

Abstract

We have developed microsecond timing and profiling
software that runs on standard Windows[1] and Linux based
operating systems. This software is orders of magnitudes
better than most of the standard native functions in wide use.

Our software libraries calibrate RDTSC in microseconds
or seconds to provide two different types of delays: a
“Guaranteed Minimum” and a precision “Long Delay”,
which releases to the kernel. Both return profiling
information of the actual delay.

I. INTRODUCTION

Pentium II[2] and subsequent version processors as well
as some AMD[3] compatible CPU’s have a 64 bit register
that counts the number of CPU clock cycles, or ticks of the
CPU clock since boot time. This counter can be read with a
non-privileged ring three or user mode ReaD Time Stamp
Counter, RDTSC[4] instruction with which we have achieved
very consistent timing results on desktop machines. Yes,
even at >= 3 GHz: 1 count =1 tick. Laptops that vary the
CPU clock may not be candidates for these techniques.

We have developed two similar software libraries: one
for Windows is callable from C or VBA, Visual Basic for
Applications and Excel[4], and another for Linux in C or
Tcl via CRITCL[5] for Linux.

From C the RDTSC instruction is extremely low overhead
with resolution that increases as a function of the clock to the
CPU. The higher the CPU clock, the greater the resolution:
on a ~1 GHz CPU there will be ~ 1,000 ticks per µs and on
~3 GHz CPU there will be ~3,000 ticks in one µs. On the
latter machine, RDTSC, when put into an inline C function
and profiled, takes ~500 clock ticks or less than two tenths of
a µs. C called from Visual Basic for Applications, VBA and
Excel, may take ~1.2-1.6 µs the first instance and only ~0.8
µs during subsequent instances on a 2.1 GHz machine. Tcl
calls via CRITCL on Linux are typically a few tenths of a µs
slower than the first instance on a ~3 GHz machine running
Linux.

II. OVERVIEW

1 This work was done for Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.

We are building the Dark Energy Camera (DECam) for
the Dark Energy Survey (DES)[6]. The full focal plane will
require 70 devices plus spares, and we expect to test about
200 Charge Coupled Devices (CCD), based on our current
yield estimate. The testing facility is located in the Silicon
Detector Laboratory at Fermilab. (Some testing may be
performed by collaborating institutions). There are several
testing stations and each station has a different CPU clock
frequency. Many tests involve opening and closing a shutter
to expose the CCD to a light source on the opposite side of
the shutter. See Fig. 1.

Fig. 1. CCD is in the “Test Cube”. The shutter is the
small (slightly cocked) rectangle to the left of the Cube
and to the right of the “finned” halogen lamp.

 Several other GPIB devices need to be coordinated along

with the shutter. One example scenario is to open the shutter,
wait half the exposure time, read light power via GPIB,
profile how long the GPIB operation took with RDTSC and
then subtract that time from the remaining shutter exposure
time. (We could take out the Tcl calculation time but do
not.) Next we make a socket call to close the shutter, which
we also log, and that is on the order of about a millisecond.
We are already at least ~100 times better than our
environment as our log files show:

measured_exp_time_secB4SocClose#F=10.0000500391;
measured_exp_time_secB4SocClose#F=10.000048969;
measured_exp_time_secB4SocClose#F=14.0000616151;
……………………………………………………………
measured_exp_time_secB4SocClose#F=90.0000500799;
measured_exp_time_secB4SocClose#F=90.0000299969;
measured_exp_time_secB4SocClose#F=94.0000465351;
measured_exp_time_secB4SocClose#F=94.0000406329;
measured_exp_time_secB4SocClose#F=98.0000456423;
measured_exp_time_secB4SocClose#F=98.0000385692;
measured_exp_time_secB4SocClose#F=100.000043744;

Microsecond Delays on Non-Real Time Operating Systems

R. Angstadt, J. Estrada, H.T. Diehl, B. Flaugher, M. Johnson,
Fermi National Accelerator Laboratory1

Batavia, IL. 60510, USA

FERMILAB-CONF-07-115-E

……………………………………………………………
measured_exp_time_secB4SocClose#F=4000.00002996;
……………………………………………………………
measured_exp_time_secB4SocClose#F=4000.00006041;
... and so on.

III. PROFILING

Because of its low latency and high granularity, RDTSC
is very good at profiling. One can use it to profile code
directly without averaging. One must be aware of things like
CPU caching that generally may make the first call longer
than the subsequent (presumably) cache hit call. Also when
doing many successive calls, some may be quite a bit longer
than the rest if the profiled call was preempted. Due to the
high granularity of RDTSC, one must be careful interpreting
the results. If an average time is desired, one must remember
to write explicit code to compute the average.

IV. CALIBRATION

Calibrating the CPU clock in terms of time is essential for
code portability between multiple test stations. We do not
want to maintain thousands of lines of code in terms of clock
ticks on multiple test stations all running with different CPU
clock frequencies. For a cost of a second or two at program
start up we can use the standard slower operating system time
routines to calibrate the RDTSC counter for the machine we
are running on and write our code in terms of seconds and/or
µs.

On Linux we can use the accurate gettimeofday()[8]
function combined with the usleep() function to calibrate the
CPU frequency. If we are running on a Linux machines
where the gettimeofday() function is synched to a time server
then our CPU clock frequency will be referenced to that as
well!

V. “GUARANTEED MINIMUM” MICROSECOND

DELAY

With calibration complete, we need work only in seconds
or µs. Latency of our timing routine determines our
granularity. E.g., the Linux gettimeofday() function is
reputed to be accurate to a µs[8]:

cpu freq= 3048592092 ticks per microsec=3048.2
gettimeofday took = 5.042897 µs
gettimeofday took = 3.674242 µs
gettimeofday took = 3.619128 µs

Note that the first gettimeofday() took a bit longer the
subsequent instances, presumably because it was a CPU
cache miss, while the next two obviously were cache hits.
 However, the above latency cannot compete with
RDTSC:

 RDTSC took = 0.187564 µs
Although gettimeofday() is a candidate if we were to poll on
it in a tight loop, we will have 20-30 times worse resolution
than RDTSC.
 So we poll on RDTSC for a calibrated time delay and get at
most ~0.4 µs more than what we asked for. We note that this

kernel, Fermi Scientific Linux, apparently does not preempt.
The profiling indicates consistency to within a µs on both
sides. On operating systems which preempt, such as
Windows machines, the delay will be as long as requested,
but may also go longer when preemption occurs. More
details are presented later in this note.

 We profile the standard Linux usleep() and compare the
error with that obtained using RDTSC in the figure below.

Fig. 2. Linux usleep() / RDTSC time error as a function
of requested time delay. Ask usleep() for a 1 millisecond
delay results in ~20 milliseconds. With usleep(), the
DAQ rate is limited to ~50 hertz regardless of CPU
clock speed.

For Windows the Sleep() function from winbase.h at

least has their argument in milliseconds.

Fig. 3. Ratio of error for Windows Sleep() vs. RDTSC
as a function of delay. Asking for a 1 millisecond delay
results in ~15 millisecond delay. The DAQ rate is
limited to ~66 hertz regardless of the CPU clock speed.

Clearly if high DAQ rates are desired one wants to use

RDTSC for more precise delays. Certainly not usleep() or
Sleep().

 However, polling RDTSC can pretty well lock up the
machine. In that way polling RDTSC is not the same as
calling the usleep() or Sleep() functions, which release to the
kernel and other tasks. If running Linux, another user may
decide to reboot the machine. This happened to me once
while gathering this data. If on Windows, polling for

RDTSC will also pretty well prevent other uses of the
computer such as checking email.

 If we interface[9] this delay code to some hardware that
we can control directly, such as a standard Parallel Port, we
can check our software on a scope as the next three figures
show. These are all done on Microsoft XP service pack 2
from Excel via VBA to the Parallel Port.

Fig. 4. Many “Guaranteed Minimum” Parallel Port
Trigger Pulses with 2 µs delay. Note, no pulse ends
before the 1st marker.

Fig. 5. Many similar Parallel Port Trigger Pulses with
another µs added to the delay (3 µs delay requested).
Note that no pulse ends before the 2nd marker and that the
markers are 1 µs apart.

Fig. 6. If we change the scope time base to 10 µs per
division and repeat the test many times, we see that
preemption sometimes occurs even during our short 4-5
µs pulses on XP. However, RDTSC times reflect this, so
we know for how long we have been preempted. If we
pull the Ethernet cable out we may reduce the number of
premptions but they never entirely go away.

VI. PRECISION “LONG DELAYS” (NOT

GUARANTEED MINIMUM)

With a second round of calibration, we gather profiling
statistics on how long a given release to the kernel takes. For
Windows, a routine like DoEvents in VBA will work. For
Linux, we can use usleep() with some arbitrary time on the
order of a tenth of a second or more. We are interested in the
worst case time this takes and save the results somewhere, for
instance, in a global.

 After this last calibration, our new poll loop will consist
of a coarse loop where we release to the kernel the same
amount as our last calibration, and then dynamically check
how much time remains until we get close to our target time.
When we are within say 0.2 to about 0.5 seconds, we start the
above section’s non-releasing poll on RDTSC. Most people
will tolerate the machine going away for short periods, but
usually not seconds.

 Because this is more code, with more converting to and
from ticks, this routine’s latency is much higher and causes
loss of µs resolution. We can recover resolution by adding a
tuning argument to subtract out this routine’s overhead.
Thus, we have moved from a “guaranteed minimum” to an
average around a target. This is perfect for shutter control.
After the first caching call, which is usually ~60-100 µs too
long, and after tuning the delay on that machine, we can
achieve the accuracy shown on the scope trace in the lower
right.

 A last tip is to trap negative polling requests to our
delay routines that use RDTSC to prevent waiting for 64 bits
of ticks (equivalent to ~150-190 years on our ~3 GHz
machine).

Fig. 7. ~10 each “Long Delays “ each at 1.0, 1.2, 1.4 and

1.6 seconds shown at 200 millisecond/ division. From VBA
& Excel to C on XP (service pack 2) out of the Parallel Port.

Fig. 8. End of ten “Long Delays” at 1.000004 seconds and

ten more at 1.000016 seconds as before. This shows the
excellent precision and repeatability. The time base is 4 µs
per division and the space between markers is 12 µs.
The previous figure was obtained in the third try and is
selected for. Nevertheless, it is twenty consecutive pulses
with a delay change of 12 µs, after the first ten, on an
operating system that we know can still preempt. Though
results are not guaranteed, we know when we have been
preempted because the RDTSC time stamp tells us. Similar
results are obtained from profiling delays of from 1 to 60
seconds (and longer if desired, but the tests get tedious.) One
can set the delay and then browse the web and have it come
back within +/- a few µs of 60.000000 seconds inclusive.
While CPU utilization can still be high, regardless of
releasing to the kernel, the machine will still respond to other
tasks.

VII. CONCLUSION

Once calibrated, RDTSC provides impressively low µs
latency profiling and sub-microsecond timing granularity
available on any Pentium II or above and/or compatible

where the CPU clock is “constant” as on most desktops. The
technique is independent of operating system. It is only
dependent on processor type and compatibility. Although we
have successfully developed software libraries on Windows
and Linux, they could be developed on the Apple MacIntosh
as well. The scope pictures are proof of our ability to
calibrate the RDTSC counter rather well using the standard
slow timing functions.

 After calibration, precision (1 µs pictured) “guaranteed
minimum” delays may be made. This delay may of course
be longer due to normal operating system preemption.

 The “Long Delay” method provides unexpectedly
successful results. The algorithm may be unique or at least
not common. The margin of error does not increase as a
function of the delay time because any preemption, except in
the last few µs, is accounted for. Additionally we always
know the returned time delay regardless of preemption.

 Delay routines return profiling so the caller may redo
measurements if desired. The times agree well with scope
traces. These techniques are obviously only applicable in
non-life threatening applications. They also depend on a
stable CPU clock so they may not be applicable to laptops.

REFERENCES
 [1] “Windows” Copyright Microsoft and here meaning any

of their operating systems although the scope pictures
here were with XP (all patches at the time of this writing,
April 13, 2007).

 [2] “Pentium” is copyright by Intel.
 [3] AMD is Advanced Micro Devices.
 [4] Excel is Microsoft’s spreadsheet application that

incorporates Visual Basic for Applications (VBA).
 [5] http://en.wikipedia.org/wiki/RDTSC
 [6] A lot of information about Dark Energy Survey:

https://www.darkenergysurvey.org/
 [7] Jean-Claude Wippler, “Critcl lets you easily embed C

code in Tcl”: http://www.equi4.com/starkit/critcl.html
 [8] http://en.wikipedia.org/wiki/System_time

claims Unix, POSIX (Linux) gettimeofday() resolution is
1 µs. Also that Microsft Windows GetSystemTime() is 1
millisecond and that their GetSystemTimeAsFileTime()
is 100 nanoseconds. Although on one of the author’s XP
systems CompuWare’s SoftICE (kernel level) debugger
will cause the system time to loose minutes over the
course of a debugging session. Obviously these must
apply to some sort of “normal” system where no special
(debugging) software is running.

[9] Dale Roberts, “DIRECT PORT I/O AND WINDOWS
NT” Dr. Dobb’s Journal (DDJ), May 1996. Source
and binary available for Windows:

 ftp://66.77.27.238/sourcecode/ddj/1996/9605.zip
 (Can get to the parallel port directly using inp and outp

from c with giveio.sys)

