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PROPOSAL TO STUDY MULTIPARTICLE PERIPHERAL HADRON PHYSICS AT NAL 

Abstract 

we propose to build a large wire chamber magnetic spectrometer 

at NAL to measure multi-body forward-going hadronic systems produced 

by n's, K's and protons up to 80 GeV/c. Specific reactions will be 

isolated in order to study the sand t dependences of the cross sections 

for peripheral processes, search for new resonant states and attempt to 

measure nn and Kn inelastic scattering. We propose a physics program for 

the spectrometer which is initially limited to those processes easiest to 

measure and which nevertheless spans a large range of strong interaction 

problems. Technically, the proposed spectrometer is a relatively modest 

extension of presently operating systems in the 10-20 GeV/c region, and 

does not present a challenge of uncertain magnitude to construct. 
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I. INTRODUCTION AND PHYSICS JUSTIFICATION 

A. Introduction 

We propose to build a large magnetic spectrometer at NAL to 

measure forward-going hadronic systems between 20 and 80 BeV/c. The 

particle detectors are a series of wire spark chambers, appropriately 

distributed before and after the magnet to optimize measurement resolution 

and solid angle acceptance and a large downstream hodoscopic Cerenkov 

counter to distinguish ~'s, Kls and protons. Details of the spectrometer 

are described in Section II of this proposal. 

Spectrometers of this type already exist at CERN, (1) BNL(2) and 

SLAc(3) to study physics in beams of momentum up to ~20 GeV/c. They 

have shown themselves capable of recording highly interesting data in a 

rapid and efficient way for a large number of reactions. We are proposing 

to extend measurements of this type up to PLab = 80 aeV/c beam momentum at 

NAL both in order to study the dependence of various reaction mechanisms 

on beam momentum and momentum transfer and also to search for higher mass 

states which decay into multi-body systems. 

Although spectrometers of the type described here do not possess 

an intrinsic 4~ solid angle detection capability, due to the peripheral 

nature of high energy reactions such 4~ capability is approached and, in 

many cases, obtained in the rest frame of forward going systems. With 

detection of a recoil nucleon not required, the apparatus is almost entirely 

free of bias in momentum transfer. The type of physics studied with the 

spectrometer depends on the particular trigger used. With the aid of a 

downstream hodoscopic counter array which can select a predetermined 
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number of particles, we will be able to study systems of 2, 3, 4, 5, etc., 

forward-going particles (see Section III B for a detailed discussion of 

the different trigger modes of operation). 

Table I contains a partial list of reactions which the spectro­

meter will be able to detect, grouped according to the beam particle and 

number of forward-going charged particles. In all cases only proton and 

neutron recoil reactions are shown. 

Table I Examples of Multiparticle Reactions to be Studied 

+ 	 K+
11: beam beam P(or p) beam 

(1I:+1I:+)n 
(K+11:+)n 	 (P1I:+)n(K""K+)n 

, 
(KoK+)P 	 (K°1l:+)P3(a) 	 ­

-t( - + +) -t( 11: -11:+K+)P 	 11: 11: 11: P 

3 	 (1I:+1I:-1I:+)P (K+1I:-1I:+)P (P1I:-1I:+) P 
(1I:+K-K+)P (K+K-K+)P (PK-K+) P 

~- -,-,- ._- -~~-. 

( + + - +) ( + + -	 + - +)4 11: 11: 11: 11: n K1I:1I:1I:+)n (P1I: 11: 11: n 

4' (KORo)n (K°1l:+1I:+)n 

(a) 3' triggers are 2-body events which are detected as 3-body 
because of the ~ dec~y. 

Reactions involving production of one or more 11: 
0 mesons have 

intentionally been left out of the table because we feel that, while 

interesting in their own right, their measurement with acceptable 

resolution involves another degree of complexity in the apparatus. We 

thus defer their consideration to a possible "second-phase" experiment. 

~ ~~-~~~~~---~~---------------
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oFor the present, detection of both fast and slow n 's is done only as a 

means of excluding ''background'' processes. 

Since the recoil nucleon is in general not detected, the purity 

of a given sample of events essentially depends on the electronic rejection 

of other recoil nucleon-pion systems with the same charge. This is 

accomplished with the use of a set of proportional wire chambers, plastic 

scintillator counters and lead sandwich shower counters which surround 

the liquid hydrogen target (see description in Section II of this proposal). 

The physics analyses of the reactions contained in Table I can 

be discussed under the following broad catagories although there are 

unavoidable partial overlaps in the physics content of several of the 

sections. 

B. sand t-dependence of Quasi-two-body Processes 

A large number of such processes are contained in the reactions 

of Table I. The processes are of essentially two types, ~ich differ 

according to whether there is or is not charge exchange to the recoil 

nucleon. The non-charge exchange reaction events (i.e., proton recoils) 

fUrther subdivide into two groups depending on ~ether or not they are 

dominated by diffraction scattering. 

(1) Non-charge exchange non-diffractive processes 

Examples 	of these processes which are characterized by natural 

± ± 0..- ± ±spin-parity meson systems are n P -+ A2 P -+ K .1\ P and K P -+ K* P. These 

processes are interesting for many reasons. The recent CERN-Munich results(l) 

- 0 	 /on the K K P reaction at 17 GeV c show it to be dominated by A2 production 

(JP = 2+) apparently from p-exchange (although fO exchange may also contribute 



and the relative amounts of each is presently an open question). A study 

of the momentum transfer dependence and decay angular correlation properties 

of the ~-p ~A2P reactions as a function of beam momentum up to 80 GeV/c 

will yield information on the production mechanism. The CERN-Munich data 

also show evidence for g-meson production (JP = 3-) in the same final state. 

It will be possible to study this state as well as other presently unknown 

higher mass states. 

It will also be possible to study the K* production mechanism in 

the (Ko~±)-P reaction. At present, for example, K*(890)±p production 

(JP = 1-, 2+) is believed to be dominantly produced by W_fo exchange(4) 

although a relatively small amount of ~-exchange also contributes. A 

study of this process and a comparison with the ~-exchange dominated K*on 

reaction at high momentum will provide useful clues to the unraveling of 

the different exchange contributions and their dependence on total-so 

(2) Diffraction processes. 

Since the diffraction mechanism itself is so poorly understood 

theoretically, it will be extremely valuable to measure the s- and t-depen­

dencies of various diffractive processes such as 

The increased collimination of the forward meson systems at 80 GeV/c and 

the good acceptance of our proposed spectrometer (as discussed in Section III C) 

will also allow us to study the 3-pion system up to much higher mass (up to 

M3~~ 6 GeV with greater than 50% acceptance at 80 GeV/c) than is possible 

with exising spectrometer systems, 

Current analyses of such processes using bubble chamber data 
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are attempting to determine the partial-wave structure of the 3-meson 

systems. The non-4~ solid angle acceptance of our spectrometer (8~ and 

9~ for Al±P at 40 and 80 GeV/c, respectively) can be corrected for with 

the use of orthogonal functions of the internal variables in the 3-meson 

system. (5) Thus, we will be able to extend such analyses to higher beam 

momenta. 

Furthermore, higher multiplicity diffraction processes such as 
+ 

~ p ~ (5~-)P, about which almost nothing is presently known may be studied 

up to M5~ ~ 3.5 GeV with greater than 5~ acceptance. PP diffraction 

processes such as PP ~ (p~+~-)p can also be easily studied with the spectro­

meter. 

(3) Charge exchange to recoil nucleon. 

Examples of these processes are - 0 
~ P ~ P n, 

++and PP ~6 They are believed to be dominated by one-pion exchangen. 

up to the highest momenta studied thus far. Studies of the sand t 

dependences of their differential cross sections and density matrix 

elements will allow us to question the validity of this picture more 

deeply than has previously been possible. For example, measurements of 

dcr/dt at fixed t as a function of s should allow us to determine the 

effective Regge trajectory of a process. Dominance of pion exchange in 

all three reactions would require that they all yield the same results for 

this trajectory. 

Whether or not pion exchange dominates these processes at high 

energy, a knowledge of their differential cross sections and density 
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matrix elements is certain to provide an important challenge to the 

theoretical models of their dynamics. One of the things we 	 will want to 

2study is the structure of do/dt in the t-range - 0.6-1.0 GeV , some 

variety of which is predicted by almost all models. 

c. Search for New Resonances 

Aside from general dynamical questions having to do with the 

dependence of processes on beam momentum (PLab~an important reason for 

operating at high PLab is that the angular acceptance of the spectrometer 

for a given mass multi-body system is larger. This fact will allow us to 

look for new resonance structure in 2~, 3~, 4~, 5~, etc., at higher mass 

values than haS hitherto been possible. Highly inelastic resonances may 

only be seen in their multi-body decay modes. There are also some theo­

retical reasons(6) for believing that exotic resonances (e.g. T = 2 or 3/2 

meson systems), if they exist, may preferentially decay into multi-body 

final states. 

D. ~~ and K~ Scattering 

Because of the good multi-body acceptance characteristics of the 

spectrometer it will also be possible to study ~~ and K~ inelastic scat­

tering. For example, the differential cross section for the process 

~-P ~ (4~±)n at fixed M may be extrapolated to the pion-exchange pole
4~ 

to obtain the cross section for ~-~+ ~ 4~±. In order to test the validity 

of such procedures, P~- and P~+ inelastic cross sections have been obtained(7) 

from studies of the processes PP ~ A++(p~-), ~++(n~-~+), ~++(P~-~o), 

,6,++ (all neutralS) and PP ~ n(P~+), n(P~+~-~+) at 6.6 GeV/c. Similar 

results have also been obtained(8) from the PP ~A++( X) reactions at 

...~-... ~---~ .. - - ...--...---....~-- ...~- ..--------------- ­
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28.5 GeV/c beam momentum. 

- ( + -) (0 0)A recent analysis of the reactions 1C P -+ n K K ,n KiKl ' 

n(41C±) by a CERN-Munich-Zurich-Hawaii collaboration (9) has shown that the 

T = 0 s-wave 1C1C interaction becomes highly (perhaps fully) inelastic 

within the first ~30 MeV above KK threshold. The limitation of this 

analysis was the poor statistics in the 41C± reaction; further studies 

of this type must be with high statistics electronics experiments with 

good acceptance for the 41C± system above 1 GeV mass. This 'WOuld be 

possible with our apparatus. 
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II. APPARATUS 

A. Introduction 

The spectrometer, as depicted in Figure 1, consists of two 

main parts: (a) the detectors which surround the hydrogen target, and 

(b) the forward spectrometer itself, with its wire planes, magnet and gas 

Cerenkov counter. 

The overall scale of the apparatus is set by the magnet size, 

which in turn is established by considerations of solid angle acceptance 

and momentum resolution. As will be pointed out in Section III (Performance 

Parameters) the spectrometer solid angle coverage in the rest frame of a 

forward-going peripherally produced system is excellent, as is the mass 

resolution for this system. The target house, and its detectors will be 

movable, so that the distance to the magnet can be varied over the range 

of about 1.5 to 5 meters. As a result a trade-off between mass resolution 

and solid angle coverage will be possible, as dictated by specific physics 

goals. 

The momentum measuring accuracy does not make it possible to 

infer the presence of missing neutrals with mass 140 MeV, from energy 

balance for the charged particles. To make this possible would be costly, 

in that the magnet and detector sizes would increase by more than a factor 

of two, and is not justified in our opinion. In the proposed experiment, 

missing nO,s are detected by energy balance for energies greater than about 

1 GeV and by gamma ray detection and transverse momentum balance at lower 

energies. 

Included among those proposing this experiment are people who are 

interested in extending the capabilities of the apparatus in various ways. 
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For example, more detailed measurements of slow particles emerging from 

the target, or of gamma rays from forward ~ o 's and ~ 0 
IS, would both be 

interesting. We believe, however, that the primary need is for a forward 

spectrometer of high quality, and that the physics learned solely with 

this instrument will be an important guide in pursuing further studies and 

in designing more detailed experiments. 

B. Beam Measurements 

The experiment is planned for the 15 mrad., 80 GeV, beam. Beam 

Cerenkov counters will be used to identify ~ts, Kls or protons in the beam. 

Furthermore, beam hodoscopes will be needed to fully utilize energy and 

momentum balance. One hodoscope will be at the last momentum focus, to 

determine PLab to ±O.l%. A second hodoscope will be used to measure the 

position of each beam particle at the exit of the last quadrupole. Since 

the beam will focus to about 3 mm width or less at the H2 target (more than 

30 meters downstream) this last measurement determines the angle of each 

beam particle ±O.l mrad. 

C. Target and Anti-counter House 

In addition to a 30 em long and 6 mm wide H2 target, this 

consists basically of two parts: (i) A charged particle detecto~ in the 

form of a cylindrical array of proportional wires, parallel to the target. 

(ii) A lead sandwich shower counter array to veto r's, Which surrounds the 

above assembly, except for a forward opening to permit charge particles to 

emerge. Other r-vetoes are placed just before the magnet to intercept and 

reject some rls which can emerge through the forward aperture of the target 

house. Additional downstream r-veto counters, behind the last wire planes, 
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will also be added if more detailed design calculations indicate that they 

are necessary. 

The cylindrical proportional chamber, with roughly 100 wires, 

will be used to count the number of particles emerging from the target 

at large angles, while a downstream proportional chamber, labeled H2 on 

Figure 1, counts the number of forward particles. Together, these provide 

information for triggering the wire chamber system. 

The 	 cylindrical chamber around the target also provides a 
I 

measurement of azimuthal angle for large-angle charged particles, Which is 

useful in later kinematical analysis. A small set of proportional chambers, 

Hl, is used to measure the beam coordinates in order to improve the accuracy 

of the azimuthal angle measurements. 

The gamma ray vetoes are formed by a cylindrical array of counters. 

In order to avoid vetoing on charged particles, fast logic will remove from 

the veto circuit the sandwich counters behind proportional wires which have 

signals. With twenty-four sandwich counters in the array, we expect that 

for one charged particle the gamma ray veto will on the average be greater 

than 90% efficient. 

D. 	 Forward Spectrometer 

Four groups of 6 to 12 wire planes each are positioned relative 

to the magnet and gas Cerenkov counter at Cl ' C2' C3' and C4' as shown in 

Figure 1. The proportional chamber H2, positioned downstream of the target 

serves as a trigger hodoscope and measures the number of forward charged 

particles emerging from the hydrogen target. A second trigger hodoscope H3 

(consisting of an array of proportional counters or scintillation counters) 
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is positioned just after 03 to measure the number of charged particles 

which emerge from the magnet. By requiring that the number of charged 

particles emerging from the target and from the magnet be equal, we hope 

to avoid lining the inside surfaces of the magnet with anti-counters. 

o 0Furthermore, a forward Vee trigger, for K 's or A's, is made by requiring 

that the number of particles at H3 is two greater than at H2. 

The magnet has pole faces 2 m wide x 3 m long,with a gap 

spkcing of 1.5 m. The field has been assumed to be 18 Kgauss. A super-

conducting magnet appears feasible and economical. Figure 2 shows a 

sketch of the cross section of such a magnet. The magnet yoke should 

probably be constructed of ground low carbon steel plates, arranged as 

coarse laminations (about 12" thick). This results in low iron cost and 

gives flexible access to the inner region through vertical slots in the 

top and bottom faces. 

The box shaped cryostat embodies tension members which cross 

the pole faces at low temperature, and which take the major coil forces. 

The cryostat for these members should have periodic openings above which 

access slots in the iron can be located. As a result of this cryostat 

design, the load which must be supported by structural supports which 

terminate at room temperature is essentially limited to the dead weight 

of the cryostat and coil. The much larger magnetic forces are not 

carried by these supports. As a result the heat leak is much reduced, 

and the refrigeration cost greatly lowered. 

A smaller magnet embodying the main features described above has 

been designed at NAL and is soon to be built. It will serve as a very good 

check on the actual feasibility of using low cost steel and a box cryostat. 
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The large gas Cerenkov counter will be used to identify ~'s, 

Kls, and protons. The desired refractive index for a given beam momentum 

and type of operation can be obtained over the range of this experiment 

by an appropriate mixture of gases at atmospheric pressure, thus greatly 

Simplifying the structure. Furthermore, the Cerenkov light is so well 

collimated along the direction of particle motion that a small array of 

phototubes can collect all the light and provide separate information on 
i 

I 


each of two or more particles traversing the counter along different paths. 

The counter is discussed in more detail in Appendix II. 

E. Computers 

A minimum on-line computer requirement is that we be able to 

monitor the performance of the wire chambers and counters and to log the 

data on tape for later off-line event reconstruction and analysis. It 

would, however, be very undesirable if this experiment were limited to 

this minimum on-line capability_ During the setup of triggers it will 

be very important to receive rapid and detailed information about the 

actual events selected by the trigger. Some events should be reconstructed 

on line, effective mass and missing mass calculations made, and histograms 

of interesting kinematical quantities made available. The data rates are 

high enough so that such information can often be available after a very 

small amount of running time. 

The on-line computer should also be able to fully analyze a 

sample of the data during s~ running, to establish that the overall 

behavior of the apparatus is correct, and to give useful physics infor­

mation to guide the planning of succeeding runs. There is such a broad 
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spectrum of possible operating conditions for the spectrometer that run 

planning will require the maximum amount of rapidly available information 

on the physics which is being observed. 

In order to provide adequate on-line computer power we plan to 

utilize the Northeastern University PDP-9 system and the Chicago Circle 

Super Nova. The PDP-9 is well equipped to log the data onto tape and to 

pe~form diagnostic checks of the experimental apparatus, while the Super 

i

Nova will provide good on-line analysis capability. The full details of 
I 

the two-computer system need to be ~rked out, but we feel sure that the 

necessary computer power for efficient running will be availalbe. Strong 

off-line analysis capability exists at several of the participating 

institutions. We can also look forward to off-line batch processing 

with short turnaround times when needed. 
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III. PERFORMANCE PARAMETERS 

The usefulness of this s~ectrometer as an experimental tool is 

characterized by the rate at which data can be collected without saturating 

the capabilities of the apparatus as well as by the mass resolution. The 

rate at which we expect to collect data in turn is dependent on the 

estimated flux of each type of beam particle, the geometrical detection 

efficiency, the triggering scheme, and the dynamics of the process being 

studied. These are discussed below. 

A. Rates 

The event rates per unit cross section for each type of beam 

particle are given in Table II. The beam yields were estimated from a 

Hagedorn-Ranft calculation for the 15 mrad. beam CA. Wehmann, private 

communication), with 5P/P = .4%, assuming a 30 cm hydrogen target and 

123 x 10 protons/pulse in the primary beam. An upper limit to the beam 

flux was set by requiring that the probability of an interacting beam 

particle within 2 ~sec of a trigger be ~ 10%. 

Table II: Estimated Yields Expressed as Interactions/Hour/~barn 

Beam Particle 

Beam Energy Charge p K 

40 + 500 700 50 

40 60 1400 60 

80 + 800 300 40 

80 14 200 14 
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In trying to estimate the cross sections for processes being 

studied here we have made use of the experimentally observed power law 

-ndependence of cross section on lab momenta, i.e., Plab' Only a few 

specific reactions will be discussed here to give an idea of what typical 

cross-sections will look like. 

- 0(i) 	 1(p-+pn 

-2At 17 GeV/ c this cross section is -50 ~b and follows a Plab 

l~w. Thus at 40 and 80 GeV/c we expect ~9 and ~2 ~b respectively. It 

should be noted that the pOn final state which leads to 1(-1(+n is less 

rvL 	 - +than lv~ of the total 1( 1( n cross section at these energies. Thus we 

- + ~ expect the cross section for producing the 1(1( n final state to be ~20 ~b 

at 80 GeV/c. Included in these non- po events are the f O, gO and as yet 

undiscovered higher-mass 21( resonances as well as non-resonant 1(1( data. 

++() +()ii pp -+601238 n -+ P1( n 

At 17 GeV/c this cross section is -230 ~barn and also has a 

-2 
~ dependence on beam momentum. Since we only detect that half of the-Lab 

++cross section which corresponds to fast forward A in the laboratory, we 

have -21 and ~5 ~barn at 40 and 80 GeV/c respectively. 

It is known that the cross section for this reaction in 

specific 31( mass ranges is approximately independent of beam momentum in 

the range 8-20 GeV/c with the cross sections given in Table III. 
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Table III 3~ P cross Sections from 8-20 GeV/c 

3~ Mass Range Cross Section 

0.8---1.0 GeV 50 ....b 

1.0--1. 2 150 ....b 

1.2--1.4 150 ....b 

i 

The Kp -+ (K~ ~)p and pp -+ (p~ ~)p 'reactions in Table I have comparable 

behevior and cross section. 

At 17 GeV/c this cross section is about 2 ~arn. Although the 

-2
dependence on PLab is not reliably known, if we assume PLab we get 0.4 

and 0.1 barn at 40 and 80 GeV/c respectively. 

B. Triggering 

The trigger requirements will mainly be established in terms of 

numbers of tlforward" tracks, in hodoscopes H2 and H3, and total number of 

tracks, found from H2 and the cylindrical proportional chamber around the 

target. Four typical triggers, which are among the most important ones, 

are specified below. The entries in the table are numbers of particles 

detected, where N is the total. 

Trigger H2 H3 N Sample Final State 

(a) 2 2 2 (~+,c-)n 

(b) 4 4 4 ( + - + -)n~,c,c,c 

(c) 1 :3 1 or 2 (K- KO)p 

(d) :5 :5 3 or 4 (,c+,c-,c+)p 

~-- ..~..---..-.~-.~-.---~.--..-------------­
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The number N must be allowed to have two values for events with recoil 

protons, since at very low t the protons will not leave the target. 

For all triggers, the gamma ray vetoes are expected to reduce 

triggering on processes with slow 1(0, s by a factor ~ 100, leading to 

trigger rates determined by the cross section for all-charged states. For 

ofast forward 1( IS, there mayor may not be 8 veto from counters after the 

gas Cerenkov counter. If not, triggers will be up on the average, perhaps 

a factor 3 over the all-charged rates. 

The presence of fast nO,s will of course be detected in the later analysis 

by energy balance. 

A major problem is to control the accep~ance of triggers generated 

by diffractive processes. Since the cross sections are so large, they 

would swamp the data logging and analysis. Triggers a-c above reject 

diffractive processes effectively by requirements noted below: 

(a) N requirement (High t elastic scattering accepted, 
but not a problem) 

(b) H2 and H3 protect against 4-prong diffractive events, 
while N protects against 6-prongs. 

(c) H2 and N 

Diffractive data can be collected by using trigger (d) with a preset limit 

on the number accepted per beam spill. 

There are a great variety of "dirt" effects which also need to 

be examined to be sure the triggering is effective. For example, owing 

to physics and geometry, N may be recorded in excess of its true value. 

This does not, however, lead to any 1!leakage" of diffractive processes 

into non-diffractive triggers. We have examined a variety of such fine 

--~.--~-~-~-~--~..----.-.---.-.--.--------------­
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points and have concluded that clean triggering is no problem. Experience 

with operating systems at 10-20 GeV confirms the expectation that triggering 

can be effectively achieved for the types of reactions of primary interest 

in this proposal. 

c. Acceptance 

In order to illustrate the acceptance properties of the 

proposed spectrometer for multi-body events, we present in Figure 3-6 

the acceptance vs mass of the multi-pion systems in the following reactions: 

'Jtp ...,. (2 1(±)n 

1(P ...,. (3 1(±)p 

'Jtp ...,. (4 1(±)n 

1(P ...,. (5 1(±)p 

for minimum momentum transfer t from proton to final state nucleons 

(since the acceptance is only weekly dependent on t, this selection is of 

little importance). Figures 3 and 4 contain the acceptances vs mass of 

+ ±the multi-pion system for the 2 1(- and 3 1( reactions respectively. In 

each case curves are shown for 20, 40 and 80 GeV/c beam momentum and for 

two extreme target-magnet spacings, 1.5 and 5.0 meters. The acceptance 

for higher multiplicity events at 80 GeV is shown in Figure Sa, b for the 

1.5 and 5.0 meter target-magnet spacing respectively; the curves show how 

the acceptance depends on the number of pions for several masses of the 

multi-pion system. 

These acceptances were calculated for phase space distribution 

of the internal variables in the multi-pion system. For purposes of 
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surveying the acceptance properties of the spectrometer, this is of 

relatively little importance for most multi-pion reactions, but for the 

±(2 ~ )n reaction this means that the acceptance is given for a di-pion 

reaction with an isotropic distribution in the di-pion rest frame. Since 

the Q distribution in this rest frame is observed to be peaked forward at 

large mass (characteristic of diffraction scattering), whereas the acceptance 

f~11s off near cos Q = 1, the effective acceptance of the spectrometer for 
I 

this reaction is actually less than is shown in Figure 3. It is thus inter~ 

esting to examine the acceptance function vs cos Q. This is shown in 

Figure 6 for several different di-pion mass values (1.8, 2.8 and 3.8 GeV). 

Although the polar part of the distribution is cut off quite severely at 

large mass, thus removing most of the diffractive peak, the variation of 

large i Legendre coefficients with mass can still be detected in the 

observed part of the angular distribution given sufficient statistics. 

In order to study forward Q (i.e., diffractive) part of the ~~ 

angular distributions, we will use the smaller 1.5 m target-magnet 

separation which has the much improved polar acceptance. The resulting 

108S of mass resolution (for the 1.5 m configuration) is of little 

importance for the study of diffraction scattering(high mass resolution is 

mainly interesting in the study of resonance effects). 

D. Mass Resolutions 

(i) Effective mass resolution: For the experimental layout of 

Figure 1 (5 meter target-magnet separation) and 54 Kg meters of field 

integral, we show in Table IV estimated net mass uncertainties for several 

di-pion maSs values at both 40 and 80 GeV/c beam momentum (see Appendix I 

for derivation). 
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Table IV Estimated Di-J2ion Mass Resolutions ~Standard errors z in MeV) 

mass~f.Lab 1 GeV 2 GeV 4 GeV 

40 GeV/c ±6 ±7 ±9 

80 GeV/c ±7 ±9 ±13 

The mass resolution is found to be exceedingly good. The uncertainty 

arises about equally from momentum errors and multiple scattering. 

(ii) Missing Mass Resolutions: In this type of spectrometer, the 

missing mass measurement error (OM ) is too large to identify the nature 
x 

of the recoiling (slow) nucleon system without additional electronic 

suppression of pion-production events as described in Section II A. 

Nevertheless, it is desirable to keep oM as small as possible to aid x 

in the separation. OM can be shown to depend on the uncertainty in beam 
s 

and forward particle system energies as (see Appendix I): 

With the aid of one of the beam hodoscopes mentioned in Section lID, 

oR '" 0.1% while fEf d in ",,0.5% (see Appendix I). Typical uncer­oeam , orwar 

tainties :tn Missing Mass are given in Table V: 
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Table V Uncertainties in Missing Mass M 
x 


l\ = 938 M = 1240 M = 2000 MeV x x 


40 GeV/c ±80 MeV ±60 ±40 

80 GeV/c ±320 MeV ±240 ±l60 
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IV. PERSONNEL AND ORGANIZATION 

There are twenty-five people from six institutions involved 

in this proposal. Originally we submitted three separate proposals 

(numbers 35, 51, and 54), and were brought together by NAL to see 

whether we would find a significant area of common interest. We have 

had two long meetings and have found the group to be both personally 

congenial and united behind the forward spectrometer physics of this 

proposal. 

The organization we envision is an involvement of all of us 

in building the forward spectrometer and studying the physics of this 

proposal, followed by a period when subsets of the total group can 

expect to be able to pursue specialized interests. The main spectrometer 

will remain central to these later runs, perhaps with additions, modi­

fications of geometry, or other changes. 

When we investigate the manpower available to work on the 

spectrometer and this experiment, the estimated number of full time 

people rises smoothly from about four in spring 1971 to 24 by summer 1972. 

With this manpower, plus our resources in both money and equipment, we 

feel confident that the forward spectrometer can be built to coincide with 

the earliest availability of the magnet. 

We expect that others, as well as ourselves, will be interested 

in continuing to use the spectrometer after the initial experiment 

described in this proposal is completed. It would be very wawteful to 

construct such a setup and then dismantle it before it had been fully 
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utilized. We will therefore be prepared to work out arrangements under 

which the apparatus can be made available for open use. However, we 

request a period of time, following the initial experiment, during which 

we will have priority in the use of the apparatus. Considering our 

efforts in building the spectrometer, and our interests in more specialized 

uses of it, a total running time of about a year during which we enjoy 

priority seems reasonable. 
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V. MATERIAL RESOURCES 


The main items of equipment needed for the experiment are listed 

below. For each item, either NAL Experimental Facilities (NALXF), or 

one or more of the participating institutions (initials NAL indicate 

NAL experimenters, in distinction to NALXF), is listed as the source. 

The list reflects presently owned equipment as well as equipment to be 

purchased or built by the experimenters. 

We have estimated that the total of new equipment funds available 

from the participants is about l50K dollars, while the amount needed 

exceeds this by about 20%. At this early stage in the planning, this 

mismatch is within the estimated error. In particular we anticipate 

reduced costs due to improvements in the technology of wire chambers and 

readout systems. 

BEAM 

Momentum and angle hodoscopes UICC, NAL 

Gas Cerenkov counters NAL 

Beam defining counters NAL 

TARGET REGION 

Target NALXF 

Proportional planes UICC, NE 

Gamma Ray Vetoes CIT 
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WIRE CHAMBER SYSTEM 


Chambers NE, NAL 

Magnetostrictive Readout System NE, CIT 

Gas recirculator CIT 

High Voltage Pulsing system SUNY 

MAGNET 

Cryostat and superconducting Coils NALXF 

Iron NALXF 

Support structure and assembly NALXF 
fixtures 

TRIGGER SYSTEM 

Counter hodoscopes SUNY, UCLA 

Electric Logic CIT, UCLA 

GAS CERENKOV COUNTER CIT 

ON-LINE COMPUTERS: NE(PDP-9, 8K, with interface, tape, other peripherals), 

data logging and diagnostics 

IUCC (Super Nova, 16K, 800nsec, 256K disc, tape, 

display scope, other peripherals), on-line 

reconstruction and analysis. 

--.--..~~~.~.. ~-------------
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VI. RUN PLAN 


We expect to run the apparatus with a variety of triggers in 

parallel, and for all types of beam particles of a given sign simul­

taneously. It is still necessary to run se~uentially at different beam 

energies, different signs of the beam, and different Cerenkov counter 

settings. 

Initially, we would expect to run briefly near 20 GeV/c to 

verify that our cross sections are consistent with previous data. Then 

we would want to make an initial exploration of the full energy range by 

running for about 200 hours each at 40 and 80 GeV/c, with both signs of 

beam and with the Cerenkov counter set for both ~-k separation and proton­

meson separation. To keep an optimum combination of mass resolution and 

solid angle acceptance, the target to magnet distance will vary from about 

1.5 meters at 20 GeV/c to about 5 meters at 80 GeV/c. The total running 

of about 400 hours, split among beam settings and Cerenkov counter 

settings will provide an overview of the most accessible physics, including 

a chance to see any obvious surprises. 

Further running will be dictated by the results of this first series 

of runs, as well as by desires to study selected reactions with smaller 

yields or acceptances. (Processes occurring with incident K's and anti ­

protons are particularly likely to re~uire fUrther time.) It is reasonable 

to expect that a calendar time of about six months from the start of real 

running will suffice to accumUlate enough data with the spectrometer 

configuration shown in Figure 1. 

Following this phase of the running, we anticipate that various 

members of the large group making this proposal will want to pursue 



-28­

exploratory runs with modifications of the apparatus, and to request 

beam time for serious data taking if such runs are successful. We would 

like to allocate a total time of one year after the start of data taking 

for such runs, and to request priority on the use of the apparatus during 

this time. 

An outline of the plan discussed above, in terms of calendar 

months, including checkout, is given below, on the assumption that beam 

is available without any long interruptions and at a reasonable average 

intenSity: 

Elapsed Time 	 °Eeration 

o 	 Begin checkout, following setup of 
apparatus. 

3 mos. Begin first round of running at 40 
and 80 GeV. 

6 mos. End first round of runs; begin more 
specialized second round runs. 

9 mos. End of runs covered by this proposal; 
runs with modifications and 

additions to the forward spectrometer. 

15 	mos. End of period when proposers enjoy 
priority. 
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APPENDIX I Calculations of Mass Resolutions 

A. The effective mass of the forward-going particles is given by 

the expression 

For two particles at high energies, with small values of 9 ' the angle12 

between the two particles, this formula is well approximated by: 

'L \.
M ,=~,~" Quo 

In estimating the performance of the spectrometer this two body small 

angle case is a good guide. 

The geometry of the experiment is assumed to be as in Figure 1. 

The uncertainties in the wire chamber measurement at the group of chambers 

immediately after the target is taken to be ±O.2 rom., and the uncertainty 

at the other measuring stations, which require large chambers, is taken 

to be ±O.4 rom. With these uncertainties, and 54 kg-meters of field 

integral, the momentum uncertainty for measurements utilizing the four 

sets of planes is given by: 

(~)L.I. -- ( "\r '"1" o. 001 ~~V/c:. /1. 

11' un.Ly l;he t'1 ret three sets of wire chambers are used, the 

precis ion is abQut thX'('e Urnes worse: 
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For lower energy particles, which occur at larger angles, it is not 

necessary that they reach the last set of chambers in order to achieve 

satisfactory accuracy. Furthermore, these particles are also of such 

low momenta that the Cerenkov counter is not well tuned for them. 

Therefore, the size of the gas counter and final set of wire planes need 

not be set by the solid angle required for these particles. 

The angular error introduced by the wire chamber data intro­

duces a mass uncertainty negligible in comparison with that from momentum 

errors. The di-pion effective mass uncertainty is then found to be 

approximately given by the following result, when averaged over the 

spectrometer acceptance: 

Where P is the di-pion energy (or beam energy) in the lab.
Beam 

The effect of multiple scattering in the target materials is 

estimated to introduce a mass error of about ±6 MeV, essentially 

independent of incident energy and di-pion mass. These considerations 

lead to the results shown in Table IV, Section III B. 

B. 	 Missing Mass Resolution 

The mass of the recoiling nucleon system M is given by:x 



-31­

with 8R ~ o.li of 80 GeV and 8Ef d ~ 0.5i of 80 GeV we obtainllearn orwar 

the results given in Table V. The error in the missing mass is dominated 

by the error in measuring the energy of the forward going system • 

..-.-.--..-­ ..~..---..---------------­
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APPENDIX II Gas Cerenkov Counter 

The general layout of this counter is shown in Figure 7. It 

consists of a 10 meter long gas radiator, a 4 meter by 3 meter area of 

concave mirrors, and twelve 2" photomultipliers. All the light produced 

by particles which reach the last set of spark chambers is focused on an 

area about 40 cm x 5 cm. The optics are arranged in such a way that 

there is a fairly good correlation between the particle momentum, its 

charge (sign), and the position on the photomultiplier plane where the 

light is focused. This arrangement permits the simultaneous and inde­

pendent measurement of the Cerenkov light produced by two particles with 

opposite charge, or with the same sign of charge, but significantly 

different momentum (20 GeV/c and 40 GeV/c, for example). 

The n-l (index of refraction minus one) for the radiator is 10-4 

5for a pion threshold of 10 GeV/c and 4.5 x 10- for a threshold of 15 Gev/c. 

These low indices will be obtained by using a mixture of helium and argon 

at atmospheric pressure, so that the gas container only has to be light 

tight but does not have to have any significant mechanical strength. The 

large concave mirror can be a combination of smaller mirrors. 

In order to estimate the performance of the counter, the Cerenkov 

light spectrum has been folded over the published response of the RCA 

C31000D photomultiplier. 

At 80 GeV/c, a reasonable operating point for the counter is with 

the threshold at 15 GeV for pions. Figure 8a shows the number of photo­

electrons as a function of pion and kaon momentum for this case. The :rc-K 

separation becomes most difficult at high momentum, and Figure 8b shows 
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the integral photoelectron distributions at 70 GeV/c. The integral 

probabilities are for greater than the indicated number of photoelectrons 

for ka.cns and ~ th'7n the number of photoele ctrons for pions.• 

In discussing threshold pulse height criteria for the counter, 

we envision establishing the criteria after the wire chamber data have 

been analyzed, so that momentum-dependent criteria are possible. The 

pulse height will be recorded for each phototube. If it is desired to 

select pions, Figure 8b shows that a threshold of 9 photoelectrons at 

70 GeV/c gives 60% pion efficiency and 2% kaon efficiency. Even at this 

high momentum the counter performs usefully, and the ~-K separation 

becomes much better for lower values of momentum. 

There are three types of two-meson combinations which the counter 

is intended to identify: ~-~, ~-K, and K-K. To select ~-~ events the 

pulse height required will be set low for momenta below K-threshold, and 

relatively high above this momentum, to minimize the chance that a K 

appears to be a~. For the ~-K state the pulse height required above 

K-threshold should be set relatively low, to minimize a chance that a pion 

is identified as a kaon. 

In order to distinguish protons from kaons, the counter must be 

run at a higher index of refraction, which is accessible without exceeding 

a pressure of one atmosphere. Good separation can be obtained for a wide 

range of proton momentum. At beam momenta lower than 80 GeV/c it will be 

necessary to lower the Cerenkov threshold. In this case the performance 

of the counter will be improved because of better photon statistics. 
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Abstract 

The proposal as last amended, on May 1, 1972, remains the same, except for 

two changes. The senior personnel and their institutions are updated, as listed 

below. And the attached addendum is added to the proposal. 

The addendum adds to the experiment: 

a) Quasi two body reactions in which a two-body system is produced 

++at the target vertex (a t:. for example). 

b) Inclusive studies of two or more body correlations, for 

(Feynman) x > O. 

c) Some peripheral reactions of particular current interest 

involving Pomeron exchange. 
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ADDENDUM 	 TO EXPERIMENT 110 

A. 	 Two Body Recoil Systems ­

The original experiment 110A proposal cal1ed for a study of the reaction: 

for any fast scattered system s that decays into charged particles and a-
recoil system r restricted to-

(r1) r = neutron 


(r2) r = proton (or more generally a single ~harged particle) 


A detailed study of the hardware around the target necessary to acheive 

this, revealed that the following recoil systems could also be studied 

(r3) r = AOdecaying into p~-

(r4) typically decay of ~++ (1234) 


(rS) 
 typically decay of N*+ (1688) 

(rl) to (rS) are studied by the following schematic target configuration: 

array of neutron countersDOD 

cylindrical veto house~Z72,J.-.----- ...... _- .......... 

2 cylindrical proportional 

wire chambers 

) C::::::===::::r, target 
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Many examples of interesting physics for recoils (rl, r2) can be found in 

the experiment 110 proposal. These can be trivially extended for the new 

recoil triggers as fast system s and recoil r triggers are independent. 

Generally, we are studying energy and momentum transfer dependence of the 

reaction: beam + target - s + r with a simultaneous investigation of properties 

of resonances produced in s or r system. More specifically, we isolate below 

one particularly interesting/typical reaction for each recoil: 

-	 + ­(rl) 	 1T-P - Pon, 1T p -+ 1T 1T n. Study of 1T1T scattering up to 6 GeV 1T1T 

mass. 

*+ + ­(r2) Diffractive processes, pp - N (-p1T 1T )p. 

(r3) Hypercharge exchange, 1T-p - KO A with measurement of A 

polarization. 

+ -t+ -t+
(r4) 1Tp_p 0 t. • Correlated decay of pO and t. plus study of 

1T exchange in a kinematically favorable place. (See G. Fox, 

ANL/HEP-7028, p. 545.) 

*+ +- *+ +(r5) 	 pp - N (-p1T 1T : fast) N (-n1T : slow). Study of double 

diffractive and Pomeron factorization. 

B. 	 Inclusive Studies ­

The high p. experiment 260 has reminded us of the trivial fact 
T 

(mention of which was omitted in original EllO proposal) that one can also 

run the apparatus, like a bubble chamber but with much higher statistics, 

in the untriggered mode to study the general multiparticle reaction 

beam + target - charged particles + (essentially unobserved neutrals). 

Some running of this sort must be done to fully understand the biases 

and backgrounds for the various exclusive triggers, in any case. 
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For this data, we will study single particle and (» two particle 

(correlation) inclusive distributions. The memo "Response of EllO Spectro­

meter to Multiparticle Events" (by G. C. Fox) studies acceptance for charged 

2particles as a function of (Feynman) x and p. To summarize this work 
'T 

(at Plab = 180 GeV/c), acceptance is excellent for x > 0 and poor for x < O. 

Here we require particles to pass through magnet and be momentum-analyzed. 

(Directions are found for charged particles with x < 0.) 

C. Pomeron Exchange 

We hope to generate effective triggers to study particlarly interesting 

peripheral multiparticle final states when we analyze the untriggered data. 

One obvious possibility is to use "neutron counters" as "total absorption 

proton counter" to study diffraction scattering (Veto house removed). 

beam + p~ p(x $ - .9, proton slow in lab) + anything (fast incms 


lab due to proton selection) 


which emphasizes we are studying "Pomeron-beam" scattering. (See G. C. Fox 

in last Stonybrook Conference proceedings,) 

In particular, we can study 

.... .",'" 

••• '1\­

?O~'(\,--...-----1» 
which has been suggested by 200 GeV/c pp and U-p NAL bubble chamber exposures. 
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Proposal 110A Amended 5/1/72 

PROPOSAL TO STUDY MULTIPARTICLE PERIPHERAL PHYSICS AT NAL 

Abstract 

We propose to build a wire chamber magnetic spectrometer at NAL to 

measure multi-particle forward-going hadronic systems produced by rt!s, 

Kls, protons, and antiprotons up to 200 GeV. Specific reactions will be 

isolated in order to study the sand t dependences of the cross sections 

for peripheral processes, search for new resonant states, and attempt to 

measure rtrt and Krt inelastic scattering. 

The proposed physics program is initially limited to those processes 

easiest to measure which nevertheless span a large range of strong inter­

action problems. Technically, the proposed spectrometer is similar to 

systems already in use in the 10-20 GeV region. Its construction does 

not require a very large commitment of funds, nor does it represent a 

challenge of uncertain magnitude. 

This amended proposal differs from the original proposal 110 mainly 

in size of magnet, beam to be used, some details of instrumentation, and 

personnel. The section immediately following describes the changes in detail. 
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AMENDMENT TO PROPOSAL 110 

In the spring of 1971, proposal 110 was approved. However, in the 

summer of that year, in view of limited funds available, it was decided 

at NAL that neither the beam nor the large magnet envisioned in that 

proposal would be built. Soon after that decision, the Northeastern 

University group withdrew from experiment 110 to press for approval of 

their original proposal 51. The four groups remaining with proposal 110 

investigated in detail the feasibility of performing the experiment with 

two alternative arrangements: the Chicago cyclotron magnet plus a new 

hadron beam; or a smaller magnet in the M6 beam of the meson lab. Along 

with NAL, we came to favor the latter alternative, which is the basis of 

this amended proposal. 

The small-magnet spectrometer is shown in plan view in Figure Al. 

Groups of wire spark chamber planes are symbolized by each of four measuring 

stations labeled Wl-W4. The magnet pole face is 1.2 m square, corresponding 

to a 48D48 magnet which constitutes a modest demand on equipment funds. 

The magnet gap is envisioned to be in the range 24 to 30 inches, a question 

to be discussed further below. 

In Figure Al, the distance D has been chosen so as to duplicate the 

excellent solid angle acceptance of the original proposal 110 spectrometer 

operating at its short, 1.5 meter, target-to-magnet distance. In view of 

our physics goals, we feel that this acceptance should not be compromised 

if possible. The consequence of choosing the relatively short distance D 

is that the baseline distance Ll , which largely determines the angle and 

momentum uncertainties of the spectrometer, becomes quite short. 
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In view of the short baseline Ll and the relatively small JB dl for 

the magnet (assumed to be 22 kg-m), it is essential that the highest possible 

positional accuracy be attained at the measuring stations Wl and W2. However, 

since the wire chambers involved are quite small, we anticipate using the 

most modern techniques for achieving good spatial resolution (e.g., high 

pressure and/or low temperature to achieve high gas density). For these 

chambers it will also be relatively easy to maintain extremely tight alignment 

and construction tolerances. Therefore, in assess the expected performances 

of the spectrometer we will assume the following positional accuracies 

(standard errors) at the four measuring stations (based on averaging two to 

four individual measurements at each station): 

Wl: 80 microns 

W2: 150 microns 

W3: 300 microns 

W4: 300 microns. 

Figure Al is drawn to scale for operation at 100 GeV/c. For a forward­

going multiparticle system with a given mass, the distance D should scale 

linearly with beam momentum if the acceptance of the spectrometer, in the 

rest frame of the forward-going system, is to remain invariant. However, 

as beam momentum increases the interesting mass range extends to higher 

maximum mass, proportional to the square root of the beam momentum. As a 

result, for good acceptance at the maximum mass the distance D is then 

also found to scale like the square root of the beam momentum. Between 

100 and 200 GeV/c, the table shown in Figure Al indicates such scaling of 

the spectrometer. Note that the mass resolution at 200 GeV/c remains as 
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good as at 100 GeV/c. This is because the resolution is dominated by the 

accuracy of measurement over the Ll baseline, which doubles as the spacing 

of the front end of the spectrometer is stretched, just meeting the more 

stringent demands of the higher momentum. Because D is increased less than 

linearly with beam momentum, the acceptance for a given mass at 200 Gev/c 

is even better than at 100 GeV/c. 

For momenta below 100 GeV/c, the distance D should be decreased to 

maintain very high acceptances. However, at 50 GeV/c the decrease in D by 

~2 would reduce Ll essentially to zero. We thus indicate in the table 

that below 100 GeV/c the distance D is held constant. Correspondingly, the 

mass resolution becomes better and the acceptance worse at lower momentum. 

Before considering numerical values calculated for the resolutions 

and acceptances, note the last column of the table on Figure Al. The 

oquantity Y listed there is the probability for a K~ decay in the region
K 

between Wl and W2, assuming production at the target center with one half 

the beam momentum. While a somewhat longer decay path might be desirable, 

these probabilities indicate that good data can be obtained for the K
O 

decay modes of forward-going systems. 

Figure A2 shows mass resolutions and acceptances for various forward­

going multipion systems, from Monte Carlo calculations made on the following 

basis: Total momentum of the system either 100 GeV/c (solid curves) or 

50 GeV/c (dashed curves); momentum transfer squared t to the target nucleon 

of 0.1 (GeV/c)2; wire chamber resolutions as given above; no multiple 

scattering; 24" magnet gap, with the exception of two curves labeled 30"; 

phase space decay distribution of the multipion system in its rest frame. 
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The neglect of multiple scattering will not appreciably affect the mass 

resolutions, except for extremely low values of 5 MeV or less. 

Looking first at the mass resolutions, they are comparable with these 

for the large magnet spectrometer. The assumed high-precision measurements 

at Wl and W2 have nearly compensated for a reduction by a factor 2.4 in 

the value of JB dl. Note that the resolutions presented in Table IV, 

page 21, of proposal 110 are for the 5 meter-high resolution-front spacing. 

While the 2~, 100 GeV/c resolutions in Figure A2 are about twice those at 

80 GeV/c in Table IV, they essentially match those for the original spec­

trometer operated with the short front spacing and high acceptance. 

The 2~ acceptance of the small magnet spectrometer at 50 and 100 GeV/c 

matches that for the large magnet at the 1.5 meter front spacing, as was 

built into the small magnet design. However, the 4~ and 6~ acceptances are 

somewhat improved, owing to less loss of low momentum particles inside the 

magnet. From Figure A2, the 100 GeV/c acceptances are seen to be excellent 

2 up to masses of about 5 GeV/c , while at 50 GeV/c the acceptances begin to 

2
be poor near 3 GeV/c . Here, the effect of increasing the magnet gap is 

quite significant, as shown by the two 50 GeV/c 4~ curves. In general, the 

magnet gap increase to 30" moves a given acceptance out to a mass value 

2
about 1 GeV/c greater. Although we prefer the better acceptance given by 

the larger gap, the spectrometer performance with the 24" gap is seen to 

be quite good. 

In essence we have argued above that the small spectrometer can be 

made completely competitive with the larger originally proposed magnet by 

us the best possible detector technology. This approach reflects that 
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of the original proposals 54 and 35 of the presently collaborating groups. 

The large magnet setup was influenced by the extremely stringent needs of 

the Northeastern proposal 51, and by a desire at NAL to build a consensus 

magnet which would appeal to the largest .number of users of a spectrometer 

facility. 

To continue with changes in proposal 110, we are now requesting that 

the experiment run in the M6 beam, along the branch not used by the 

focussing spectrometer, downstream of the setup for experiment 6SA. Com­

pared with the old 15 mr. beam, the M6 beam offers competitive fluxes up 

to nearly 200 GeV/c. Table Al, below, replaces, for the M6 beam, Table II, 

page 16, of proposal 110. In a new column, N, the assumed number of inter­

acting protons on target has been added. 

Table Al. 	 Estimated yields expressed as interactions per hour-micrbarn. 

Assumptions are as in Table II, page 16, of proposal 110, except 

for the M6 beam and numbers of interacting protons specified by 

N in this table. 

Energy Charge P K N 

50 + 300 000 150 5 x lOll 

50 20 500 80 1012 

100 + 1,000 250 35 5 x lOll 

100 1 300 5 10
12 

150 + 1,000 5 3 3 x lOll 

150 10-3 0.6 4 x 10-3 10
12 
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Except for negative particles at 100 and 150 GeV/c, the values of N 

are limited by our design maximum beam flux. Thus, much of the experiment 

runs very well at a small fraction of the design NAL beam. Our running 

time request must at this early date be considered highly provisional,since 

the most interesting problems to be studied with so flexible an apparatus 

can be expected to change between now and when the experiment starts. 

However, as a guide, we propose: 

Check runs at 20-50 GeV/c 150 hours 

Surveys at 50, 100, and 

150 GeV/c, each with 

both beam polarities 

and two or more fillings 

of the gas Cerenkov 

counter 450 hours 

Running on selected problems- 300 hours 

TOTAL 900 hours. 

Because of the volume of data and the variety of physics which we 

expect to study, we request that this time be spread over one calendar 

year. 

Contrary to the original request in proposal 110 we do not request 

any prior approval for extensions of the running by subgroups of the 

proposers. However, since this experiment represents a logical first 

step toward the goals of proposals 35 and 54 we request that they remain 

active, though deferred, for consideration after experiment 110 begins. 
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This concludes the major amendments to proposal 110. With regard 

to other key items, such as physics goals, target and anti-counter house, 

triggering, and the gas Cerenkov counter, the original proposal stands 

essentially unchanged at this time. 
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Figure A2: Mass resolutions andJ acceptances at 50 and 100 GeV/c 
incident momenta, for D =~.70 m. and L1 = 1.0 m. 
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