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1. INTRODUCTION

In this paper recent results from the CDF and
DØ experiments on heavy flavor spectroscopy
are reported. Both experiments are using up to
1.1 fb−1 of data delivered by the Tevatron proton-
antiproton collider at the Fermi National Acceler-
ator Laboratory, Batavia, IL, USA. The CDF and
DØ detectors are described in references [1,2].

2. PROPERTIES OF THE Bc

Although discovered in 1998 by CDF [3], the
properties of the Bc remain poorly measured due
to small samples of candidates available until re-
cently. In Run II of the Tevatron, CDF and DØ
experiments have accumulated enough data to
study the Bc in greater detail. Being the last dis-
covered ground state of the B meson and the only
meson with two heavy quarks of different flavor,
the Bc is a great laboratory for potential models,
HQET, and lattice QCD. Its mass, lifetime, de-
cay properties, and production are all of interest
as many precise predictions have been made by
theorists.

At the Tevatron, the Bc is reconstructed in sev-
eral decay channels containing a J/ψ meson. It
is seen in the semileptonic modes Bc → J/ψeνX
by CDF and in Bc → J/ψµνX by DØ, as well
as in the hadronic mode Bc → J/ψπ by CDF.
The signal significance in all cases is over 5σ.
The semileptonic decays are used to determine
the proper decay time of the Bc [4,5]:

CDF: τBc
= 0.474+0.073

−0.066 ± 0.033 ps

DØ: τBc
= 0.448+0.123

−0.096 ± 0.121 ps

Note, that only a fraction of available data
is used by both experiments (CDF analyzed
360 pb−1 and DØ 210pb−1), so significant im-
provements of the measurements are expected in
near future. The measured values agree well with
the theoretical prediction of 0.55 ± 0.15 ps found
in [6].

The hadronic mode Bc → J/ψπ using the full
data sample of 1.1 fb−1 yields the best mass mea-
surement so far [7]. The selection criteria were
tuned on the control sample B → J/ψK to give
a large signal while keeping the background low
in order to improve the possibility of a significant
Bc observation. The J/ψ → µ+µ− candidates
were formed using muon quality criteria and re-
quiring the dimuon mass to be within 70 MeV/c2

of the world average J/ψ mass. The transverse
momentum of the third track and of the B can-
didate is used to distinguish between signal and
background. The lifetime (cτ) of the B candi-
date needs to be positively displaced and have its
uncertainty determined with good precision. A
good fit of the combined vertex and of the J/ψ
mass constrained fit is required. The B candi-
date has to point to the primary vertex both in
terms of a pointing angle and in terms of hav-
ing a small impact parameter significance. For
the third track, we require the impact parameter
with respect to a secondary vertex determined by
the J/ψ → µ+µ− candidate to be small and the
impact parameter significance with respect to the
primary vertex to be large.
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Figure 1. J/ψπ mass distribution for different
integrated luminosities as data accumulated.

The selection criteria are tuned for a standard
selection and a high-pT selection. Both sam-
ples combined yield 11300 B → J/ψK candidates
with a small background of 250 events in the re-
gion between 5.4 and 5.5 GeV/c2. After fixing the
selection criteria, the only change is the assign-
ment of a π versus K mass hypothesis for the
third track that is combined with the J/ψ . Fig-
ure 1 shows the number of Bc candidates growing
as a function of including additional integrated lu-
minosity. The top of Fig. 2 depicts a binned fit
using a linear background and a Gaussian signal
shape for the Bc data. The width of the Gaus-
sian was fixed to the expected mass resolution
σR = 15.5 MeV/c2 observed in B → J/ψK sam-
ple and scaled by a factor suggested by a Monte
Carlo simulation. The number of Bc candidates
found is 45.2 ± 9.4. The bottom part of Fig. 2
shows an unbinned fit to the data with the fit-
ted background subtracted. In the region that is
approximately ±2σR wide between 6245 MeV/c2

and 6305 MeV/c2, 44.4 Bc candidates on a back-
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Figure 2. J/ψπ mass distribution in the 6.15
to 6.5 GeV/c2 range with a superimposed Gaus-
sian plus linear background binned fit (top). The
J/ψπ mass distribution with the linear back-
ground subtracted is shown (bottom) along with
the number of events above background, N(Bc)
and the background in the 60 MeV/c2 region be-
tween 6.245 and 6.305 GeV/c2.

ground of 34.6 are found. In both cases the signal
significance exceeds 6σ, which has been confirmed
by a toy Monte Carlo study.

The mass of the Bc meson is determined by
an unbinned log likelihood fit to a linear back-
ground and a Gaussian signal where the signal
fraction, the background slope, and a scale factor
for each event’s mass resolution are fit parame-
ters in addition to the mass. The scale factor
for each event’s mass resolution is fixed to 1.56
which is found from an unbinned log likelihood
fit for the B → J/ψK decay. The fit gives a
mass of m(Bc) = 6276.5±4.0±2.7 MeV/c2, which
agrees well with the binned fit. The systematic
error includes uncertainties from the detector cal-
ibration, the tracking, and the small statistics
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fit procedure, which is the dominant contribu-
tion. This result can be compared to the re-
cent prediction using lattice QCD calculations:
m(Bc) = 6304 ± 12+18

−0 MeV/c2 [8].

3. EXCITED B STATES

The spectroscopy of the bq system, where q is
either a u or d quark, is well understood theoret-
ically. The HQET describes a heavy-light state
and predicts that there are four P-wave states,
collectively called B∗∗ or BJ . It is expected that
two of them, B∗

0 and B∗

1 , are wide states as they
decay via S-wave. The other two states, B1 and
B∗

2 , are narrow because they decay via D-wave.
The quantitative understanding is not nearly as
good. Few experimental data are available onB∗∗

properties. However, since recently we are start-
ing to see progress in this area. Both CDF and
DØ seek to observe and measure the two of the
B∗∗ that have a narrow width, expected to be
of the order of 10 MeV/c2. The other two P-wave
states are ignored, as they are so wide that distin-
guishing them from combinatorial background is
nearly impossible with the available data. B1 de-
cays only to B∗+π−, while B∗

2 can decay to either
B∗+π− or the ground state B+π−.

The DØ experiment searches for all three de-
cays of the narrow states mentioned above [9].
The final state B+π− is reconstructed from
B+ → J/ψK+ where the J/ψ is found in the
muon channel. The photon coming from the de-
cay of the excited state B∗+ → B+γ is ignored.
This leads to a shifted position of the mass peak
for B1 → B∗+π− and B∗

2 → B∗+π−. The mass
difference m(Bπ) − m(B) for the B+π− candi-
dates is shown in Fig. 3. This is the first observa-
tion of separate peaks for the narrow B∗∗ states.
DØ proceeds to fit this mass spectrum, assuming
that the widths of the two narrow resonances are
the same and fixing the mass difference between
the B∗ and B+ to 45.78 MeV/c2 [10]. The fit re-
turns the masses and the width of these states:

m(B1) = 5720.8± 2.5 ± 5.3 MeV/c2

m(B∗

2) −m(B1) = 25.2 ± 3.0 ± 1.1 MeV/c2

Γ(B1)
.
= Γ(B∗

2) = 6.6 ± 5.3 ± 4.2 MeV/c2

DØ also reports the production rates for these

Figure 3. The mass difference m(Bπ) − m(B)
for exclusive B∗∗ decays found by DØ. The line
shows the fit using 3 Gaussians and a fourth-order
polynomial as background function. The three
signal peaks are shown separately.

resonances:

B(B∗

2 → B∗π)

B(B∗

2 → B(∗)π)
= 0.513 ± 0.092± 0.115

B(B1 → B∗+π)

B(B∗∗ → B(∗)π)
= 0.545 ± 0.064± 0.071

B(b→ B∗∗ → Bπ)

B(b→ B+)
= 0.165 ± 0.024± 0.028

The CDF experiment performs a similar analy-
sis [11]. The same three decays of the B1 and B∗

2

are the subject of the measurement. The CDF
sample of B+ contains two signatures: B+ →

J/ψK+ and B+ → D0π+. The combined yield
on 374 pb−1 of data is about 4000 signal candi-
dates. The mass difference m(Bπ)−m(B)−m(π)
for the reconstructed B∗∗ candidates is shown in
Fig. 4. The fit of the mass spectrum is performed
with the widths of both B1 and B∗

2 fixed to the
theoretical expectation Γ = 16 ± 6 MeV/c2 [12],
and the ratio B(B∗

2 → Bπ)/B(B∗

2 → B∗π) is as-
sumed to be 1.1 ± 0.3 [13]. The result of the
fit yields two mass measurements for B1 and B∗

2
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which are not separated as in the case of DØ:

m(B1) = 5734± 3 ± 2 MeV/c2

m(B∗

2 ) = 5738± 5 ± 1 MeV/c2

4. EXCITED B
0

s
STATES

The heavy-light system bs is similar in its be-
havior to the bd systems. As well, the HQET pre-
dicts two narrow and two wide B∗∗

s states. These
are even more difficult to study because of the
lower production rates of B0

s mesons in compar-
ison to more common B0 and B+. Due to the
isospin conservation, the decay of B∗∗

s
→ B0

s
π is

highly suppressed. Thus the decayB∗∗

s → B+K−

is used.
DØ uses the same B+ data sample as for the

B∗∗ measurement. The invariant mass difference
m(BK) − m(B) − m(K) is shown in Fig. 5. A
clear peak is observed with a significance in ex-
cess of 5σ. This peak is attributed to the pro-
cess B∗

s2 → B+K−. Thus, the mass of B∗

s2 is
m(B∗

s2) = 5839.1± 1.4 ± 1.5 MeV/c2 [14].
CDF looks at the decays B+ → J/ψK+ and

B+D0π+ in 1.0 fb−1 of data. A total of 58k sig-
nal candidates are reconstructed using the decays
J/ψ → µ+µ− and D0 → K+π−. The invariant
mass difference m(BK)−m(B)−m(K) shown in
Fig. 6 has 2 distinct peaks. Both peaks have a sig-
nificance in excess of 6σ. Assigning the two peaks
to the decays Bs1 → B∗+K− and B∗

s2 → B+K−,
one finds:

m(Bs1) = 5829.4± 0.2 ± 0.6 MeV/c2

m(B∗

s2) = 5839.6± 0.4 ± 0.5 MeV/c2

This corresponds to a mass difference m(B∗

s2) −
m(Bs1) = 10.20 ± 0.44 ± 0.35 MeV/c2.

It is interesting to note that the masses for
B1 and B∗

s2 found by CDF and DØ agree. The
mass difference in the bd and bs systems is ex-
pected to be very similar. This is indeed the case
for the measurements done by CDF, albeit with
large uncertainties. However, the mass difference
∆m

.
= m(B∗

2 )−m(B1) = 25.2± 3.0± 1.1 MeV/c2

as measured by DØ is significantly different from
the ones found by CDF. Assuming the ∆m to-
gether with the B∗

s2 mass measured by DØ, the
Bs1 mass would be around 5814 MeV/c2. Thus,

Figure 5. The mass difference m(BK)−m(B)−
m(K) as measured by DØ. The smooth curve
shows the fit of a third order polynomial repre-
senting the combinatoric background and a Gaus-
sian representing the signal. The histogram shows
the mass difference for B+K+ events. The solid
histogram shows the MC distribution of the de-
cay B∗∗ → B(∗)π where the π is misidentified as
a kaon.

the mass would be too low for the decay Bs1 →

B∗+K−, which would explain the absence of
the second peak in the invariant mass difference
m(BK)−m(B)−m(K) (Fig. 5). This puzzle will
hopefully be resolved in the future when analyses
using higher statistics become available.

5. CONCLUSIONS

With over 1 fb−1 of data, many exciting re-
sults on heavy flavor physics are presently com-
ing from the Tevatron experiments. In this paper
we have seen interesting results on heavy flavor
spectroscopy. The Bc mass and lifetime is mea-
sured and agrees with the theoretical predictions.
The excited states B∗∗ and B∗∗

s
offer an interest-

ing laboratory to experimentally verify our under-
standing of quark interaction in bound states and
to foster further development of non-perturbative
QCD. Overall, it is good time for flavor physics
at the Tevatron as we are on the way to collecting
multi- fb−1 of data.
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Figure 4. Invariant mass difference for the B∗∗ candidates in the analysis from CDF. The fit shows
the result of the simultaneous unbinned likelihood fit to the B∗∗ mass difference of the two samples
B+ → J/ψK+ and B+ → D0π+.
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Figure 6. The mass difference m(BK)−m(B) −
m(K) as measured by CDF. The line correspond
to the projection of the unbinned maximum like-
lihood fit using both channels B+ → J/ψK+ and
B+D0π+ added together.
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