REL National Renewable Energy Laboratory

Innovation for Our Energy Future

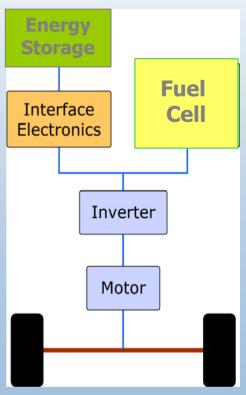
Analysis of Fuel Cell Vehicle Hybridization an Implications for Energy Storage Devices

4th Advanced Automotive Battery Conference San Francisco, CA June 2-4, 2004

> Matthew Zolot **Tony Markel Ahmad Pesaran**

pesaran@nrel.gov

NREL is operated by Midwest Research Institute • Battelle

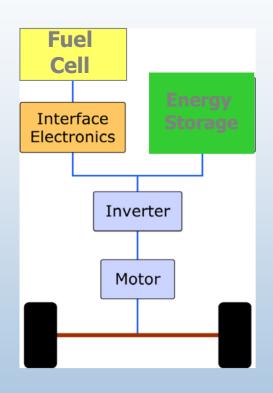


Disclaimer and Government License

- This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.
- Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.

Previous Studies

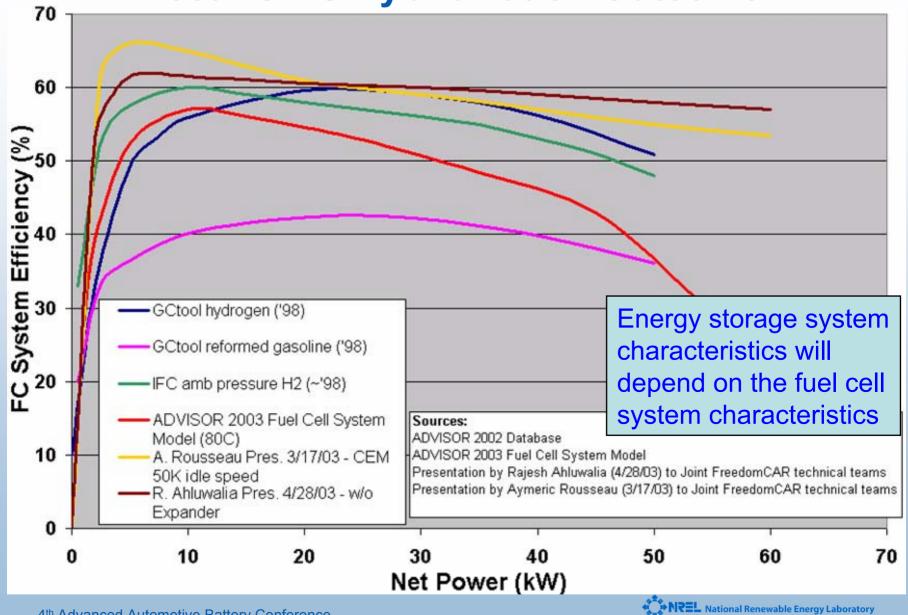
- Hybridization of a fuel cell vehicle with energy storage improves fuel economy, performance and make it practical (UCD, VTech, ANL, NREL)
 - Capturing regenerative breaking
 - Improving transient response
 - Smaller fuel cell lower cost
 - Fuel cell or reformer warm up
- Some demonstration prototype fuel cell vehicles are hybrids
 - Toyota FCHV, Ford Focus— (batteries)
 - Honda FCXV4 (ultracapacitors)


Content

- Objectives
- Motivation for using energy storage (ES) in fuel cell (FC) vehicles
- Analyses
- Summary

Objectives

- Investigate the degree of hybridization benefit from:
 - (A) Fuel cell efficiency characteristics
 - (B) Fuel cell downsizing
 - (C) Displacing fuel cell tasks with the ES functionality
 - (D) Energy recovery through regenerative braking


Motivation for this Study

Previous studies have not separated the degree of hybridization benefits from:

- (a) fuel cell efficiency characteristics,
- (b) fuel cell downsizing,
- (c) displacing fuel cell tasks with the ES functionality
- (d) energy recovery through regenerative braking
- Supporting FreedomCAR in identifying requirements of energy storage for hybrid fuel cell vehicles

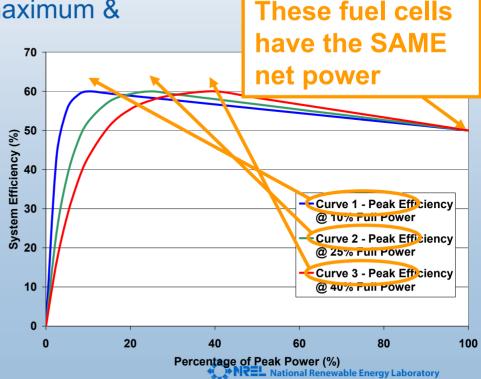
Fuel Cell System Efficiency Variability Could **Affect FC-ES Hybridization Outcome**

Fuel Cell and Hydrogen Storage System

Assumptions

Fuel Cell

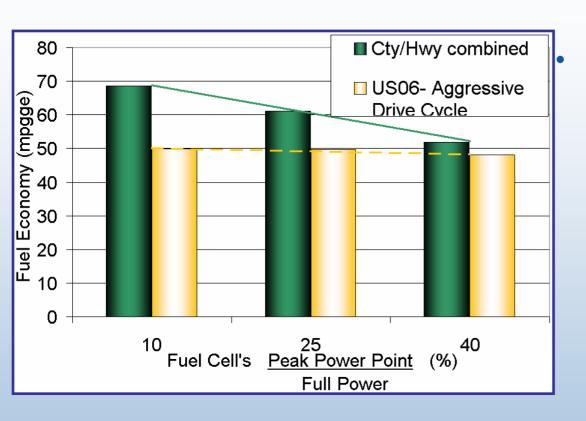
- Sized to provide at least grade performance.
- 1 s or 3 s transient response time (10% to 90% power).


Reaches maximum rated power in 0 s (ideal case),
 15 s (2010 target), or 60 s (today's) for cold start from 20°C.

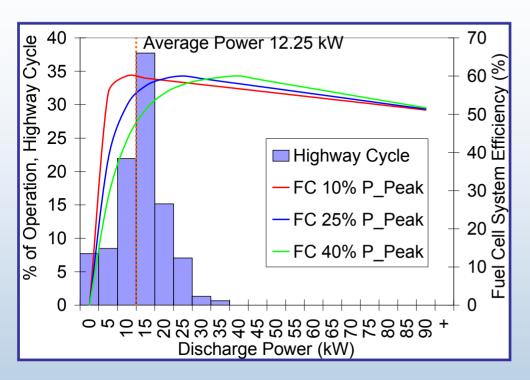
System efficiency of 60% at maximum & 50% at rated peak power (DOE Technical Targets).

Hydrogen Storage

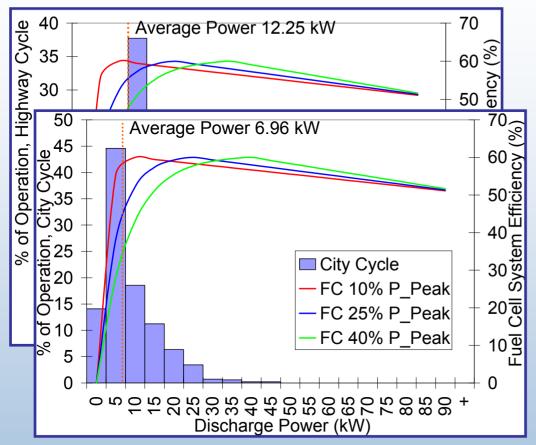
Pure compressed hydrogen.


Proposed theoretical FC efficiency curves are based on DOE Targets

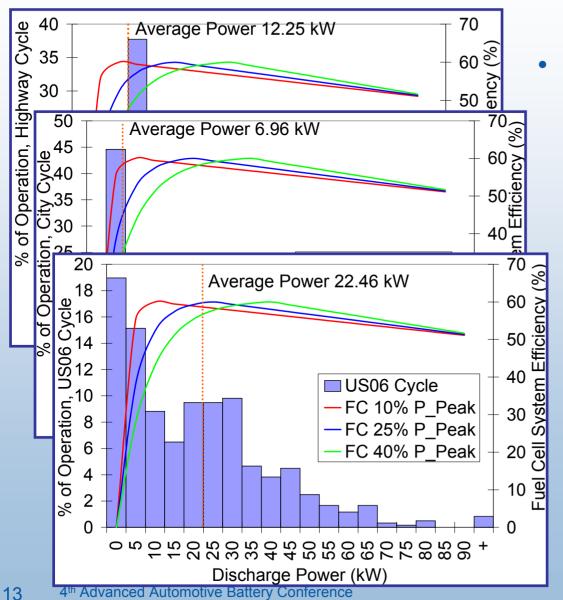
Objectives


- Investigate the degree of hybridization benefit from:
 - (A) Fuel cell efficiency characteristics
 - (B) Fuel cell downsizing
 - (C) Displacing fuel cell tasks with the ES functionality
 - (D) Energy recovery through regenerative braking

Fuel Economy is Affected by the Position of FC Peak Efficiency


- 10% peak efficiency FC achieved the best city/highway fuel economy
 - +12% improvement over the 25% peak efficiency configuration
 - +32% improvement over the 40% peak efficiency configuration

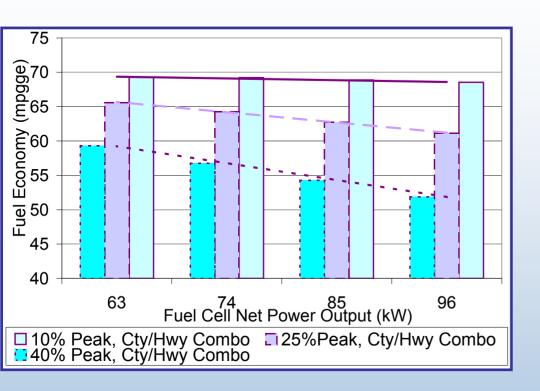
When Peak Efficiency ≅ Typical Power Point, Results in the Best Fuel Economy


 10% peak efficiency FC has the highest fuel economy because its peak efficiency is better aligned with the power requirements.

When Peak Efficiency ≅ Typical Power Point, Results in the Best Fuel Economy

 10% peak efficiency FC has the highest fuel economy because its peak efficiency is better aligned with the power requirements.

When Peak Efficiency ≅ Typical Power Point, Results in the Best Fuel Economy

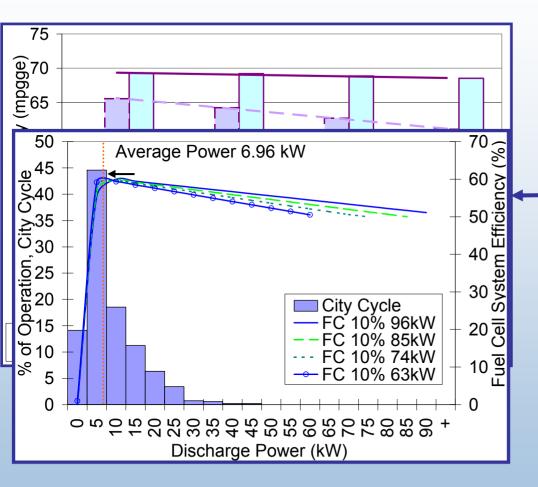

10% peak efficiency FC has the highest fuel economy because its peak efficiency is better aligned with the power requirements.

- Little fuel economy difference over US06 cycle.
 - wider power distribution
 - similar efficiency at Pava

Objectives

- Investigate the degree of hybridization benefit from:
 - (A) Fuel cell efficiency characteristics
 - (B) Fuel cell downsizing
 - (C) Displacing fuel cell tasks with the ES functionality
 - (D) Energy recovery through regenerative braking

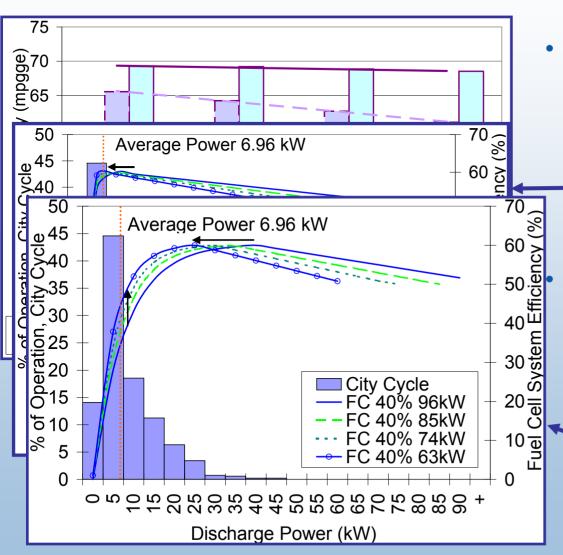
The Benefit of Downsizing the Fuel Cell varies as a function of Peak Efficiency Position


 Downsizing the 10% peak efficiency FC results in the least potential fuel economy improvement

≤ 1.0% (combined city/highway) improvement

 Downsizing the 40% peak efficiency FC results in a moderate to significant potential fuel economy improvement

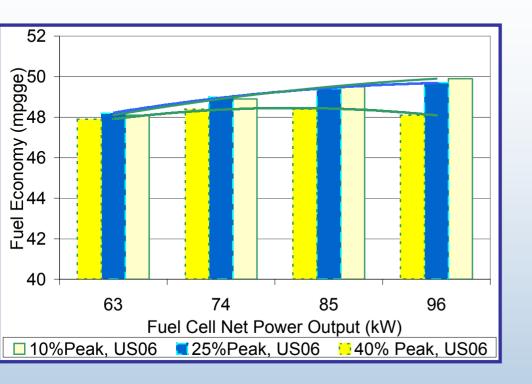
≤ 15.0% (combined city/highway) improvement


The Benefit of Downsizing the Fuel Cell varies as a function of Peak Efficiency Position

- Downsizing the 10% peak efficiency FC results in the least potential fuel economy improvement
 - ≤ 1.0% (combined city/highway) improvement
- Downsizing the 40% peak efficiency FC results in a moderate to significant potential fuel economy improvement

≤ 15.0% (combined city/highway) improvement

The Benefit of Downsizing the Fuel Cell varies as a function of Peak Efficiency Position

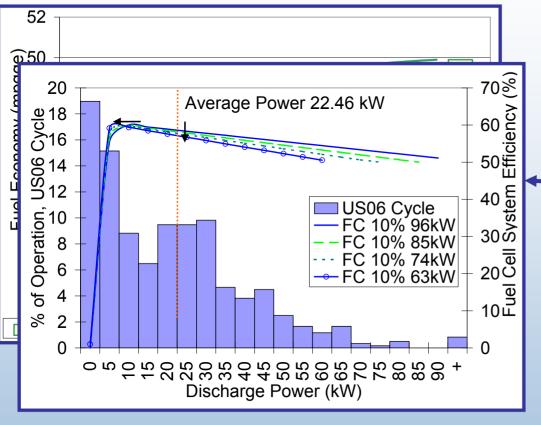

 Downsizing the 10% peak efficiency FC results in the least potential fuel economy improvement

≤ 1.0% (combined city/highway) improvement

Downsizing the 40% peak efficiency FC results in a moderate to significant potential fuel economy improvement

√ ≤ 15.0% (combined city/highway) improvement

Downsizing the Fuel Cell Can Have a Negative Affect on the US06 Cycle Fuel Economy

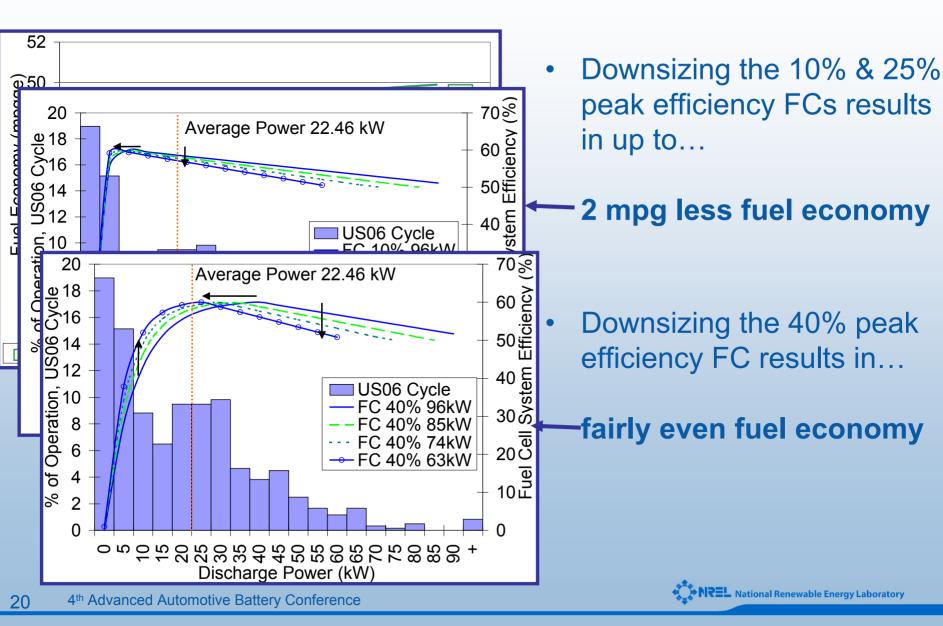

 Downsizing the 10% & 25% peak efficiency FCs results in up to...

2 mpg less fuel economy

 Downsizing the 40% peak efficiency FC results in...

fairly even fuel economy

Downsizing the Fuel Cell Can Have a Negative Affect on the US06 Cycle Fuel Economy


Downsizing the 10% & 25% peak efficiency FCs results in up to...

-2 mpg less fuel economy

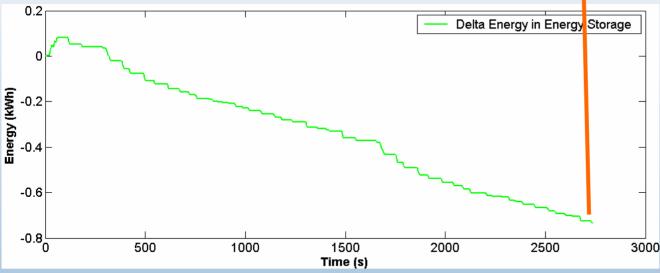
 Downsizing the 40% peak efficiency FC results in...

fairly even fuel economy

Downsizing the Fuel Cell Can Have a Negative Affect on the US06 Cycle Fuel Economy

Objectives

- Investigate the degree of hybridization benefit from:
 - (A) Fuel cell efficiency characteristics
 - (B) Fuel cell downsizing
 - (C) Displacing fuel cell tasks with the ES functionality
 - (D) Energy recovery through regenerative braking


Energy Storage Requirements for Supplementing a Full-Size FC's Limitations

96 kW Fuel Cell	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}	P regen	E _{regen}
	Time (s)	10-90% (s)	(kW)	(kWh)	(kW)	(kWh)
Today's Perfomance	60	3	61.80	0.2206	-46.49	-0.7332
	60	1	61.80	0.2206	-49 05	-0.7332
	15	3	55.90	0.0580	-46.49	-0.8237
2010 Target	15	1	55.90	0.0580	-48.05	-0.8237
	0	3	48.86	0.0067	-46.49	-0.8265
"Ideal" 96 kW Case	0	1	0.00	0.0000	-48.05	-0.8265

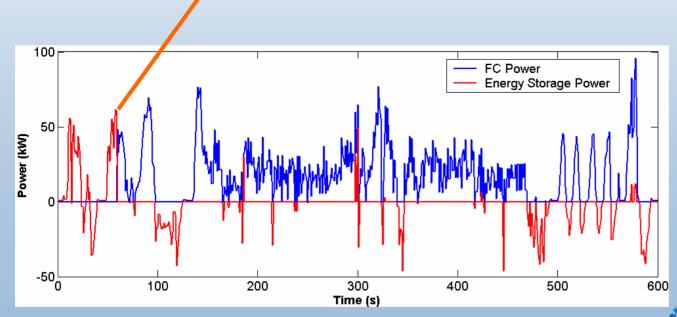
- Similar to stated Honda FCX4 ESS roles.
- Warm-up and ramp rate ESS roles require
 relatively little energy.
- 2010 Target performance needs fairly similar relatively little energy.
 power, but much less assist energy.

Energy Storage Requirements for Supplementing a Full-Size FC's Limitations

96 kW Fuel Cell	Warm-Up	Ramp Rate	P _{reg'd}	E _{reg'd}	P regen	E _{regen}
	Time (s)	10-90% (s)	(kW)	(kWh)	(kW)	(kWh)
Today's Perfomance	60	3	61.80	0.2206	-46.49	-0.7332
	60	1	61.80	0.2206	-49 05	-0.7332
	15	3	55.90	0.0580	-46.49	-0.8237
2010 Target	15	1	55.90	0.0580	-48.05	-0.8237
	0	3	48.86	0.0067	-46.49	-0.8265
"Ideal" 96 kW Case	0	1	0.00	0.0000	-48.05	-0.8265

Similar to stated Honda FCX4 ESS roles

Warm-up and ramp rate ESS roles require relatively little energy.

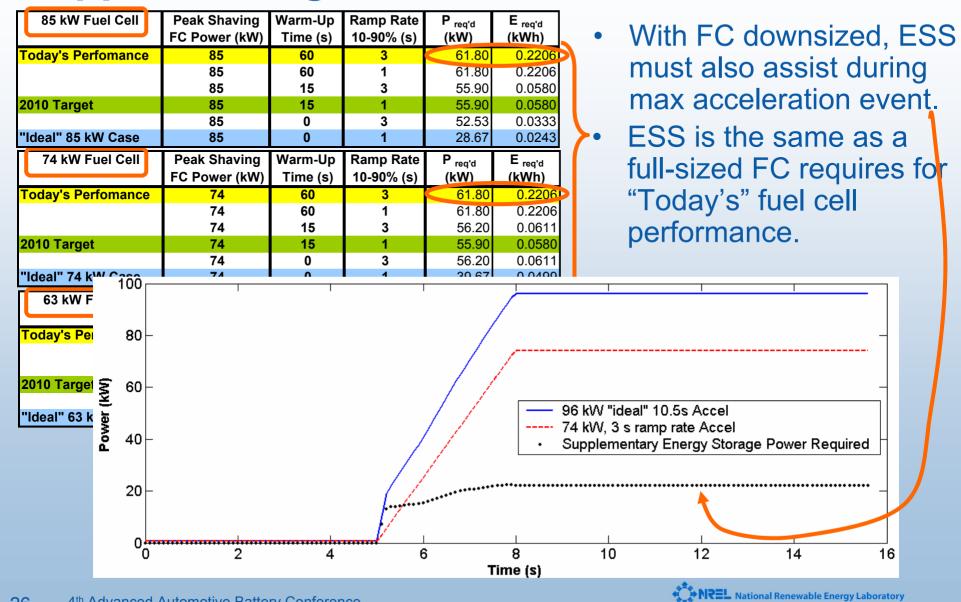

 Big Potential for more active ESS contributions.

Energy Storage Requirements for Supplementing a Full-Size FC's Limitations

96 kW Fuel Cell	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}	P regen	E _{regen}	
	Time (s)	10-90% (s)	(kW)	(kWh)	(kW)	(kWh)	
Today's Perfomance	60	3	61.80	0.2206	-46.49	-0.7332	
	60	1	61.80	0.2206	-48 05	-0.7332	
	15	3	55.90	0.0580	-46.49	-0.8237	
2010 Target	15	1	55.90	0.0580	-48.05	-0.8237	
	0	3	48.86	0.0067	-46.49	-0.8265	
"Ideal" 96 kW Case	0	1	0.00	0.0000	-48.05	-0.8265	

- Similar to stated Honda FCX4 ESS roles.
- Warm-up and ramp rate ESS roles require relatively little energy.

NREL National Renewable Energy Laboratory



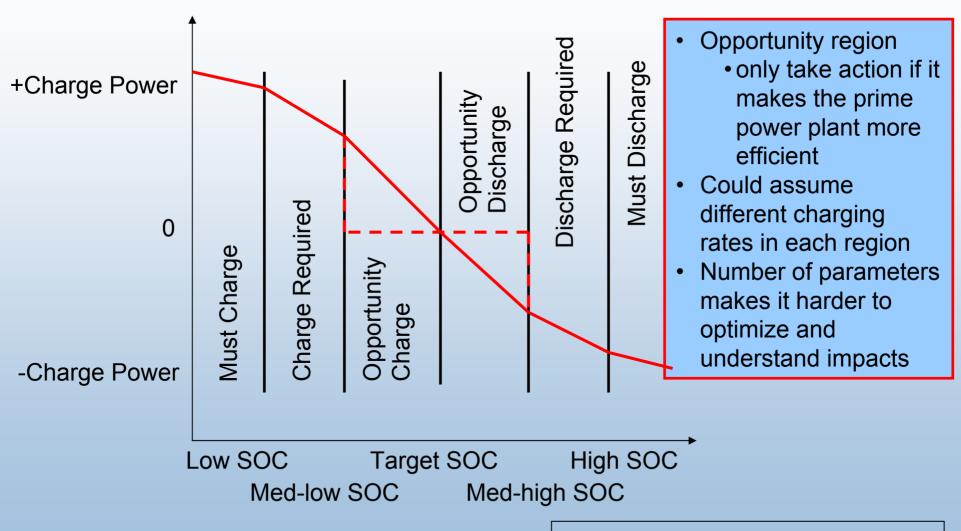
Energy Storage Requirements for Supplementing a Downsized FC's Limitations

85 kW Fuel Cell	Peak Shaving FC Power (kW)	Warm-Up Time (s)	Ramp Rate 10-90% (s)	P _{req'd} (kW)	E _{req'd} (kWh)
Today's Perfomance	85	60	3	61.80	0.2206
	85	60	1	61.80	0.2206
	85	15	3	55.90	0.0580
2010 Target	85	15	1	55.90	0.0580
	85	0	3	52.53	0.0333
"Ideal" 85 kW Case	85	0	1	28.67	0.0243
74 kW Fuel Cell	Peak Shaving	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}
	FC Power (kW)	Time (s)	10-90% (s)	(kW)	(kWh)
Today's Perfomance	74	60	3	61.80	0.2206
	74	60	1	61.80	0.2206
	74	15	3	56.20	0.0611
2010 Target	74	15	1	55.90	0.0580
	74	0	3	56.20	0.0611
"Ideal" 74 kW Case	74	0	1	39.67	0.0499
63 kW Fuel Cell	Peak Shaving	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}
	FC Power (kW)	Time (s)	10-90% (s)	(kW)	(kWh)
Today's Perfomance	63	60	3	61.80	0.2206
	63	60	1	61.80	0.2206
	63	15	3	59.90	0.0889
2010 Target	63	15	1	55.90	0.0766
	63	0	3	59.90	0.0889
"Ideal" 63 kW Case	63	0	1	50.70	0.0766

- With FC downsized, ESS must also assist during max acceleration event.
- ESS is the same as a full-sized FC requires for "Today's" fuel cell performance.

Energy Storage Requirements for Supplementing a Downsized FC's Limitations

Energy Storage Requirements for Supplementing a Downsized FC's Limitations


85 kW Fuel Cell	Peak Shaving FC Power (kW)	Warm-Up Time (s)	Ramp Rate 10-90% (s)	P _{req'd} (kW)	E _{req'd} (kWh)
Today's Perfomance	85	60	3	61.80	0.2206
	85	60	1	61.80	0.2206
	85	15	3	55.90	0.0580
2010 Target	85	15	1	55.90	0.0580
	85	0	3	52.53	0.0333
"Ideal" 85 kW Case	85	0	1	28.67	0.0243
74 kW Fuel Cell	Peak Shaving	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}
	FC Power (kW)	Time (s)	10-90% (s)	(kW)	(kWh)
Today's Perfomance	74	60	3	61.80	0.2206
	74	60	1	61.80	0.2206
	74	15	3	56.20	0.0611
2010 Target	74	15	1	55.90	0.0580
	74	0	3	56.20	0.0611
"Ideal" 74 kW Case	74	0	1	39.67	0.0499
63 kW Fuel Cell	Peak Shaving	Warm-Up	Ramp Rate	P _{req'd}	E _{req'd}
	FC Power (kW)	Time (s)	10-90% (s)	(kW)	(kWh)
Today's Perfomance	63	60	3	61.80	0.2206
	63	60	1	61.80	0.2206
	63	15	3	59.90	0.0889
2010 Target	63	15	1	55.90	0.0766
	63	0	3	59.90	0.0889
"Ideal" 63 kW Case	63	0	1	50.70	0.0766

- With FC downsized, ESS must also assist during max acceleration event.
- ESS is the same as a full-sized FC requires for "Today's" fuel cell performance.
- ESS is nearly the same as a full-sized FC requires for "2010 Target" fuel cell performance.
- Therefore, downsizing provides improvement in fuel economy, fuel cell costs, and [in minimal control case] has little to no affect on ESS sizing.

Current Work - Potential Active Roles for Supplementing Fuel Cell Operation

Curve 2 - Peak Efficiency @ 25% Full Power 70 60 System Efficiency (%) 50 **Opportunity Discharge** 40 SOC is high and fuel cell efficiency could increase if 30 load request is decreased. **Opportunity Charge** SOC is low and fuel cell 10 efficiency could increase if load request is increased. 0 20 40 60 80 100 Percentage of Peak Power (%)

Current Work - Multi-region "Spring" SOC Maintenance Algorithm

Fc_pwr_r = dl_pwr_r + charge_pwr

Summary

- There is positive benefit of downsizing the FC if the peak efficiency is shifted toward the typical power operating point (cycle dependant).
- ES requirements for supplementing FC limitations are suitable for Ultracapacitors or High Power Batteries.
- Downsizing a FC (toward the gradeability limit) with today's or 2010 projected characteristics, Does NOT significantly affect ES requirements (with minimal ES control case).
- There is significant potential for more actively using the ES to manage the FC operation points because of un-used regenerative energy capture.

Acknowledgements

 ADVISORTM is used to simulate the fuel cell and energy storage system demands under drive cycle and performance tests.

 This work supports the FreedomCAR Energy Storage technical team in defining energy storage requirements for fuel cell vehicles.