
 

 

Abstract 

We have developed microsecond timing and profiling 
software that runs on standard Windows[1] and Linux based 
operating systems.  This software is orders of magnitudes 
better than most of the standard native functions in wide use.  

Our software libraries calibrate RDTSC in microseconds 
or seconds to provide two different types of delays: a 
“Guaranteed Minimum” and a precision “Long Delay”, 
which releases to the kernel. Both return profiling 
information of the actual delay. 

I. INTRODUCTION 

Pentium II[2] and subsequent version processors as well 
as some AMD[3] compatible CPU’s have a 64 bit register 
that counts the number of CPU clock cycles, or ticks of the 
CPU clock since boot time.  This counter can be read with a 
non-privileged ring three or user mode ReaD Time Stamp 
Counter, RDTSC[4] instruction with which we have achieved 
very consistent timing results on desktop machines.  Yes, 
even at >= 3 GHz:  1 count =1 tick.  Laptops that vary the 
CPU clock may not be candidates for these techniques. 

We have developed two similar software libraries:  one   
for Windows is callable from C or VBA, Visual Basic for 
Applications and Excel[4], and another for  Linux in C or  
Tcl via CRITCL[5] for Linux. 

From C the RDTSC instruction is extremely low overhead 
with resolution that increases as a function of the clock to the 
CPU.  The higher the CPU clock, the greater the resolution: 
on a ~1 GHz CPU there will be ~ 1,000 ticks per µs and on 
~3 GHz CPU there will be ~3,000 ticks in one µs.  On the 
latter machine, RDTSC, when put into an inline C function 
and profiled, takes ~500 clock ticks or less than two tenths of 
a µs.  C called from Visual Basic for Applications, VBA and 
Excel, may take  ~1.2-1.6 µs the first instance and only ~0.8 
µs during subsequent instances on a 2.1 GHz machine.  Tcl 
calls via CRITCL on Linux are typically a few tenths of a µs 
slower than the first instance on a ~3 GHz machine running 
Linux. 

II. OVERVIEW  
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We are building the Dark Energy Camera (DECam) for 
the Dark Energy Survey (DES)[6].  The full focal plane will 
require 70 devices plus spares, and we expect to test about  
200 Charge Coupled Devices (CCD), based on our current 
yield estimate.  The testing facility is located in the Silicon 
Detector Laboratory at Fermilab.  (Some testing may be 
performed by collaborating institutions).  There are several 
testing stations and each station has a different CPU clock 
frequency.  Many tests involve opening and closing a shutter 
to expose the CCD to a light source on the opposite side of 
the shutter.  See Fig. 1. 

 

 
Fig. 1.  CCD is in the “Test Cube”.  The shutter is the 
small (slightly cocked) rectangle to the left of the Cube 
and to the right of the “finned” halogen lamp. 

 
 Several other GPIB devices need to be coordinated along 

with the shutter.  One example scenario is to open the shutter, 
wait half the exposure time, read light power via GPIB, 
profile how long the GPIB operation took with RDTSC and 
then subtract that time from the remaining shutter exposure 
time.  (We could take out the Tcl calculation time but do 
not.)  Next we make a socket call to close the shutter, which 
we also log, and that is on the order of about a  millisecond. 
We are already at least ~100 times better than our 
environment as our log files show:   

measured_exp_time_secB4SocClose#F=10.0000500391; 
measured_exp_time_secB4SocClose#F=10.000048969; 
measured_exp_time_secB4SocClose#F=14.0000616151; 
…………………………………………………………… 
measured_exp_time_secB4SocClose#F=90.0000500799; 
measured_exp_time_secB4SocClose#F=90.0000299969; 
measured_exp_time_secB4SocClose#F=94.0000465351; 
measured_exp_time_secB4SocClose#F=94.0000406329; 
measured_exp_time_secB4SocClose#F=98.0000456423; 
measured_exp_time_secB4SocClose#F=98.0000385692; 
measured_exp_time_secB4SocClose#F=100.000043744; 
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…………………………………………………………… 
measured_exp_time_secB4SocClose#F=4000.00002996; 
…………………………………………………………… 
measured_exp_time_secB4SocClose#F=4000.00006041; 
...   and so on. 

III. PROFILING  

Because of its low latency and high granularity, RDTSC 
is very good at profiling.  One can use it to profile code 
directly without averaging.  One must be aware of things like 
CPU caching that generally may make the first call longer 
than the subsequent (presumably) cache hit call.  Also when 
doing many successive calls, some may be quite a bit longer 
than the rest if the profiled call was preempted.  Due to the 
high granularity of RDTSC, one must be careful interpreting 
the results.  If an average time is desired, one must remember 
to write explicit code to compute the average. 

IV. CALIBRATION  

Calibrating the CPU clock in terms of time is essential for 
code portability between multiple test stations.  We do not 
want to maintain thousands of lines of code in terms of clock 
ticks on multiple test stations all running with different CPU 
clock frequencies.  For a cost of a second or two at program 
start up we can use the standard slower operating system time 
routines to calibrate the RDTSC counter for the machine we 
are running on and write our code in terms of seconds and/or 
µs.  

On Linux we can use the accurate gettimeofday()[8] 
function combined with the usleep() function to calibrate the 
CPU frequency.  If we are running on a Linux machines 
where the gettimeofday() function is synched to a time server 
then our CPU clock frequency will be referenced to that as 
well! 

V. “GUARANTEED MINIMUM” MICROSECOND 

DELAY  

With calibration complete, we need work only in seconds 
or µs.  Latency of our timing routine determines our 
granularity.  E.g., the Linux gettimeofday() function is 
reputed to be accurate to a µs[8]: 

cpu freq= 3048592092    ticks per microsec=3048.2 
gettimeofday took = 5.042897 µs 
gettimeofday took = 3.674242 µs 
gettimeofday took = 3.619128 µs 

Note that the first gettimeofday() took a bit longer the 
subsequent instances, presumably because it was a CPU 
cache miss, while the next two obviously were cache hits. 
      However, the above latency cannot compete with 
RDTSC: 

 RDTSC took = 0.187564 µs 
Although gettimeofday() is a candidate if we were to poll on 
it in a tight loop, we will have 20-30 times worse resolution 
than RDTSC.   
   So we poll on RDTSC for a calibrated time delay and get at 
most ~0.4 µs more than what we asked for.  We note that this 

kernel, Fermi Scientific Linux, apparently does not preempt.  
The profiling indicates consistency to within a µs on both 
sides.  On operating systems which preempt, such as 
Windows machines, the delay will be as long as requested, 
but may also go longer when preemption occurs.  More 
details are presented later in this note.  

   We profile the standard Linux usleep() and compare the 
error with that obtained using RDTSC in the figure below. 

 

Fig. 2.  Linux usleep() / RDTSC time error as a function 
of requested time delay. Ask usleep() for a 1 millisecond 
delay results in ~20 milliseconds. With usleep(), the 
DAQ rate is limited to ~50 hertz regardless of CPU 
clock speed. 

 
For Windows the Sleep() function  from winbase.h at 

least has their argument in milliseconds. 

Fig. 3.  Ratio of error for Windows Sleep() vs. RDTSC 
as a function of delay.  Asking for a 1 millisecond delay 
results in ~15 millisecond delay.  The DAQ rate is 
limited to ~66 hertz regardless of the CPU clock speed. 

 
Clearly if high DAQ rates are desired one wants to use 

RDTSC for more precise delays.  Certainly not usleep() or 
Sleep(). 

   However, polling RDTSC can pretty well lock up the 
machine.  In that way polling RDTSC is not the same as 
calling the usleep()  or Sleep() functions, which release to the 
kernel and other tasks.  If running Linux, another user may 
decide to reboot the machine.  This happened to me once 
while gathering this data.  If on Windows, polling for 



 

 

RDTSC will also pretty well prevent other uses of the 
computer such as checking email. 

  If we interface[9] this delay code to some hardware that 
we can control directly, such as a standard Parallel Port, we 
can check our software on a scope as the next three figures 
show.  These are all done on Microsoft XP service pack 2 
from Excel via VBA to the Parallel Port. 

 

 
 
Fig. 4. Many “Guaranteed Minimum” Parallel Port 
Trigger Pulses with 2 µs delay.  Note, no pulse ends 
before the 1st marker. 
 

 
Fig. 5. Many similar Parallel Port Trigger Pulses with 
another µs added to the delay (3 µs delay requested).  
Note that no pulse ends before the 2nd marker and that the 
markers are 1 µs apart.  

 
Fig. 6. If we change the scope time base to 10 µs per 
division and repeat the test many times, we see that 
preemption sometimes occurs even during our short 4-5 
µs pulses on XP.  However, RDTSC times reflect this, so 
we know for how long we have been preempted.  If we 
pull the Ethernet cable out we may reduce the number of 
premptions but they never entirely go away. 

VI. PRECISION “LONG DELAYS” (NOT 

GUARANTEED MINIMUM) 

With a second round of calibration, we gather profiling 
statistics on how long a given release to the kernel takes.  For 
Windows, a routine like DoEvents in VBA will work. For 
Linux, we can use usleep() with some arbitrary time on the 
order of a tenth of a second or more.  We are interested in the 
worst case time this takes and save the results somewhere, for 
instance, in a global. 

   After this last calibration, our new poll loop will consist 
of a coarse loop where we release to the kernel the same 
amount as our last calibration, and then dynamically check 
how much time remains until we get close to our target time.  
When we are within say 0.2 to about 0.5 seconds, we start the 
above section’s non-releasing poll on RDTSC.  Most people 
will tolerate the machine going away for short periods, but 
usually not seconds. 

   Because this is more code, with more converting to and 
from ticks, this routine’s latency is much higher and causes 
loss of µs resolution.  We can recover resolution by adding a 
tuning argument to subtract out this routine’s overhead.  
Thus, we have moved from a “guaranteed minimum” to an 
average around a target.  This is perfect for shutter control.  
After the first caching call, which is usually ~60-100 µs too 
long, and after tuning the delay on that machine, we can 
achieve the accuracy shown on the scope trace in the lower 
right.   

   A last tip is to trap negative polling requests to our 
delay routines that use RDTSC to prevent waiting for 64 bits 
of ticks (equivalent to ~150-190 years on our ~3 GHz 
machine).  



 

 

 
Fig. 7. ~10 each “Long Delays “ each at 1.0, 1.2, 1.4 and 

1.6 seconds shown at 200 millisecond/ division.  From VBA 
& Excel to C on XP (service pack 2) out of the Parallel Port. 

 

 
Fig. 8. End of ten “Long Delays” at 1.000004 seconds and 

ten more at 1.000016 seconds as before.  This shows the 
excellent precision and repeatability.  The time base is 4 µs 
per division and the space between markers is 12 µs. 
The previous figure was obtained in the third try and is 
selected for.  Nevertheless, it is twenty consecutive pulses 
with a delay change of 12 µs, after the first ten, on an 
operating system that we know can still preempt.  Though 
results are not guaranteed, we know when we have been 
preempted because the RDTSC time stamp tells us.  Similar 
results are obtained from profiling delays of from 1 to 60 
seconds (and longer if desired, but the tests get tedious.)  One 
can set the delay and then browse the web and have it come 
back within +/- a few µs of 60.000000 seconds inclusive.  
While CPU utilization can still be high, regardless of 
releasing to the kernel, the machine will still respond to other 
tasks.  

VII. CONCLUSION  

Once calibrated, RDTSC provides impressively low µs 
latency profiling and sub-microsecond timing granularity 
available on any Pentium II or above and/or compatible 

where the CPU clock is “constant” as on most desktops.  The 
technique is independent of operating system.  It is only 
dependent on processor type and compatibility.  Although we 
have successfully developed software libraries on Windows 
and Linux, they could be developed on the Apple MacIntosh 
as well. The scope pictures are proof of our ability to 
calibrate the RDTSC counter rather well using the standard 
slow timing functions.  

  After calibration, precision (1 µs pictured) “guaranteed 
minimum” delays may be made.  This delay may of course 
be longer due to normal operating system preemption.  

  The “Long Delay” method provides unexpectedly 
successful results.  The algorithm may be unique or at least 
not common. The margin of error does not increase as a 
function of the delay time because any preemption, except in 
the last few µs, is accounted for.  Additionally we always 
know the returned time delay regardless of preemption.   

  Delay routines return profiling so the caller may redo 
measurements if desired.  The times agree well with scope 
traces.  These techniques are obviously only applicable in 
non-life threatening applications.  They also depend on a 
stable CPU clock so they may not be applicable to laptops. 
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