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Abstract. Solving linear systems arising from systems
of partial differential equations, multigrid and multilevel
methods have proven optimal complexity and efficiency
properties. Due to shortcomings of geometric approaches,
algebraic multigrid methods have been developed. One
example is the filtering algebraic multigrid method in-
troduced by C. Wagner. This paper proposes a variant
of Wagner’s method with substantially improved robust-
ness properties. The method is used in an adaptive, self-
correcting framework and tested numerically.

1 Introduction

Geometric multigrid, as it is proposed, e.g., by Hack-
busch in [4], is based on a simple observation: for prob-
lems of Poisson type usually simple iterative methods
are sufficient to reduce a large portion of error compo-
nents within the spectrum effectively. These methods are
referred to as smoothers as the eliminated components
typically belong to geometrically non-smooth eigenfunc-
tions of the continuous operator. After several relaxation
sweeps, the error is smooth in a geometric sense. The key
idea of geometric multigrid is that these modes can be
be represented well on a coarser grid. Consequently, a
coarse grid correction step is introduced in addition to
the smoother.

Algebraic multigrid, as proposed by Ruge and Stüben
in [5], generalizes this idea, but assumes that no informa-
tion about geometry, grids and the underlying equations
is available to the linear solver. The geometric notion
of smoothness is substituted by the concept of algebraic
smoothness. The frequently cited heuristic of classical
AMG, “smooth error varies slowly in the direction of

⋆ The authors are indebted to Christian Wagner for sharing
his source code and contributing to this work.
⋆⋆ This work was performed under the aupices of the U.S.
Department of Energy by University of California, Lawrence
Livermore National Laboratory under Contract W-7405-Eng-
48

strong couplings”, is derived from M-matrix properties
and using the assumption that the constant is in the
near null space of the discrete operator and needs to
be interpolated almost exactly. A similar idea is used
in Wagner’s method. Here, interpolation is constructed
such that a certain norm of the two grid operator is
minimized. Additionally, a constraint is imposed, the so
called filter condition, that guarantees certain vectors to
be interpolated exactly.

This paper is organized as follows: The general idea of
the filtering algebraic multigrid method (FAMG) is de-
scribed briefly in Section 2. In Section 3, a slightly modi-
fied version of FAMG is introduced. This approach adds
robustness to the algebraic method and allows a natural
embedding into classical AMG theory. In Section 4, we
show the particular importance of the filter condition in
the case of unknown near null space components. Follow-
ing Wagner and Wittum in [8], we present an adaptive
scheme which can be used to track down suitable test
vectors. Section 5 concludes this work with numerical
experiments underlining the theoretical results.

2 Filtering algebraic multigrid

2.1 Preliminaries

Let us first introduce some notation used in the further
discussion. Our aim is to solve a linear system Au =
f for a non-singular A = (aij)

n
i,j=1 using a multilevel

method. Grid levels are indicated by a subscript l =
0, . . . , L, where l = 0 indicates the finest and l = L
indicates the coarsest grid. As most of the analysis is
based on the two level method, we drop the index of the
grid level whenever it is possible. We distinguish between
coarse and fine grid nodes of a grid, forming subsets C
and F respectively. For ease of presentation, we assume
A = AT > 0 is symmetric positive definite. Although
the algorithms presented in this paper also carry over to
the non-symmetric case, the main idea can be described
for the symmetric case very intuitively.



Smoothing is carried out by an iterative method with
a preconditioner W . This is for instance the weighted di-
agonal W = ω−1 D, ω > 0, in the case of damped Jacobi
smoothing or W = (D + L) for Gauss-Seidel smoothing.
Here we assume a decomposition A = D + L + U into a
diagonal part D, a strictly lower triangular part L and a
strictly upper triangular part U . The error propagation
operator I −W−1A is denoted by S. Sometimes we also
use the symbol S′.

As the smoother is typically very inefficient on a
small subspace of R

n, we apply a coarse grid correc-
tion to approximate error components belonging to this
space of the so called algebraically smooth errors. For
interpolating grid functions on the fine grid from grid
functions on the coarse grid, we need a prolongation P .
Restriction will not be constructed explicitly, instead we
use R = PT , which is reasonable in the symmetric case.
When a straight injection is applied, we use the injection
operator Rinj . The coarse grid operator Ac is defined us-
ing the Galerkin operator,

Ac = RAP.

On the space of vectors, we use the Euclidean norm
‖ · ‖2, and the norms ‖ · ‖A = ‖A1/2 · ‖2 and ‖ · ‖D =
‖D1/2 · ‖2 respectively. For matrices, we use the same
symbols for the induced norms. Additionally, we consider
the Frobenius norm ‖ · ‖F .

2.2 Norm minimization and filter condition

We describe Wagner’s method in a brief overview, omit-
ting minor important details and refer to his original
works, [6,7], for a closer analysis. The particular choice
of Ac leads to

(I − PA−1
c RA)S = (I − PA−1

c RA) (I − PRinj)S.

If we consider a submultiplicative matrix norm and as-
sume that ‖(I−PA−1

c RA)‖ is bounded (as it is the case,
e.g., for ‖ · ‖ = ‖ · ‖A), then finding a P that minimizes

‖(I − PRinj)S‖ (1)

yields an upper bound for the norm of the error prop-
agation matrix of the two grid operator and influences
the quality of convergence of the iterative method.

To have a notion of algebraic smoothness it is often
sufficient to represent the smooth space by only one vec-
tor, namely one representing algebraic smoothness well
in a local sense. Typically, this an eigenvector associated
with the smallest eigenvalue of A or an eigenvector asso-
ciated with the largest eigenvalue of the smoother. We
want this vector and the subspace it is representing to
be interpolated (almost) exactly. Therefore, we impose
a constraint

(I − PRinj)t = 0

or
(I − PRinj)St = 0

for some test vector t. For the purpose of abbreviation,
we will write QT = (I − PRinj). We choose to mini-
mize (1) using the Frobenius norm, which also bounds
the Euclidean norm from above. We remark that sim-
ilar approaches are used in the field of sparse approxi-
mate inverse smoothers, cf. Bröker and Grote in [3]. The
construction of interpolation in FAMG is based on the
minimization of

min
Q

‖QT S′‖2F
s.t. QT St = 0.

(2)

In this constrained minimization problem S and S′ may
represent error propagation operators of different smooth-
ers. If we denote the i-th column of Q (and the i-th row
of I − PRinj respectively) by qi, we find an equivalent
local formulation for every node i:

min
qi

‖S′T qi‖22
s.t. qT

i St = 0.
(3)

Since the prolongation should be defined locally, we fix
some structural information for qi. We use a direct in-
terpolation, which means that coarse grid nodes are in-
terpolated exactly, whereas fine grid nodes i ∈ F are
interpolated from parent nodes k ∈ Pi. Here, Pi ⊂ Ci

denotes a subset of coarse grid nodes Ci = Ni∩C in the
neighborhood

Ni = {j 6= i | aij 6= 0}

of node i. That is, we enforce qi = 0 for coarse grid nodes
i ∈ C and

(qi)k =







1, k = i
−pik, k ∈ Pi

0, otherwise,
(4)

for fine grid nodes i ∈ F . Here pik is the weight we use
to interpolate node i ∈ F from node k ∈ C. For given i
and np, we consider parent nodes Pi ∈ Pi with

Pi = {P ⊂ Ci||P | ≤ np} .

After reordering the degrees of freedom, we obtain a pro-
longation operator of the form

P =

(

PFC

I

)

,

where PFC represents the interpolation of fine-grid val-
ues from coarse-grid ones using the entries pik from (4).

2.3 Suitable sets of parent nodes

Given a node i and a set of parent nodes Pi ∈ Pi, (3)
and (4) yield a quadratic problem that can be solved
in a space of dimension np + 1. When the solution is
unique, as it is for non-singular S′ (e.g., for a convergent
smoother), this process defines a mapping

q : Pi → R
n, Pi 7→ qi,
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where qi contains the entries for the interpolation opera-
tor. At the same time, the value of the objective function
in (3) can be used to compare the quality of interpolation
for different sets of parent nodes. We define an admis-
sibility condition for the parent nodes in the following
way:

Definition 1. A set Pi ⊂ Pi, qi = q(Pi), is a suitable
set of parent nodes for node i with respect to FAMG, if

θ‖S′T qi‖2 ≤ ‖S′T q(P )‖2, ∀P ∈ Pi

and
‖S′T qi‖2 ≤ δ.

The parameter 0 < θ ≤ 1 in this definition should be
chosen close to 1, say θ = 0.9. It specifies that parent
nodes not yielding an optimal (but an almost optimal)
value of the objective function, are still acceptable for in-
terpolation. The role of the threshold parameter δ is to
prevent nodes that cannot be interpolated well enough,
becoming fine grid nodes. Based on this definition, cf.
Algorithm 2.2.1 in [6], Wagner proposes an iterative la-
beling strategy to select a coarse grid, trying to solve
a trade off problem of keeping the number of coarse de-
grees of freedom and the number of entries in Ac as small
as possible. Note that the outlined algorithm is a typical
AMG setup phase: once the coarse grid is chosen and a
test vector is defined, the whole process can be repeated
on the next grid level until the number of grid nodes is
sufficiently small.

2.4 Filter property

An interesting property that will be exploited in Sec-
tion 4 is that FAMG preserves the constraint for the
vector t on all grid levels. This result is independent of
the objective function and only due to the constraint in
(3). It can be found in [6], Proposition 3.1.1.

Proposition 1. If the test vectors on coarser levels are
defined by

tl+1 = Rinj
l Sltl ∀l = 0, . . . , L− 1,

then any multigrid cycle using the pre-smoothers Sl elim-
inates error components in the one dimensional subspace
generated by t = t0 exactly.

3 Diagonally stabilized filtering algebraic

multigrid

3.1 Modified objective function

Unfortunately, (2) has the property that the constrained
minimization problem is sensitive to a diagonal scaling
of the operator A. The same problem is known for the
classical Ruge-Stüben AMG, but a fix is for instance
mentioned by Brezina et al. in [2]. The idea of their ar-
gumentation will be repeated in the following subsection.

The motivation for FAMG in the previous section
is based on the assumption that ‖ · ‖A ≈ ‖ · ‖2 when
measuring the two-grid operators of interest. To obtain
a scaling-invariant method, one should use the approxi-
mation ‖ · ‖A ≈ ‖ · ‖D instead and thus try to minimize

‖D 1
2 QT S′D− 1

2 ‖F .

This yields the local problems

min
qi

‖(S′D− 1
2 )T qi‖2

s.t. qT
i St = 0

(5)

for every node i. We will refer to the multigrid method
based on this quadratic problem as diagonally stabilized
FAMG, or DS-FAMG. Due to the modified objective
function, we alter the definition of suitable sets of par-
ent nodes. The remainder of the setup phase remains
unchanged.

Definition 2. A set Pi ⊂ Pi, qi = q(Pi), is a suitable
set of parent nodes for node i with respect to DS-FAMG,
if

θ‖(SD− 1
2 )T qi‖2 ≤ ‖(SD− 1

2 )T q(P )‖2, ∀P ∈ Pi

and
aii ‖(SD− 1

2 )T qi‖2 ≤ δ

The choice of the objective function is still in accor-
dance with the convergence theory developed in [6]. Yet
the existence of a uniform, mesh size independent esti-
mate

‖QT S′‖A ≤ K ‖QT S′‖D (6)

with a moderate real constant K > 0 cannot be shown
by purely algebraic means. Otherwise, the modified mini-
mization problem leads to two grid convergence directly.
Having in mind the classical definition of algebraically
smooth error we note that K =

√

λmax(D−1A) yields

‖A1/2(I − PRinj)Su‖
‖A1/2u‖ ≤ K

‖D1/2(I − PRinj)Su‖
‖A1/2u‖

≤ K ‖D1/2(I − PRinj)SD−1/2‖‖D
1/2u‖

‖A1/2u‖
for all u ∈ R

n. Although this inequality motivates our
objective function, it also expresses the major difficulty
we encounter. Since λmin(D−1A) → 0 for a mesh size
h→ 0, we cannot expect the multigrid method to be con-
vergent rapidly, as long as vectors u with ‖u‖A ≪ ‖u‖D
are not approximately in the range of P . Yet practical
experience has shown that it is often sufficient to impose
the filter condition only for one representative vector,
e.g. the constant for Poisson type problems.

3.2 Invariance properties

Given a symmetric positive definite matrix A and a di-
agonal matrix C = Diag(γi)

n
i=1 with positive diagonal
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entries γi > 0, i = 1, . . . , n, we define a modified operator
Â by

Â = C−1/2AC−1/2. (7)

A scaling of this type can be introduced by various rea-
sons. Obviously, Â is also symmetric positive definite and
spectrally equivalent to C−1A. Additionally, Â has the
M-matrix property if and only if this is true for A.

From an algebraic point of view, scaled problems in
the class of M-matrices are not more complicated than
the original ones. Any robust AMG method should thus
show scaling invariant convergence behavior. Numerical
results, as well as the following theoretical analysis, indi-
cate that the original FAMG does not have this property.
For DS-FAMG we enforce prolongation and restriction
operators to maintain some basic properties of the sys-
tem matrix throughout all grids. We observe that

P̂ = C1/2PC−1/2
c , Cc = RinjC (8)

yields

Âc = P̂T ÂP̂ = C−1/2
c (PT AP )C−1/2

c .

If the error propagation operator of the smoother satis-
fies

Ŝ = C1/2SC−1/2, (9)

as for Jacobi, Gauss-Seidel or symmetric Gauss-Seidel
with arbitrary damping or overrelaxation factors, this
leads to

(I − P̂ Â−1
c P̂T Â)Ŝ = C1/2(I − PA−1

c PT A)SC−1/2.

Thus the two grid operators are equivalent and we have
identical two-grid convergence properties for scaled and
unscaled problems. Using a recursive argument, this also
carries over to the multigrid convergence.

The following lemma is the key to establish these
results for the diagonally stabilized version of FAMG.

Lemma 1. Let S, Ŝ and S′, Ŝ′ respectively satisfy (9).

Additionally, assume that K̂ = C1/2K, t̂ = C1/2t for a
matrix K > 0, t 6= 0. Then q∗i is a solution of

min
qi

‖(S′K)T qi‖2
s.t. qT

i St = 0,
qi satisfies (4)

if and only if

q̂∗i =
√

γiC
−1/2q∗i

is a solution of

min
q̂i

‖(Ŝ′K̂)T q̂i‖2
s.t. q̂T

i Ŝt̂ = 0,
q̂i satisfies (4).

Proof. Let t be fixed and assume for the moment that qi

is an arbitrary vector. For

q̂i =
√

γiC
− 1

2 qi

we find, that

q̂T
i Ŝt̂ = (

√
γiq

T
i C− 1

2 )(C
1
2 SC− 1

2 )(C
1
2 t) =

√
γi qT

i St.

Now q̂i is admissible, i.e. satifies the constraints, for the
scaled problem, if and only if qi is admissible for the orig-
inal problem. Assume qi minimizes the original problem,

but there is an admissible p̂ 6= q̂i, p̂ =
√

γ
i
C− 1

2 p, with

‖(Ŝ′K̂)T p̂‖ < ‖(Ŝ′K̂)T q̂i‖. As Ŝ′K̂ = C1/2S′K, division
by
√

γ
i
> 0 yields

‖(S′K)T p‖ < ‖(S′K)T q‖,
a contradiction. Hence, q̂i must also minimize the second
problem.

The problems in this lemma are a reformulation of
the minimization problems FAMG uses to construct re-
striction and prolongation. In all relevant cases S′ and
K are non-singular and the solution is unique. This is

the case for DS-FAMG, where K = D− 1
2 , and, e.g., if

S′ denotes the error propagation matrix of a convergent
smoother.

According to this analysis, the diagonally stabilized
FAMG selects points for the coarse grid independent of
a diagonal scaling. Since property (8) holds for the con-
structed operators, we can expect identical asymptotic
convergence rates.

4 Adaptive framework

Based on a priori knowledge about the discretized par-
tial differential equation, usually some information about
near null space components is known. One representa-
tive, the constant for instance, is then used as an initial
test vector. If is not known a priori, several relaxation
sweeps on a randomly chosen vector can be used.

Based on [8] we propose an adaptive strategy using
the latest correction as test vector when the convergence
rate stalls. The idea of self correction for AMG methods
is also dealt with in [1] and [2].

Algorithm 1 Adaptive test vector method

1: function adtv(M(0), u(0))
2: for i = 0 to I do

3: u(0) ← u(i);
4: for j = 0 to r − 1 do ⊲ Base iteration
5: u(j+1) ← u(j) + M−1

(i)
(f − Au(j));

6: end for

7: t(i+1) ←M−1
(i) (f − Au(r)); ⊲ Adaptive part

8: u(i+1) ← u(r) + M−1

t(i+1)(f −Au(r));

9: M−1
(i+1) ←M−1

(i) + M−1

t(i+1) −M−1

t(i+1)AM−1
(i) ;

10: end for

11: return (u(i));
12: end function
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Let us go through the algorithm briefly. We start it-
erating with a base iteration given by a preconditioner
M(i), i = 0. After r iterations, the algorithm assumes
that the iterative method stalls and that some compo-
nents of the error cannot be eliminated. This is when
the adaptive strategy is employed: we assume that the
correction that is computed next, can be used as a test
vector t(i+1). A new preconditioner Mt(i+1) satisfying

(

I −M−1
t(i+1)A

)

t(i+1) = 0 (10)

is computed and one iterative step with this new method
is performed. In a last step, line 9, the base iteration is
updated in a multiplicative way, yielding the recursion

(I −M−1
(i+1)A) = (I −M−1

t(i+1)A)(I −M−1
(i) A)

for i ≥ 0 and the respective t(i+1). The whole process of
testing and updating the preconditioner is then repeated.

Let us first propose a modification, yielding a more
flexible variant the algorithm. Instead of performing a
fixed number of base iterations r in lines 4 – 6, we de-
cide to update the preconditioner only, if we detect a
“stalling” of the iterative method, which is defined in
the following way: We measure the reduction rates of
the residual,

κj =
‖f −Au(j)‖
‖f −Au(j−1)‖

, j ≥ 1,

and compute its geometric mean κ during the last five
iterations. If this average rate is relatively large, i.e. κ >
0.5, and only small changes occured in the last five itera-
tions, i.e. |κj−κ| < 0.025, we decide, that it is appropri-
ate to update the preconditioner and continue with line
7 of the algorithm.

According to Proposition 1, FAMG satisfies (10). How-
ever, the situation is different from the context of fre-
quency filtering decompositions, where Wagner and Wit-
tum proposed the outlined Algorithm 1. In our case,
the structure of the problem guarantees, that knowledge
of one test vector is sufficient for an effective multigrid
method. We thus modify line 9 in the algorithm and
overwrite the preconditioner, setting

M(i+1) ←Mt(i+1) , i ≥ 0.

Note that this simplification would not work in a
more general setting. Here the number of test vectors is
crucial for the performance of the algorithm. The orig-
inal version used O(log n) test vectors, which lead to a
computational complexity of O(n log n).

5 Numerical Results

To give experimental justification for our considerations,
we performed a variety of tests for scalar problems. Six
different equations of convection-diffusion type are con-
sidered. The equations are discretized on the regularly

refined unit square, Ω = (0, 1)2 ⊂ R
2, using linear finite

volumes and a first-order upwinding scheme. The mesh
width is h = 1/512. The boundary Γ = ∂Ω is decom-
posed into four parts, Γ = ΓN ∪ΓE ∪ΓS ∪ΓW , denoting
the north, east, south and west boundary of the unit
square. Different boundary conditions are applied.

The first two problems are two simple test cases.

Problem 1. Poisson’s equation

−△u(x) = 0 , x ∈ Ω,

u(x) = 0 , x ∈ ΓN ∪ ΓS ,

u(x) = x2(1 − x2) , x ∈ ΓW ∪ ΓE .

Problem 2. Convection-diffusion

−∇ · (∇u(x) + vu(x)) = 0 , x ∈ Ω,

u(x) =
1

2
(x1 + x2) , x ∈ Γ,

with v = (105, 10)T .

The following three problems are given by diffusion
equations, each of them imposing its own characteris-
tic difficulties for multigrid methods. Problem 3 has a
discontinuous diffusion coefficient, with a square of high
conductivity embedded in the interior of the domain.

Problem 3. Isolator problem

−∇ · (D(x)∇u(x)) = 0 , x ∈ Ω,

u(x) = 0 , x ∈ ΓN ∪ ΓS ,

u(x) = x2(1− x2) , x ∈ ΓW ∪ ΓE ,

with

D(x) =

{

106, 1/4 ≤ x1, x2 ≤ 3/4
1, otherwise.

Problem 4 is an anisotropic problem, where the align-
ment of the anisotropy changes from the x1-direction to
the x2-direction, as we approach the origin.

Problem 4. Anisotropy

−∇ · (D(x)∇u(x)) = 0 , x ∈ Ω,

u(x) = x1 , x ∈ ΓE ∪ ΓW ,

∂u

∂n
(x) = 0 , x ∈ ΓN ∪ ΓS ,

with

D(x) = k(x)

(

ǫ 0
0 1

)

+ (1− k(x))

(

1 0
0 ǫ

)

,

where k(x) = 1/(1+eα(x1+x2−1)), α = 100 and ǫ = 10−6.

Problem 5 is from the field of porous media. The dif-
fusion tensor is introduced by a log-normally distributed
scalar D(x).

5



Problem 5. Porous media

−∇ · (D(x)∇u(x)) = 0 , x ∈ Ω,

u(x) = x1 , x ∈ ΓE ∪ ΓW ,

∂u

∂n
(x) = 0 , x ∈ ΓN ∪ ΓS ,

for a log-normally distributed D(x) with mean µ = 0
and variance σ2 = 5.0 for the corresponding normal dis-
tribution.

Problem 6 is a rotating convection problem.

Problem 6. Rotating convection

−∇ · (ǫ∇u(x) + v(x)u(x)) = 0, x ∈ Ω,

u(x) =
1

2
(x1 + x2), x ∈ Γ,

with v(x) = (− sin(πx) cos(πy), cos(πx) sin(πy))
T

and
ǫ = 10−6.

Restriction and prolongation are constructed by a
FAMG setup phase. Afterwards, a V(1,1)-cycle is ap-
plied as a linear solver for the linear systems. The iter-
ation used as a pre-smoother in the multigrid method
is symmetric Gauss-Seidel, followed by one Jacobi step,
that is only executed on the fine nodes. The iteration
used for post-smoothing is the adjoint iteration. The un-
knowns on the finest grid are ordered lexicographically.
The smoother used to construct S′ in the objective func-
tion is an approximation of several damped Jacobi steps,
as proposed by Wagner in [6] with ω = 0.85. This rou-
tine involves a truncation of entries aij of the system
operator, if

|aij | < σ max
k 6=i
|aik| and |aji| < σ max

k 6=j
|ajk|.

We use parameters θ = 0.95 and δ = 0.1 for the defini-
tion of suitable sets of parent nodes and interpolate from
pairs of parent nodes, i.e., np = 2.

To compare the methods, we give the number of it-
erations m necessary to reduce the norm of the resid-
ual by 10 orders of magnitude. The iterations start with
u(0) = 0. The reduction rate of the norm of the residual
in the last iteration, κm, is given as an estimate for the
asymptotic convergence rate.

5.1 Original problems

First we compare DS-FAMG to the original FAMG for
the systems generated by Problems 1 – 6. As the strength
of connection within the matrix A has a physical in-
terpretation in this case, we use threshold parameter
σ = 0.1 to accelerate the setup phase. The constant vec-
tor is the test vector used for FAMG. Figure 1 indicates
that both FAMG versions obtain comparable results.

Problem FAMG DS-FAMG
κm m κm m

1 0.027 6 0.026 6

2 0.017 6 0.017 6

3 0.078 7 0.123 9

4 0.140 9 0.194 10

5 0.149 8 0.153 8

6 0.350 16 0.205 14

Fig. 1. Comparison of FAMG and DS-FAMG, σ = 0.1. Num-
ber of iterations m and convergence rate κm in the last iter-
ation.

5.2 Scaling and normalization

In a second step, we apply a diagonal scaling as intro-
duced in (7). For operators of this type, any notion of
strength does not make sense and so we choose σ = 0.0.
For reasons of comparison we evaluate the performance
for the original problems,

C = Diag(1)n
i=1,

first. In a next step, we normalize the systems to have a
diagonal one, that is, we use

C = Diag
(

a−1
ii

)n

i=1
.

Finally, we apply a random scaling of the systems using

C = Diag (γi)
n
i=1

with γi = 10ri and uniformly distributed ri ∈ [−6, 6].
While the constant is used as the test vector for the
original systems, the constant scaled by C1/2 is used as
the test vector for the normalized and randomly scaled
systems.

Figure 2 contains results obtained by Wagner’s orig-
inal FAMG. The three columns contain results for the
three cases mentioned above. While the method per-
forms well, or at least satisfactorily for the original and
normalized systems, the results for the randomly scaled
case are completely dissatisfying. Although we obtain
a convergent method for problems with pure diffusion,
the convergence rates are larger than the rates for the
original problems. For problems containing a convective
term, i.e. problems 2 and 6, the method breaks down
completely.
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Problem Original Normalized Random
κm m κm m κm m

1 0.026 6 0.026 6 0.852 30*

2 0.017 6 0.017 6 — -

3 0.078 7 0.105 8 0.844 30*

4 0.133 9 0.144 9 0.801 30*

5 0.128 8 0.185 8 0.902 30*

6 0.371 18 0.346 16 — -

Fig. 2. FAMG, σ = 0.0. Number of iterations m and con-
vergence rate κm in the last iteration. The ∗ symbol indicates
that the convergence criteria were not achieved in 30 steps,
and dashes indicate a diverging method.

Figure 3 illustrates a different situation for DS-FAMG.
In accordance with Lemma 1, almost identical conver-
gence rates are obtained for all problems. The number
of iterations necessary to achieve the prescribed reduc-
tion of the residual is constant in most cases and differs
by one in the worst case.

Problem Original Normalized Random
κm m κm m κm m

1 0.026 6 0.026 6 0.026 6

2 0.017 6 0.017 8 0.017 6

3 0.114 8 0.105 8 0.102 8

4 0.159 10 0.156 9 0.157 9

5 0.153 8 0.158 8 0.153 8

6 0.411 19 0.411 19 0.411 19

Fig. 3. DS-FAMG, σ = 0.0. Number of iterations m and
convergence rate κm in the last iteration.

5.3 Adaptive algorithm

For the same problems, we investigate whether the adap-
tive strategy introduced in Section 4 is successful. The
initial preconditioner

M(0) = Mt(0)

is a FAMG multigrid scheme, which is based on a test
vector t(0). This vector is obtained from a random initial
guess, that is relaxed with eight sweeps of a symmetric
Gauss-Seidel iteration. The values of the random initial
guess were chosen uniformly distributed in the interval
[0.5, 1].

Problem Original Normalized Random

κ
(i)
m m(i) κ

(i)
m m(i) κ

(i)
m m(i) i

1 0.025 6 0.025 6 0.562 8 0
0.022 11 1

2 0.012 6 0.010 6 0.036 10 0
1

3 1.000 7 1.000 8 1.000 7 0
0.104 13 0.038 12 0.109 17 1

4 0.180 10 0.191 10 0.629 10 0
0.175 15 1

5 0.196 11 0.788 8 0.900 8 0
0.063 14 0.110 12 1

6 0.322 15 0.361 18 0.335 17 0
1

Fig. 4. Adaptive test vector using DS-FAMG, σ = 0.0. Num-

ber of iterations m(i) and convergence rate κ
(i)
m in this iter-

ation for each stage i of the algorithm from Section 4. Pre-
liminary stages are indicated in grey (i = 0: initial precondi-
tioner, i = 1: after an adaptive update).

For the original and the normalized problems, we dis-
cover that M(0) turns out to be an effective precondi-
tioner. An adaptive update is necessary only, when the
operator contains discontinuous or strongly variying co-
efficients, i.e. for problems 3 (original and normalized
case) and 5 (normalized case only). For the randomly
scaled problems, M(0) is only efficient for the convection
dominated cases, problems 2 and 6. In all other cases, an
adaptive update is required. Yet the preconditioner con-
structed by the adaptive test vector method turns out
to be efficient and we almost obtain the original conver-
gence properties.

6 Conclusion

The proposed DS-FAMG turns out to be a robust solver
with convergence properties similar to the original FAMG.
Additionally, it is robust with respect to a diagonal scal-
ing. We showed, how the adaptive test vector method,
which has been proposed in the context of frequency fil-
tering decompositions, can be used in the context of al-
gebraic multigrid methods.
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