |[ 90,170)| 655|23.50827|
| |[170,510]| 791|22.79670|
+-------+---------+----+--------+
|ny | 10 |1003|23.59006|
| |[ 30, 90)| 909|23.34427|
| |[ 90,170)| 655|23.81386|
| |[170,510]| 791|23.98546|
+-------+---------+----+--------+
|nz | 10 |1003|16.18646|
| |[ 30, 90)| 909|22.59320|
| |[ 90,170)| 655|27.05688|
| |[170,510]| 791|31.55101|
+-------+---------+----+--------+
|Overall| |3358|23.66032|
+-------+---------+----+--------+

Figure 6: Association Data
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Figure 7: Association Plots

response using scatterplots. The summary function takes a relationship specified by the ∼ operator. For
example, tsolve ∼ nx+ny+nz says we wish to consider the relationship between solve time and working set
sizes. The summary function divides the predictor domain into intervals. For each interval, it computes the
average response of all samples in the interval. The print command for each summary output s.* produces
a data table relating predictor intervals to response. Figure 6 is the table for the n∗ predictors. For example,
nz equals 10 for 1003 of 3358 input combinations. The average solve time for these combinations is 16.18
seconds.

s.n <- summary(tsolve ~ nx + ny + nz, data=smg.df);
s.p <- summary(tsolve ~ px + py + pz, data=smg.df);

print(s.n);
trellis.device("pdf", file="./sum_n.pdf", width=4, height=6);
plot(s.n, cex=1, cex.main=1, cex.axis=1, cex.lab=1, cex.sub=1, main=’Working Set Size’);
dev.off();

print(s.p);
trellis.device("pdf", file="./sum_p.pdf", width=4, height=6);
plot(s.p, cex=1, cex.main=1, cex.axis=1, cex.lab=0.8, cex.sub=1, main=’Processor Distribution’);
dev.off();

Figure 7 suggests processor count and working set size in the z-dimension are particularly good predictors
with strictly monotonic response-predictor relationships. For the x- and y-dimensions, working set sizes do
not appear to strongly impact solve time and processor counts appear to have non-monotonic relationships
with solve time. These figures will be useful when determining the most significant predictors to include in
the model. This figure may also enable further pruning of predictors from the model to improve efficiency.
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4.6 Correlation Analysis

Although we qualitatively observe marginal relationships between each predictor and the response in the
previous scatterplots, we have not quantified the strength of these relationships. For example, we can observe
a stronger relationship between nz and solve time relative to the relationship between pz and solve time, but
we do not quantify the relative strength. For this reason, we must also compute the correlation coefficients.
We rank predictors by their correlation coefficients to assess relative significance. These rankings guide our
choice of relative knot counts in our restricted cubic splines. Predictors with higher rankings will use more
knots than those with lower rankings since any lack of fit for highly ranked predictors will negatively impact
overall model accuracy more consequentially.

sp <- spearman2(tsolve ~ nx + ny + nz + px + py + pz, data=smg.df);
print(sp);
trellis.device("pdf", file="./sp2.pdf", width=6, height=6);
plot(sp, main=’Strength of Marginal Relationships’);
dev.off();

Given, a predictor-response relationship, the spearman2 function computes the squared spearman rank
correlation coefficient, a robust measure of correlation. Figure 8 confirms the qualitative observations of the
association scatterplots. nz (ρ2 = 0.20) much more strongly impacts solve time than pz (ρ2 = 0.02). All
other predictors are less strongly correlated, if at all, with performance.

4.7 Model Specification and Fit

We specify the regression model, predicting solve time from processor topology and working set size. Re-
stricted cubic splines are specified by the rcs function that takes the predictor and the number of knots.
Each cubic spline must use at least three knots. Interaction between linear terms is specified by the colon
operator :. The %ia% operator allows for restricted interactions between cubic splines by removing doubly
non-linear terms in the polynomial product. This operator is necessary to control the number of terms in
a model with many polynomial interactions. The interactions are specified with domain-specific knowledge.
For example, we would expect interaction between pz and rcs(nz,5) because processor count in the z-
dimension may impact solve time differently for different working set sizes in the z-dimension. The model
specification is assigned to variable mf. Lastly, we use the update function to create variants of model mf,
transforming only the response and leaving the right side of the relationship unchanged.
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mf <- (tsolve ~ rcs(nx,4) + rcs(ny,4) + rcs(nz,5) +
rcs(nx,4) %ia% rcs(ny,4) +
rcs(nx,4) %ia% rcs(nz,5) +
rcs(ny,4) %ia% rcs(nz,5) +
rcs(nx,4) %ia% rcs(ny,4) %ia% rcs(nz,5) +
py + pz +
py : pz +
py %ia% rcs(ny,4) +
pz %ia% rcs(nz,5)

);
mg <- update(mf, log(tsolve) ~ .);
mh <- update(mf, sqrt(tsolve) ~ .);

4.8 Residual Analysis

As noted in Section 2.4, there are several ways to assess a model’s fit to the training data. After models are
formulated, the distribution of residuals should be checked for randomness to ensure no systematic bias in the
model. Furthermore, if the modeler wants to use parametric inferential methods (e.g., F-tests) on the least
squares parameter estimates (e.g., regression coefficients) and wants to ensure these estimates are efficient
in the number of predictors, assumptions about residual randomness and normality must be validated. We
formulate models with ordinary least squares using the ols function and obtain the residuals with the resid
function. These residuals are per observation differences between modeled and observed performance in the
training set.

Residuals are plotted against the fitted values (i.e., regression predicted values) to ensure a lack of
correlation between residuals and predictions, validating assumptions 1 and 2 in Section 2.4. The xYplot
command uses the quantile method to stratify fitted values into groups of ten elements (nx=10). The
figure plots the median, lower and upper quantiles of the residuals for these groups of ten observations.
This grouping is necessary if there are too many observations for a standard scatterplot. Figure 9 presents
the residual distribution for models f and g. Aside from a few trends at the tails, there are no significant
deviations from randomness that suggest obvious biases. These trends can be re-examined if the modeler
suspects biases when the model is applied to actual studies.

rf <- resid(f);
trellis.device("pdf", file="./residf.pdf", width=6, height=4);
xYplot(rf ~ fitted(f), method=’quantile’, nx=10,

pch=8, type=’p’,
#ylim=c(-20,20), xlim = c(-0.5,2.5),
abline=list(h=0, lwd=0.5, lty=2),
aspect=’fill’,
xlab="Fitted Values",
ylab="Residuals",
main="Baseline Residual Distribution",
cex=1.5, cex.axis=1.5, cex.lab=1.5, cex.sub=1.5);

dev.off();

As noted in Section 2.4, we validate assumption 3 (residual normality) by plotting ranked residuals
against ranked samples from the normal distribution to produce a quantile-quantile plot. The qqnorm
function automatically generates this plot. The resulting plot should appear linear if the residuals follow
a normal distribution. The qqline function draws a line through the 25-th and 75-th quantile of the
residuals to aid the analysis. Figure 10 presents the quantile-quantile plots for the baseline model (f) and
the log-transformed model (g). The deviation from linearity in the baseline’s right tail suggests the residual
distribution extends farther than the postive tail of the normal distribution. This deviation is mitigated by
the log transformation on the response.
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Figure 9: Residual Plots for model f (left) and g (right)
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Figure 10: Residual Distribution for model f (left) and g (right)

rf <- resid(f);
trellis.device("pdf", file="./qqnormf.pdf", width=6, height=4);
qqnorm(rf,

xlab="Normal Quantiles",
ylab="Residual Quantiles",
main="Baseline Residual Distribution",
cex=1.5, cex.axis=1.5, cex.lab=1.5, cex.sub=1.5);

qqline(rf);
dev.off();

4.9 Significance Testing

After validating residual randomness and normality assumptions, we apply F-tests to assess predictor sig-
nificance in our model. While the previous correlation analyses suggested significant predictors for our
model, F-tests check predictor contribution to model accuracy. The anova function tests the hypothesis
that removed terms do not significantly contribute to model accuracy. A small p-value casts doubt on this
hypothesis and suggests removed terms are statistically significant in predicting the response. For example,
to check the significance of nx in the model, we compare the original model against a reduced model that
removes all terms containing nx. The resulting analysis computes a p-value of less than 2.2e−16, suggesting
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--------------------------------------------------------------------------
Analysis of Variance Table

Model 1: log(tsolve) ~ rcs(nx, 4) + rcs(ny, 4) + rcs(nz, 5) + rcs(nx,
4) %ia% rcs(ny, 4) + rcs(nx, 4) %ia% rcs(nz, 5) + rcs(ny,
4) %ia% rcs(nz, 5) + rcs(nx, 4) %ia% rcs(ny, 4) %ia% rcs(nz,
5) + py + pz + py %ia% rcs(ny, 4) + pz %ia% rcs(nz, 5) +
py:pz

Model 2: log(tsolve) ~ rcs(ny, 4) + rcs(nz, 5) + rcs(nx, 4) %ia% rcs(nz,
5) + rcs(ny, 4) %ia% rcs(nz, 5) + py + pz + py %ia% rcs(ny,
4) + pz %ia% rcs(nz, 5) + -rcs(nx, 4) %ia% rcs(nz, 5) + py:pz

Res.Df RSS Df Sum of Sq F Pr(>F)
1 459 12.475
2 474 44.529 -15 -32.054 78.624 < 2.2e-16 *
--------------------------------------------------------------------------

Figure 11: F-Tests: ANOVA Analysis

significance for the group of removed terms. This analysis can also be applied to consider the significance of
particular terms in the model (e.g., the third-order interaction between nx, ny, and nz).

g <- lm(mg, data=smg.df[idx[1:500],]);
g.nx <- update(g, . ~ . -rcs(nx,4)

- rcs(nx,4) %ia% rcs(ny,4)
- rcs(nx,4) %ia% rcs(nz,5)
- rcs(nx,4) %ia% rcs(ny,4) %ia% rcs(nz,5));

a.nx <- anova(g, g.nx);
print(a.nx);

4.10 Prediction

We construct a loop that formulates regression models for varying sample sizes and uses the models to predict
the validation set. We first initialize pointers to arrays that will contain error summaries. The loop considers
sample sizes s ranging from 100 to 1000 in increments of 100. For each sample size, the ols function uses
the model specification and the training data to determine regression coefficients and construct a model.

Variable o contains the observed true values of our validation points, extracting measured solve times of
the points in psample. The predict function takes a regression model object produced by the ols function
and a set of new data for prediction specified as a subset of the rows in the original data frame. Expression
smg.df[psample,] returns all columns of the rows indexed by psample. In general, it is not necessary to
have the training and prediction data frames formatted identically. The data frame provided as new data
only needs the necessary field names required by the regression model. Note that inverse transformations
on the predictions are necessary for models g and h to produce pg and ph (i.e., exp for log and square for
square root). Lastly, the relative errors e = |y − ŷ|/y are computed for the predictions.

summary_eg <- NULL; summary_eh <- NULL;
for(s in seq(100,1000,100)) {
## Formulate model with s random samples (ordinary least squares)
f <- ols(mf, data=smg.df[idx[1:s],]);
g <- ols(mg, data=smg.df[idx[1:s],]);
h <- ols(mh, data=smg.df[idx[1:s],]);
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----------------------------------------------------------
s Min. 1st Qu. Median Mean 3rd Qu. Max.

[1,] 100 1.754e-05 0.05521 0.1294 0.1803 0.2444 1.4980
[2,] 200 4.719e-05 0.04542 0.1008 0.1205 0.1711 0.9580
[3,] 300 2.598e-04 0.05256 0.1099 0.1326 0.1887 1.0700
[4,] 400 4.211e-05 0.05097 0.1005 0.1202 0.1701 0.9067
[5,] 500 1.644e-04 0.05325 0.1059 0.1297 0.1840 1.0880
[6,] 600 2.330e-04 0.05486 0.1066 0.1311 0.1823 1.1520
[7,] 700 1.036e-05 0.05199 0.1028 0.1284 0.1806 0.9968
[8,] 800 1.378e-04 0.05414 0.1026 0.1286 0.1807 1.0750
[9,] 900 4.065e-05 0.05298 0.1021 0.1284 0.1801 1.0500
[10,] 1000 1.229e-04 0.05345 0.1004 0.1282 0.1811 1.0540
----------------------------------------------------------

Figure 12: Error Summary for Model g (summary eg)

## Predict and compute errors
o <- smg.df$tsolve[psample];
pf <- predict(object=f, newdata=smg.df[psample,]);
pg <- exp(predict(object=g, newdata=smg.df[psample,]));
ph <- (predict(object=h, newdata=smg.df[psample,]))^2;
ef <- abs(o-pf)/o;
eg <- abs(o-pg)/o;
eh <- abs(o-ph)/o;

## Aggregate results and write to file
results_f <- cbind(o,pf,ef);
results_g <- cbind(o,pg,eg);
results_h <- cbind(o,ph,eh);
write.table(results_f, file=sprintf("pred_smg_f[%d].txt", s), sep="\t", row.names=FALSE,

col.names=c("observed", "predicted", "error"));
write.table(results_g, file=sprintf("pred_smg_g[%d].txt", s), sep="\t", row.names=FALSE,

col.names=c("observed", "predicted", "error"));
write.table(results_h, file=sprintf("pred_smg_h[%d].txt", s), sep="\t", row.names=FALSE,

col.names=c("observed", "predicted", "error"));

## Aggregate error statistics
summary_eg <- rbind(summary_eg, cbind(s, t(summary(eg))));
summary_eh <- rbind(summary_eh, cbind(s, t(summary(eh))));

}

The cbind function concatenates column vectors of true values, predicted values, and errors to produce
a matrix with three columns and pcount rows. These matrices are written to a file with write.table.
For each sample size, we compute summary statistics, append the sample size to the front with cbind, and
append the data as a new row of a summary variable with rbind. Figure 12 presents data of summary eg.

4.11 Accuracy Plots

Although the table of Figure 12 provides precise error statistics of model predictions, we may also graphically
present the error distributions using cumulative distribution functions (CDF’s) or boxplots. To produce
CDF’s, we plot sorted errors in x against fractions of predictions in y, a vector (1/n, . . . , k/n, . . . , 1). CDF’s
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Figure 13: Cumulative distribution function (right) and boxplot (left) of model g errors

are interpretated by taking a particular error rate on the x-axis and identifying the percentage of predictions
that achieve that error rate or less on the y-axis. Thus, CDF’s provide an empirical approximation to the
cumulative distribution function of our regression errors.

pred_bsl_g <- read.table("./pred_smg_bsl_g[500].txt", sep="\t", header=T,
col.names=c("obs","pred","err"), row.names=NULL);

d <- dim(pred_bsl_g)[1];
x <- sort(pred_bsl_g$err);
y <- (1:d)/d;

trellis.device("pdf", file="./cdf_bsl.pdf", width=6, height=6);
plot(x, y, xlab="Error", ylab="F(Error)",

cex=1.5, cex.main=1.5, cex.axis=1.5, cex.lab=1.5, cex.sub=1.5);
dev.off();

trellis.device("pdf", file="./box_bsl.pdf", width=6, height=6);
bwplot(x);
dev.off();

Boxplots are graphical displays of data that measure location (median) and dispersion (interquartile
range), identify possible outliers, and indicate the symmetry or skewness of the distribution. Boxplots are
constructed by

1. solid circle at the median

2. vertical lines at the upper, lower quartiles to construct box

3. horizontal lines drawn right/left from the upper/lower quartile to the most extreme data point within
1.5 IQR of the upper/lower quartile with vertical lines to mark the end of the horizontal lines 2

4. circles beyond the ends of horizontal lines to denote outliers

Figures such as those in Figure 13 enable graphical analysis of basic error statistics. Furthermore, boxplots
also facilitate comparisons between multiple distributions (not shown here) as comparing boxplots often
reveals similarities more readily than comparing tables of error statistics.

2IQR: interquartile range is the difference between first and third quartile.
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5 Sampling Optimization

Figure 12 indicates the log-transformed model achieves modest accuracy with median errors between 10 and
12 percent. However, we observe significant maximum outlier errors between 91 and 150 percent. We propose
regional sampling to reduce outlier error. For each query, we compute the euclidean distance between the
query and every available sample. We then use 25 percent of these samples with the smallest distances,
effectively excluding samples very different from the query.

We first define a function, compED, to compute the euclidean distance between two vectors x and y.
To ensure unbiased distance calculations, we normalize and weight the data. We create a new data frame
smg nw.df based on the existing frame. For each field/variable in the frame, we normalize by subtracting
the mean and dividing by the standard deviation. We scale the normalized value by the absolute value of
the correlation between the predictor and the response (i.e., solve time). Scaling by correlation coefficients
ensures highly correlated predictors are given greater emphasis in the distance calculation.

compED <- function(x, y) {
return(sqrt(sum((x-y)^2)));

}

smg_nw.df <- smg.df;
for(i in 1:dim(smg.df)[2]) {
x <- smg.df[,i];
smg_nw.df[,i] <- abs(cor(x,smg.df$tsolve))*(x-mean(x))/sd(x);

}

We initialize pointers to various data structures. In particular, summary e* will contain error summaries
for three model variants (baseline, log-transformed, sqrt-transformed), o contains observed response values,
p * contains predicted response values, and e * contains prediction errors. We specify s = 500 samples from
random permutations of sample indices contained in idx. We construct regions containing 125 samples, 25
percent of the full set of 500 samples.

summary_ef <- NULL; summary_eg <- NULL; summary_eh <- NULL;
o <- NULL; pf <- NULL; pg <- NULL; ph <- NULL;
naflag <- NULL; ef <- NULL; eg <- NULL; eh <- NULL;

## Sample size from which region is constructed
s <- 500; sidx <- idx[1:s];

We determine new regression coefficients based on relevant samples identified for each query. p indexes
the i-th query’s entry in the data frame. A loop iterates over the 500 samples, computing the euclidean
distance between each sample and the current query. The result is stored in a vector of distances ed.3 We
construct a subset of the 500 samples by considering only samples with distances in the 25-th percentile
using the command which(ed < quantile(ed,0.25)) to obtain the region’s indices in ssidx.

Once the region is identified, the model is formulated as before using ordinary least squares. Because we
are performing least squares on the same model specification with substantially fewer samples, the model
may be over-specified. In such an event, one or more regression coefficients will take the value NA, indicating
a missing value. We check the coefficients of model f for missing values and store into y a boolean vector
with length corresponding to the number of coefficients. If any element of y is true, we reduce the number
of terms in the model by eliminating the interaction between nx and nz. Since these variables both use
restricted cubic splines, removing this interaction will remove a large number of terms from the model and
eliminate risk of model over-specification.

3A performance optimization not yet implemented is vectorized or parallelized distance calculation instead of the current
iterative calculation
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for(i in 1:pcount) {
# Index into smg.df for i-th query
p <- psample[i];
cat(sprintf("Prediction %d, Configuration %d\n", i, p));

## Identify region of 125 points around query
ed <- NULL;
for(j in 1:s) {
ed <- rbind(ed, compED(smg_nw.df[p,], smg_nw.df[sidx[j],]))

}
ssidx <- sidx[which(ed < quantile(ed,0.25))];

## Formulate model with region
f <- ols(mf, data=smg.df[ssidx,]);
g <- ols(mg, data=smg.df[ssidx,]);
h <- ols(mh, data=smg.df[ssidx,]);
y <- sapply(f$coefficients, ’is.na’);
if(length(subset(y, y==TRUE))) {
naflag <- rbind(naflag, smg.df[p,]);
f <- update(f, . ~ . - rcs(nx,4) %ia% rcs(nz,5));
g <- update(g, . ~ . - rcs(nx,4) %ia% rcs(nz,5));
h <- update(h, . ~ . - rcs(nx,4) %ia% rcs(nz,5));

}

## Predict with regional model
o <- rbind(o, smg.df$tsolve[p]);
pf <- rbind(pf, predict(object=f, newdata=smg.df[p,]));
pg <- rbind(pg, exp(predict(object=g, newdata=smg.df[p,])));
ph <- rbind(ph, (predict(object=h, newdata=smg.df[p,]))^2);
ef <- rbind(ef, abs(o[i]-pf[i])/o[i]);
eg <- rbind(eg, abs(o[i]-pg[i])/o[i]);
eh <- rbind(eh, abs(o[i]-ph[i])/o[i]);

}
print(summary(eg)); print(summary(eh));

## Aggregate and write predictions to file
results_f <- cbind(o,pf,ef)[order(o,pf,ef, na.last=NA),];
results_g <- cbind(o,pg,eg)[order(o,pg,eg, na.last=NA),];
results_h <- cbind(o,ph,eh)[order(o,ph,eh, na.last=NA),];
write.table(results_f, file="pred_smg_reg_f.txt", sep="\t", row.names=FALSE,
col.names=c("observed", "predicted", "error"));
write.table(results_g, file="pred_smg_reg_g.txt", sep="\t", row.names=FALSE,
col.names=c("observed", "predicted", "error"));
write.table(results_h, file="pred_smg_reg_h.txt", sep="\t", row.names=FALSE,
col.names=c("observed", "predicted", "error"));

Given the model, we predict and organize the results as before. Figure 14 presents regional model
accuracy. Compared to baseline model accuracy of Figure 12, the regional models reduce median error from
10.6 to 5.5 percent for model g for 500 samples. Overall, every summary statistic from min to max is reduced
by regional sampling. Figure 15 presents the cumultative distribution function and boxplot of the regional
model error distribution. Comparing these figures with those for the baseline model in Figure 13, we find
the number of outliers is drastically reduced. A comparison of boxplots indicates a reduction in median
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------------------
V1

Min. :0.002554
1st Qu.:0.034311
Median :0.054637
Mean :0.073933
3rd Qu.:0.100312
Max. :0.803297
------------------

Figure 14: Error Summary for Regional Model g (summary eg)
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Figure 15: Cumulative distribution function (right) and boxplot (left) of regional model g errors

error and dispersion (i.e., smaller IQR). While other sampling techniques such as weighted regression and
cross-validation may further improve accuracy, the need for these techniques will depend on model usage.

6 Further Reading

The presented regression strategies have been applied more extensively for the microarchitectural parameter
space. Lee and Brooks derive piecewise polynomial regression models to predict microprocessor performance
and power [3, 4], validate and assess model sensitivity to sampling techniques [2], and demonstrate model
effectiveness in practical design space studies [5] Harrell describes more general regression strategies with
techniques for logistic regression and survival analysis in addition to splines and linear models [1]. Background
material for the R statistical computing environment is a summary of more comprehensive documentation
available on the R project website [7]. This website includes manuals and frequently asked questions.

7 Conclusion

This report details a series of techniques in statistical analysis and inference for modeling a parameter
space. In particular, we illustrate the application of hierarchical clustering, association and correlation
analysis, piecewise polynomial regression, residual analysis, and significance testing. We detail the scripting
of these techniques in R, a statistical computing environment. Within this framework, we construct effective
regression models that predict semicoarsening multigrid performance with 50 percent and 75 percent of
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predictions achieving error rates of 5.5 and 10.0 percent or less, respectively. The described model design
process is robust and has been effectively applied to several different parameter spaces with similar accuracy.
Although the parameter spaces may be drawn from different domains, the emphasis on domain-specific
knowledge and statistical rigor is common to all models developed within this framework.
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