
To appear in the International Journal of Communication Systems, John Wiley & Sons Ltd, 2006

Potential Performance Bottleneck in Linux TCP

Wenji Wu*, Matt Crawford*
Fermilab, MS-368, P.O. Box 500

Batavia, IL, 60510
wenji@fnal.gov, crawdad@fnal.gov

Abstract

TCP is the most widely used transport protocol on the Internet today. Over the years, espe-
cially recently, due to requirements of high bandwidth transmission, various approaches
have been proposed to improve TCP performance. The Linux 2.6 kernel is now preempti-
ble. It can be interrupted mid-task, making the system more responsive and interactive.
However, we have noticed that Linux kernel preemption can interact badly with the per-
formance of the networking subsystem. In this paper we investigate the performance
bottleneck in Linux TCP. We systematically describe the trip of a TCP packet from its in-
gress into a Linux network end system to its final delivery to the application; we study the
performance bottleneck in Linux TCP through mathematical modeling and practical ex-
periments; finally we propose and test one possible solution to resolve this performance
bottleneck in Linux TCP.

Keywords: Linux, TCP, Networking, Process scheduling, Performance analysis, Protocol stack

1. Introduction

The Transmission Control Protocol (TCP) is the most widely used transport protocol on
the Internet today. It carries the vast majority of all traffic over the Internet for various
network applications, including end-user applications (such as web browsing, remote
login, and email), bandwidth-intensive applications (such as GridFTP for bulk data
transmission [1]) and high-performance distributed computing [2][3]. TCP has been and
will continue to be an evolving protocol. Over the years, various TCP flavors have been
implemented. Early TCP implementations used a go-back-N model and required the expi-
ration of a retransmission timer to recover any loss. TCP Tahoe added the slow start,
congestion avoidance, and fast retransmit algorithms to TCP [4]. Based on TCP Tahoe,
TCP Reno added fast recovery algorithm, first implemented in 1990 [5]. TCP SACK al-
lows receivers to selective ACK out of sequence data and it aimed at eliminating the
timeouts that arise in TCP Reno due to multiple losses from the same window [6][7].
TCP Vegas [8] is another implementation of TCP, which adjusts transmission rate ac-
cording to anticipated congestion. It employs a new retransmission mechanism and slow
start mechanism from Reno. TCP Westwood [9][10] is proposed to handle random or
sporadic losses. It continuously measures at the TCP source the rate of the connection by
monitoring the rate of returning ACKs. The estimate is then used to compute congestion
window and slow start threshold after a congestion episode. Recently, due to require-
ments for high bandwidth transmission, TCP variants, such as FAST TCP [11], BIC TCP
[12], HTCP [13], and HSTCP [14], are also proposed and implemented.

* Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.

 1

FERMILAB-PUB-06-432-CD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71308412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To improve TCP performance, researchers have been primarily working in the fields of
TCP flow control [15], TCP congestion control [4 - 14][16][17][18], and TCP offloading
[19][20].

Linux-based network end systems have been widely deployed in the High Energy Physics
(HEP) community, at laboratories and universities. At Fermilab, thousands of network
end systems are running Linux operating systems; these include computational farms,
trigger processing farms, servers, and desktop workstations. From a network performance
perspective, Linux represents an opportunity since it is amenable to optimization due to
its open source support and projects such as web100 and net100 that enable tuning of net-
work stack parameters [21][22].

In all pervious versions of Linux the kernel itself cannot be interrupted while it is proc-
essing. Linux 2.6 is preemptible [27][29]. The 2.6 kernel can be interrupted mid-task, so
that the system is more responsive and interactive. However, we notice that preemption
in certain sections incurs some serious negative effects on networking performance. In
this paper, we investigate these problems. Our analysis is based on Linux kernel 2.6.14.
The contribution of the paper is as follows: (1) we systematically describe the trip of a
TCP packet from its ingress into a Linux end system to its final delivery to the applica-
tion; (2) we point out the performance bottleneck in Linux TCP from both mathematical
analysis and practical experiments; (3) we propose and test one possible solution to re-
solve the performance bottleneck in Linux TCP.

The remainder of the paper is organized as follows: In Section 2 the Linux packet receiv-
ing process is presented. Section 3 analyzes the performance bottleneck in Linux TCP. In
Section 4, we show the experiment results to further study the Linux TCP performance
issues, verifying our conclusions in Section 3. In Section 5, we propose a potential solu-
tion to resolve the performance bottleneck in Linux TCP. And finally in section 6, we
conclude the paper.

2. TCP Packet Receiving Process

The Layer 2 technology is assumed Ethernet network media, since it is the most wide-
spread and representative LAN technology. Also, it is assumed that the Ethernet device
driver makes use of Linux’s “New API,” or NAPI [][],23 24 which reduces the interrupt
load on the CPUs.

Figure 1 demonstrates generally the trip of a TCP packet from its ingress into a Linux end
system to its final delivery to the application [23][25][26]. We will not generally observe
the distinctions among datalink frames, IP packets, and TCP segments, as the data struc-
tures moved along protocol stack in the Linux kernel represent any of these things at
different times, and the data remains at the same memory location. For simplicity, we use
the single term “packet” wherever it will not cause confusion. In general, the packet’s trip
can be classified into three stages:

• Packet is transferred from network interface card (NIC) to ring buffer. The NIC
and device driver manage and controls this process.

 2

• Packet is transferred from ring buffer to a socket receive buffer, driven by a soft-
ware interrupt request (softirq) [25][27]. The kernel protocol stack handles this
stage.

• Packet data is copied from the socket receive buffer to the application, which we
will term the Data Receiving Process.

The following subsections detail these three stages.

NIC
Hardware

Network
Application

Traffic SinkRing Buffer
Socket RCV

BufferSoftIrq
Process

SchedulerTrafficSource

IP
Processing

TCP
Processing

SOCK RCV
SYS_CALLDMA

Kernel Protocol Stack Data Receiving ProcessNIC & Device Driver

Figure 1 Linux Networking Subsystem: TCP Packets Receiving Process

2.1 NIC and Device Driver Processing
The NIC and its device driver perform the layer 1 and 2 functions of the OSI 7-layer net-
work model: packets (datalink frames) are received and transformed from raw physical
signals, and placed into system memory, ready for higher layer processing. The Linux
kernel uses a structure sk_buff [23][25] to hold any single packet up to the MTU (Maxi-
mum Transfer Unit) of the network. The device driver maintains a “ring” of these packet
buffers, known as a “ring buffer,” for packet reception (and a separate ring for transmis-
sion). A ring buffer consists of a device- and driver-dependent number of packet
descriptors. To be able to receive a packet, a packet descriptor should be in “ready” state,
which means it has been initialized and pre-allocated with an empty sk_buff that has been
memory-mapped into address space accessible by the NIC over the system I/O bus. When
a packet comes, one of the ready packet descriptors in the reception ring will be used, the
packet will be transferred by DMA [28] into the pre-allocated sk_buff, and the descriptor
will be marked as used. A used packet descriptor should be reinitialized and refilled with
an empty sk_buff as soon as possible for further incoming packets. If a packet arrives and
there is no ready packet descrip-
tor in the reception ring, it will be
discarded. Once a packet is trans-
ferred into the main memory,
during subsequent processing in
the network stack, the packet re-
mains at the same kernel memory
location.

Figure 2 shows a general packet
receiving process at NIC and de-
vice driver level. When a packet
is received, it is transferred into
main memory and an interrupt is

...
Packet Packet

Packet

Packet
Descriptor

Ring Buffer

...

DMA

1
24 3

8

7

6
5

...

NIC Interrupt
Handler

Raised softirq

Poll_queue (per CPU)

NIC1

SoftIrq

x

Netif_rx_schedule()

Hardware
Interrupt

N
IC

1

check

1

2

3

4

dev->poll

Net_rx_action

5

6
Higher Layer Processing

alloc_skb()

Refill

Figure 2 NIC & Device Driver Packet Receiving

 3

raised only after the packet is accessible to the kernel. When CPU responds to the inter-
rupt, the driver’s interrupt handler is called, within which the softirq is scheduled by
calling netif_rx_schedule(). It puts a reference to the device into the poll queue of the in-
terrupted CPU. The interrupt handler also disables the NIC’s receive interrupt until all
packets in its ring buffer are processed.

The softirq is serviced shortly afterward. The CPU polls each device in its poll queue to
get the received packets from the ring buffer by calling the poll method dev->poll() of the
device driver. In dev->poll(), each received packet is passed upwards for further process-
ing by net_receive_skb(). After a received packet is dequeued from its receiving ring
buffer for further processing, its corresponding packet descriptor in the reception ring
buffer needs to be reinitialized and refilled.

2.2 Kernel Protocol Stack

2.2.1 IP Processing
The IP protocol receive function ip_rcv() gets called from within net_receive_skb() dur-
ing the processing of a softirq, whenever an IP packet is dequeued from its receiving ring
buffer. This function performs all the initial checks on the IP packet, which mainly in-
volve verifying its integrity (IP checksum, IP header fields and minimum packet length).
If the packet looks correct and passes the netfilter hook, ip_rcv_finish() is called.
ip_rcv_finish() deals with the routing functionality of IP. It checks whether the packet
should be forwarded to another machine or if it is destined to the local host. In the latter
case, the packet is given to ip_local_deliver(). In case the packet is fragmented, IP frag-
ment reassembly is performed here. Then, the packet passes another netfilter hook, and
finally goes to the ip_local_deliver_finish() function. There, an IP packet undergoes the
last stage of IP-level processing: IP header data is trimmed and the higher layer protocol
is determined so that the packet is ready for transport (“layer 4”) processing. For each
transport layer protocol, a corresponding entry handler function is defined: tcp_v4_rcv()
and udp_rcv() are two examples. When a packet is passed upwards, the corresponding
protocol entry handler function is called.

2.2.2 TCP Processing
When a packet (TCP segment) is handed upwards for TCP processing, the function
tcp_v4_rcv() first performs the TCP header processing. Then __tcp_v4_lookup() is called
to find the corresponding socket that is associated with the packet. A packet without a
corresponding socket will be dropped. A socket has a lock structure to protect it from un-
synchronized access. If the socket is locked, the packet waits on the backlog queue before
being processed further. If the socket is not locked, and its Data Receiving Process is
sleeping for data, the packet is added to the socket’s prequeue and will be processed in
batch in the process context, instead of the interrupt context [27]. Placing the first packet
in the prequeue will wake up the sleeping data receiving process. If the prequeue mecha-
nism does not accept the packet, which means that the socket is not locked and no
process is waiting for input on it, the packet must be processed immediately by a call to
tcp_v4_do_rcv(). The same function also is called to drain the backlog queue and pre-
queue. Except in the case of prequeue overflow, those queues are drained in the process

 4

context, not the interrupt context of the
softirq. In the case of prequeue overflow,
which means that packets within the pre-
queue reach or exceed the socket’s
receive buffer quota, those packets should
be processed as soon as possible, even in
the interrupt context.

tcp_v4_do_rcv() in turn calls other func-
tions for actual TCP processing,
depending on the TCP state of the con-
nection. If the connection is in the
tcp_established state,
tcp_rcv_established() is called; otherwise,
tcp_rcv_state_process() is called to han-
dle state transitions and connection
management, if there are no header or
checksum errors. tcp_rcv_established()
performs key TCP actions such as se-
quence number checking, RTT
estimation, acknowledging, and data
packet processing. Here, we focus on the
data packet processing.

When a data packet is handled on the fast
path, tcp_rcv_established() checks
whether it can be delivered to the user
space directly, instead of being added to the receive queue. The data’s destination in user
space is indicated by an iovec structure provided to the kernel by the data receiving proc-
ess through a system call such as recvmsg(). The conditions for checking whether to
deliver the data packet to the user space are as follow:

Application Traffic Sink

Ringbuffer

Backlog

IP
Processing

Sock
Locked?

Y

Receiving process
sleeps for data?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence
Queue

Receive
Queue

TCP
Processing

NIC
Hardware

Traffic Src

DMA

Copy to iov?

Copy to iov?

Y

Y

Fast path?

Y

N

A

B

Figure 3 TCP Processing - Interrupt Context

• The socket belongs to the currently active process; AND
• The current packet is the next in sequence for the socket; AND
• The packet will entirely fit into the application-supplied memory location;

When a data packet is handled on the slow path it will be checked whether the data is in
sequence (packet is the next one to be delivered to the user). Similar to the fast path, an
in-sequence packet will be copied to user space if possible; otherwise, it is added to the
receive queue. Out of sequence packets are added to the socket’s Out-of-Sequence Queue
and an appropriate TCP response is scheduled. Unlike the backlog queue, prequeue and
out-of-sequence queue, packets in the receive queue are guaranteed to be in order, already
acknowledged, and contain no holes. Packets in out-of-sequence queue would be moved
to receive queue when incoming packets fill the preceding holes in the data stream. Fig-
ure 3 shows the TCP processing flow chart within the interrupt context. In the figure, “A”
and “B” stand for measurement points that will be referred to in later sections.

 5

As previously mentioned, the backlog
and prequeue are generally drained in
the process context. The socket’s data
receiving process obtains data from the
socket through socket-related receive
system calls. For TCP, all such system
calls eventually lead to tcp_recvmsg(),
which is the top end of the TCP trans-
port receive mechanism. As shown in
Figure 4, tcp_recvmsg() first locks the
socket, then checks the receive queue.
Since packets in the receive queue are
guaranteed in order, acknowledged, and
without holes, data in receive queue is
copied to user space directly. After that,
tcp_recvmsg() will process the pre-
queue and backlog queue, respectively,
if they are not empty. Both result in the
calling of tcp_v4_do_rcv(). Afterward,
processing similar to that in the inter-
rupt context is performed.
tcp_recvmsg() does not return to user
space until the prequeue and backlog queue are drained. tcp_recvmsg() may need to fetch
a certain amount of data before it return to user code; if the required amount is not pre-
sent, sk_wait_data() will be called to put the data receiving process to sleep, waiting for
new data to come. The amount of data is set by the data receiving process. Before
tcp_recvmsg() returns to user space or the data receiving process is put to sleep, the lock
on the socket will be released. As shown in Figure 4, when the data receiving process
wakes up from the sleep state, it needs to relock the socket again.

Copy to iovReceive Queue
Empty?

Y

N

Prequeue
Empty?

Backlog
Empty?

Y

sk_backlog_rcv()

2.3 Data Receiving Process
Packet data is finally copied from the socket’s receive buffer to user space by data re-
ceiving process through socket-related receive system calls. The receiving process
supplies a memory address and number of bytes to be transferred, either in a struct iovec,
or as two parameters gathered into such a struct by the kernel. As mentioned in section
2.2.2, all the TCP socket-related receive system calls result in a call to tcp_recvmsg(),
which will copy packet data from socket’s buffers (receive queue, prequeue, backlog
queue) through iovec.

3. Potential Performance Bottleneck for TCP

As described above, TCP processing can be performed in interrupt or process context,
depending on the status of the TCP receive socket and the data receiving process. To
summarize, the different TCP packet processing scenarios are as shown in Figure 5.
Since Linux is an interrupt-driven operating system, interrupt processing has higher prior-
ity than user-lever processes. TCP packets handled in the interrupt context are usually

iov

Return

User Space

Kernel

Socketentry

Data receiving process

data

tcp_recvmsg()

sys_call

Y

N

N

Lock socket

Unlock socket

Enough data?

sk_wait_data()

Y

N

Lock socketWakeup

Figure 4 TCP Processing – Process Context

 6

processed immediately by TCP
protocol engine, independent of
system load. However, when
incoming TCP packets are on the
prequeue or backlog queue, those
packets will be handled in the
process context. In that case, TCP
processing is strongly related to
system load and the Linux process-
scheduling scheme. This leads to a potential per-
formance bottleneck for TCP applications when
the system is under load.

lockedSocketProcess
sleep

(by sk_wait_data())

run

unlocked

N/A Wait on prequeue,
(process context)

Wait on backlog, Process immediately
(process context) (interrupt context)

Figure 5 TCP Packets Processing Scenarios

Linux 2.6 is a preemptive multi-processing operat-
ing system. Processes (tasks) are scheduled to run
in a prioritized round robin manner [27][29][30],
to achieve the objectives of fairness, interactivity
and efficiency. For the sake of scheduling, a
Linux process has a dynamic priority and a static
priority. A process’ static priority is equivalent to
its nice value, which is specified by the user in the
range –20 to +19 with a default of zero, and not
changed by the kernel [27][29]. Higher values
correspond to lower priorities. The dynamic priority is used by the scheduler to rate the
process with respect to the other processes in the system. An eligible process with a better
(smaller-valued) dynamic priority is scheduled to run before a process with a worse
(higher-valued) dynamic priority. The dynamic priority varies during a process’ life. It
depends on a dynamic priority bonus, from -5 to +5, and its static priority. The dynamic
priority bonus depends on the process’ interactivity status. Linux credits interactive proc-
esses and penalizes non-interactive processes by adjusting this bonus. There are 140
possible priority levels in Linux. The top 100 levels (0-99) are used only for real-time
processes, which we do not address in this paper. The last 40 levels (100-139) are used
for conventional processes.

...

Active Priority Array

Priority
Task: (Priority, Time Slice)

As shown in Figure 6, process scheduling employs a data structure called runqueue. Es-
sentially, a runqueue keeps track of all runnable tasks assigned to a particular CPU. One
runqueue is created and maintained for each CPU in a system. Each runqueue contains
two priority arrays: active priority array and expired priority array. Each priority array
contains a queue of runnable processes per priority level. Higher (dynamic) priority proc-
esses are scheduled to run first. Within a given priority, processes are scheduled round
robin. All tasks on a CPU begin in the active priority array. Each process’ time slice is
calculated based on its nice value. Table 1 shows the time slices for various nice values.
When a process in the active priority array runs out of its time slice, it is considered ex-
pired and moved to the expired priority array if it is not interactive, or reinserted back
into the active array if it is interactive. During the move, a new time slice and dynamic
priority are calculated. When there are no more runnable tasks in the active priority array,

(3, Ts1)

(139, Ts2) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

Figure 6 Linux Process Scheduling

 7

it is simply swapped with the expired priority array. A
running process might be put into a wait queue to
sleep, waiting for expected events (e.g., I/O). When a
sleeping process wakes up, its time slice and priority
are recalculated and it is moved to the active priority
array. As for preemption, whenever a scheduler clock
tick or interrupt occurs, if a higher-priority task has be-
come runnable, it will preempt the running task if the
latter holds no kernel locks.

Nice value Time slice
+19 5 ms

0 100 ms
-10 600 ms
-15 700 ms
-20 800 ms

Table 1 Nice value vs. Time slice

Furthermore, when a process is termed interactive, its time slice is divided into smaller
pieces. When it finishes a piece, the task will round robin with other tasks at the same
priority level. This way execution will rotate more frequently among interactive tasks of
the same priority, preventing interactive processes from blocking other interactive proc-
esses of the same priority.

Under the simplifying assumption that processes other than the data receiving process of
interest do not sleep for long times, and hence use their entire time slices before the ac-
tive priority array is empty, let’s first consider the backlog scenario. The data receiving
process is calling tcp_recvmsg() to fetch packet data from socket receive buffer to user
space. The socket will be locked until the process returns to the user space. If the data
receiving process’ time slice ends before the lock is released, the data receiving process
will be moved to the expired priority array with the socket locked. The socket will remain
locked until the lock is released after the data receiving process resumes its execution in
the next round of running. The time until the process resumes its execution is strongly
dependent on the system load. Let’s assume that when the expired data receiving process
is moved to the expired priority array, there are, in all, running processes (, ... ,

) left in the active array, and expired processes (, ... ,) in the expired
array with priorities higher than that of the expired data receiving process. Considering
that some of the processes, when expired, might move to the expired array with recal-
culated priorities higher than that of the expired data receiving process, the minimum
time before the data receiving process could resume its execution would be:

1N 1P

1NP 2N 11+NP
21 NNP +

1N

∑
+

=

21

1

)(
NN

j
jPTimeslice (1)

Here, denotes the time slice of process .)(jPTimeslice jP

As we have seen, during this period all the new incoming TCP packets for the data re-
ceiving process will wait on the socket’s backlog queue without being TCP processed.
No acknowledgements will be fed back to the TCP sender.

As for the prequeue scenario, the data receiving process might sleep within
tcp_recvmsg() waiting for data. Before the process wakes up, all the incoming segments
for the data receiving process will wait on the prequeue without being TCP-processed.
Let’s assume that when the woken-up data receiving process is moved to the active prior-

 8

ity array, there are other processes in the active array whose priorities are higher. As-
suming still that each process will use its full time slice, the minimum time before the
data receiving process could resume its execution would be:

3N

 ∑ (2)
=

3

1

)(
N

j
jPTimeslice

Similarly, during this period no acknowledgements will be returned to the TCP sender.

Note that the data receiving process might be preempted within tcp_recvmsg() by other
higher priority processes. In this case, packet might wait on the backlog queue. The
analysis of how long packets would wait on the backlog queue is similar to the above.

Let’s denote by the time a packet waits in the backlog queue or prequeue. In the
worst case, we have

waitT

∑
+

=

>
21

1

)(
NN

j
jwait PTimesliceT for backlog queue (3-1)

 for prequeue (3-2) ∑
=

>
3

1

)(
N

j
jwait PTimesliceT

The time that packets wait on the backlog queue or prequeue adds to the sender’s esti-
mate of the round-trip time (RTT), since ACKs have not been sent for segments on those
queues.

Usually it is the case that:

ppqpdt TTTTRTT +++= (4)

Where is the time the interface takes to send the packet. This will likely have a linear
dependence on packet size. is the time taken for a signal to propagate through the
network medium. In a single simple network link, this is equal to the distance between
sender and receiver divided by propagation speed. is the time spent in routing queues
along the path. This will fluctuate over time depending on congestion in the path. And

 is the amount of time spent by sender and receiver and routers doing processing nec-
essary for packet delivery. On current hardware, this is usually in the sub-microsecond
range. For a given packet size, network path, sender, and receiver, it can be assumed that

, , and are constants. For packet switched data networks, is usually a random
variable, following some distribution. Hence, RTT is treated as a random variable.

tT

pdT

qT

ppT

tT pdT ppT qT

Since TCP packets might wait on the backlog queue or prequeue in the receiver, we will
have:
 (5) waitppqpdt TTTTTRTT ++++=

 9

Clearly, if TCP packets are processed in interrupt context, Twait ≈ 0 . In the receiver, since
the system load is uncertain, whether, when, and how long TCP packets might wait on
the backlog queue or prequeue is uncertain, and is also a random variable, following
some distribution. We can see that and are independent, or effectively so.

waitT

waitT qT

Hence, it will be the case that:

)()(ppqpdtwaitppqpdt TTTTETTTTTE +++>++++ (6)

)()(ppqpdtwaitppqpdt TTTTVarTTTTTVar +++>++++ (7)

Here, and are the expected value and variance of a random variable, respec-
tively. From (6) and (7), it can be derived that when packets wait on backlog queue or
prequeue, both RTT and its variance will increase.

)(∗E)(∗Var

In [31], Mathis et al., derive:

p
C

RTT
MSSBW = (8)

Where BW is the achievable bandwidth from sender to receiver, MSS is the maximum
segment size, C is a constant of order unity, and p is the packet drop probability along
the path. Note: (8) is based on Reno TCP.

It follows from (6) and (8) that with increased RTT, the average achievable bandwidth
from sender to receiver will decrease. Also, as we know, when competing TCP network
traffic exists, increased RTT will put a TCP data stream in a disadvantaged position [32].

The TCP sender does not measure RTT precisely, but rather maintains “smoothed” esti-
mates SRTT and RTTVAR of round-trip time and its variation, and uses the estimates in
determining the RTO, or retransmit timeout period [33][34] after which an unacknow-
ledged packet is assumed lost and will be retransmitted. Estimates are updated as follows
whenever a new measurement R of round-trip time is available from the acknowledge-
ment of a timed data segment:

RSRRTRTTVARRTTVAR −+=
4
1

4
3: (9)

RSRTTSRTT
8
1

8
7: += (10)

}}__ ,4min{,__max{: MAXRTOTCPRTTVARSRTTMINRTOTCPRTO ×+= (11)

The variation defined by (9) is not variance in the strict statistical sense, but is more eas-
ily calculated in the kernel and is commonly referred to as variance. Here, both
TCP_RTO_MIN and TCP_RTO_MAX are constants, which are 200ms and 120s respec-
tively. Experience has shown that clock granularity affects RTO calculation. Finer
granularity (≤100ms) performs somewhat better than coarser granularities [34]. In Linux
2.6, the clock granularity is not a big concern, since it has reached the 1ms level.

 10

Also, from (6), (7), and (11), it can be seen that when the RTT’s variance rises, the RTO
in the sender will correspondingly increase. In that case, the TCP sender may be less re-
sponsive to packet losses, resulting in degraded performance.

When packets wait on the receiver’s backlog queue or prequeue too long, it triggers the
retransmission timeout in the sender. Assuming that when packets start to wait on the
queue, the current RTO value in the sender is . The sender will time out when: RTOT

ppqpdtRTOwait TTTTTT −−−−> (12)

If the system load is medium or high, condition (12) can be easily met. For example, if
N1 + N2 ≥10, and all the running processes have the default nice value of 0, from equa-
tions (1) and (3-1) and Table 1, we can easily have , large enough to outrigger
the retransmission timer. Once RTO times out, the sender incorrectly assumes packet loss
in the network. Such spurious timeouts affect TCP performance in two ways: (1) the
sender unnecessarily reduces its offered load by setting its congestion window size to 1
segment; (2) the sender is forced into a go-back-N retransmission model. Spurious time-
outs are usually due to sudden delay spike in the path, e.g. route changes. The Eifel
algorithm [

sTwait 1>

35] and F-RTO algorithm [36] have been proposed to solve the spurious
timeout problem in the sender. However, since the spurious timeout in the case at hand is
caused by Linux TCP implementation in the receiver, we seek a solution in the receiver.

4. Experiments and Analysis

To verify our claims in section 3, we
ran data transmission experiments
upon Fermilab’s sub-networks. In
the experiments, we run iperf [37] to
send data in one direction between
two computer systems. iperf in the receiver is the data receiving process. As shown in
Figure 7, the sender and the receiver are connected to two Cisco 6509 switches connected
to each other by an uncongested 10-gigabit/second link. During the experiments, the
background traffic in the network is low, and there is no packet loss, or packet reordering
in the network. The sender and receiver’s features are as shown in table 2.

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

Figure 7 Experiment Network & Topology

 Sender Receiver+

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium III CPU (1 GHz)
System Memory 3829 MB 512MB

NIC Tigon, 64bit-PCI bus slot at 66MHz,
1Gbps/sec, twisted pair

Syskonnect, 32bit-PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

Table 2 Sender and Receiver Features

+ We ran experiments on different types of Linux receivers in Fermilab, and similar re-
sults were obtained.

 11

In order to study the detailed packet receiving process, we have added instrumentation
within Linux packet receiving path. Specifically, to collect statistics and provide insights
for , we have added measurement points A and B in Linux packet receiving path as
shown in Figure 3. For each packet, the times that it passes over point A () and point B
() are recorded; we collect the statistics for the time difference . It can be
assumed that , to within a few CPU cycles. Since it is difficult to keep track of
every packet, we classify into six different groups: , ,

, , , and . We collect the histo-
gram for each category.

waitT
At

Bt ABdiff ttt −=
diff

wait tT ≈
difft mst diff 10 ≤≤ mstms diff 101 ≤≤

stms diff 1.010 ≤≤ sts diff 2.01.0 ≤≤ sts diff 12.0 ≤≤ st diff 1>

To create a variable system load in the receiver, we compiled the Linux Kernel with n
parallel tasks by running make –nj [27]. The different value of n corresponds to differ-
ent level of background system load, e.g. make –10j. For simplicity, they are termed
as “BLn”. The background system load implies load on both CPU and system memory.
In the TCP experiments, sender transmits one TCP stream to receiver for 20 seconds. All
the processes are running with a nice value of 0, and iperf’s receive buffer is set to
40MB. In the sender, we use tcpdump to record tcp streams, and later use tcptrace [38] to
analyze the recorded packets. Consistent results were obtained across repeated runs. In
the following sections, we present two groups of experiments, with background loads of
BL0 and BL10 respectively. The experimental data are from both sender and receiver
side. Table 3 shows the iperf output results in the sender.

System Load in Receiver TIME Data transmitted End-to-End Throughput
BL0 20 sec 1.17Gbytes 504Mbits/s

BL10 20 sec 174Mbytes 72.1Mbits/s

Table 3 iperf output results

Figure 8 shows the time-sequence diagrams for the recorded TCP traces from the sender
side. Figure 8a shows that with a background load of BL0, the sender sends packets
smoothly and continuously. Packets are acknowledged in time and no RTO happens.
However, the time sequence diagram in Figure 8b shows another story. With BL10 in
receiver, sender sends packets intermittently. In the diagram, the small red “R” represents
retransmission. There are quite a few retransmissions. Since there are no packet losses or
reordering in the network, those unnecessary retransmissions are due to spurious timeouts
in the sender. As we have analyzed in section 3, when packets wait on backlog queue and
prequeue too long, no ACKs are returned to the TCP sender in time, leading to RTOs in
the sender.

 12

Figure 8a Sender Time Sequence Diagram (Sender Side), with BL0 in receiver

Figure 8b Sender Time Sequence Diagram (Sender Side), with BL10 in receiver

 13

Now let’s study the issues from the receiver side, to further verify the conclusions of sec-
tion 3.

Figures 9 and 10 show various TCP queues at BL0 and BL10 respectively.
• Normally, prequeue and out-of-sequence queue are empty. The backlog queue is usu-

ally not empty, even during the periods that the data receiving process is not running.
Packets are not dropped or reordered in the test network. However, packets might be
dropped by the NIC in the reception ring buffer [39], causing subsequent packets to
go to the out-of-sequence queue.

• With BL0, the receive queue is approaching full. In our experiment, since the sender
is more powerful than the receiver, this scenario is as expected. The experiment re-
sults have confirmed this point. With BL10, since RTOs in the sender seriously
degrading the TCP performance, the receive queue is not approaching full, even with
a background load of BL10

• In contrast with Figure 9, the backlog and receive queues in Figure 10 show some
kind of periodicity. The periodicity matches the data receiving process’ running cycle
[39]. In Figure 9, with BL0, the data receiving process runs almost continuously, but
at BL10, it runs only intermittently.

Though Figures 9 and 10 provide information about status of various TCP queues, they
provide no clue about how long packet will wait on backlog queue or prequeue. Table 4
gives the statistics about with BL0 and BL10. As we have known that there is

, the statistics about will provide us further information about . When
the load is light in the receiver, packets would go to prequeue or backlog queue (as
shown in backlog queue of Figure 9). Since the data receiving process run continuously,
packets within backlog queue or prequeue are processed soon, won’t be large. How-
ever, when the system load increases, as it has been analyzed in formula (3-1) and (3-2),

 might be large, which has been confirmed by Table 4. As shown in Table 4, with
BL0, there are no packets with . However, with BL10, some packets even
have , waiting on the backlog queue or prequeue for quite a long period of time,
without being TCP-processed. This is why we have seen in Figure 8b that RTO occurs.

difft
diff

wait tT ≈ difft waitT

waitT

waitT
mst diff 10≥

st diff 1≥

System Load < 1ms 1ms–10ms 10ms–100ms 100ms–200ms 200ms-1s >1s

BL0 862429 636 0 0 0 0
BL10 122657 744 896 40 300 75

Table 4 statistics (Receiver Side) difft

 14

Figure 9 Various TCP Receive Buffer Queues – BL0 (Receiver Side)

Figure 10 Various TCP Receive Buffer Queues – BL10 (Receiver Side)

5. A Possible Solution

As described above, the TCP performance bottleneck is due to the fact that TCP packets
might wait on the backlog queue or prequeue in the receiver without being TCP-
processed. To resolve the performance bottleneck issue, there might be two basic ap-
proaches. Naturally, the first approach is to always do TCP processing in the interrupt
context, not in the process context at all. However, this would require the overhaul of the
whole Linux TCP protocol engine, which might be complex and time-consuming. The
second approach is to reduce for packets waiting on prequeue or backlog queue. As waitT

 15

implied by formulas (1), (2),
and (3), the underlying idea
here is that when there are
packets waiting on the pre-
queue or backlog queue, do
not allow the data receiving
process to release the CPU
for long. Relatively, the sec-
ond approach is easier to
implement. We have modi-
fied the Linux process
scheduling policy and
tcp_recvmsg() to implement a
solution of the second sort.
The pseudo code for schedul-
ing is as shown in Listing 1.
The code changes for
tcp_recvmsg() is as shown in
Listing 2, highlighted in red.
To summarize, the solution
works as follows: an expired
data receiving process with
packets waiting on backlog
queue or prequeue is moved
to the active array, instead of
expired array as usual. More
often than not, the expired
data receiving process will
continue to run. Even it
doesn’t, the wait time before
it resumes its execution will
be greatly reduced. However,
this gives the process extra
runs compared to other processes in the runqueue. For the sake of fairness, the process
would be labeled with the extra_run_flag. Also considering the facts that: (1) the re-
sumed process will continue its execution within tcp_recvmsg(); (2) tcp_recvmsg() does
not return to user space until the prequeue and backlog queue are drained. For the sake of
fairness, we modified tcp_recvmsg() as such: after prequeue and backlog queue are
drained and before tcp_recvmsg() returns to user space, any process labeled with the ex-
tra_run_flag will call yield() to explicitly yield the CPU to other processes in the
runqueue. yield() works by removing the process from the active array (where it currently
is, because it is running), and inserting it into the expired array [27]. Also, to prevent
processes in the expired array from starving, a special rule has been provided for Linux
process scheduling (the same rule used for interactive processes [29]): an expired process
is moved to the expired array without respect to its status if processes in the expired array
are starved.

If (process->timeslice - - == 0) {
recalculate timeslice and priority;
if (packets are waiting on backlog queue or prequeue) {

 if (processes in expired array are starved)
 move the process to expired array;
 else {
 move process to active array;
 if (process is non-interactive)

set process->extra_run_flag:=TRUE;
 }
 }
 else {
 … as usual …
 }
}
else {

… as usual …
}

Listing 1 Pseudo code for scheduling policy

tcp_recvmsg{

… as usual …

 TCP_CHECK_TIMER(sk);
release_sock(sk);

if (process->extra_run_flag == TRUE){
 set process->extra_run_flag:=FALSE;
 yield();
}

 return copied;

… as usual …
}

Listing 2 Code changes for tcp_recvmsg()

 16

We repeated the TCP experiments as described in section 4 on Linux updated with the
new scheduling policy described as above. We compare the new experiment data with
those obtained in section 4. The old experiment data will be prefixed with “O-”; whereas,
the new data is prefixed with “N-”.

Table 5 shows the iperf output results in the sender. It can be seen that the TCP perform-
ance of N-BL10 is much better than that of O-BL10. The TCP end-to-end throughput of
N-BL10 reaches as high as 88.8Mbits/s; however, with O-BL10, the corresponding TCP
end-to-end throughput is only 72.1Mbits/s. This implies that our proposed solution is ef-
fective in resolving the TCP performance bottleneck issue. This point is verified by
experiment data from both sender and receiver sides. Figure 11 shows the time-sequence
diagrams for the recorded TCP traces from the sender side. For comparison, Figure 11a
shows old kernel’s time sequence diagram with a background load of BL10. And Figure
11b shows the time sequence diagram with N-BL10. In Figure 11b, there are no retrans-
missions due to packets waiting on backlog queue or prequeue too long; packets are
acknowledged in time and no RTO happens. Nevertheless, the sender still transmits in-
termittently. This is caused by zero window advertisements from receiver. In our
experiments, sender is a more powerful machine than the receiver; in addition, the re-
ceiver runs with a high background load. When packets cannot be consumed by the data
receiving process in time, the data receive buffer in receiver is approaching full. Then
receiver will advertise zero windows to stop sender transmitting. The small purple “Z” in
Figure 11b represents a window advertisement of 0 bytes received from the receiver.
Later, from Figure 12 we can see that the receive buffer is approaching full.

System Load in Receiver TIME Data transmitted End-to-End Throughput
O-BL0 20 sec 1.17Gbytes 504Mbits/s

O-BL10 20 sec 174Mbytes 72.1Mbits/s
N-BL10 20sec 220Mbytes 88.8Mbits/s

Table 5 iperf output results

 17

Figure 11a Sender Time Sequence Diagram (Sender Side), with BL10 in receiver (OLD kernel)

Figure 11b Sender Time Sequence Diagram (Sender Side), with BL10 in receiver (NEW kernel)

 18

Figure 12 Various TCP Receive Buffer Queues – BL10 (NEW kernel, Receiver)

Figures 12 shows various TCP queues with N-BL10. It can be seen that the receive queue
is approaching full. Compared with Figure 10, we can be concluded that TCP perform-
ance is really enhanced. Table 6 gives observations of for N-BL10. There are now no
packets with , which implies that no packets waited long on the prequeue or
backlog queue. It further verifies that our proposed solution is effective in resolving the
TCP performance bottleneck issue.

difft
mst diff 200≥

System Load < 1ms 1ms–10ms 10ms–100ms 100ms–200ms 200ms-1s >1s

O-BL0 862429 636 0 0 0 0
O-BL10 122657 744 896 40 300 75
N-BL10 156300 851 618 29 0 0

Table 6 statistics (Receiver Side) difft

Now, let’s study the fairness issues of our proposed solution. Readers might suspect that
our proposed solution might cause fairness issues. The following experiments and analy-
sis will show that it does not significantly do so.

As described above, Linux scheduler moves an expired process to the expired priority
array if the process is not interactive, or reinserts it back into the active array if the proc-
ess is interactive. To better evaluate the fairness performance of our proposed solution,
we try to eliminate the influence of interactive processes in the following experiments:
non-interactive processes run as background loads. To create non-interactive processes in
the receiver, we develop a CPU intensive application that executes a number of opera-
tions in a loop. In all the following experiments, the sender transmits one TCP stream to
the receiver for 20 seconds. In the receiver, iperf is run as “time iperf –s –w 20M”. All
the processes are running with a nice value of 0. Further, since the transmission lasts 20
seconds, in the receiver we calculate iperf’s experiment CPU share as:

 19

s20/)(utimestime + . We compare the iperf’s experiment CPU shares with its fair CPU
share. If there are M background processes, iperf’s fair CPU share is: 1/(M+1). Consis-
tent results were obtained across repeated runs. In the following sections, we present a
group of experiment results in Table 7.

Iperf Experiment Results Background Processes
in Receiver End-to-End

Throughput Utime Stime Iperf Experiment
CPU Share

Iperf Fair
CPU Share

1 processes 265Mbps 0.048s 10.47s 52.58% 50%
3 processes 143Mbps 0.028s 5.644s 28.38% 25%
4 processes 117Mbps 0.032s 4.728s 23.8% 20%
9 processes 70Mbps 0.028s 2.744s 13.86% 10%

Table 7 Fairness Experiments

As shown in Table 7, in the worst case, iperf gains the extra CPU shares of 3.86%. Con-
sidering the possibilities that iperf itself might sometimes be termed interactive and gain
extra runs, the experiment results show that our proposed solution will not cause fairness
issues. The proposed solution tradeoffs a small amount of fairness performance to resolve
the TCP performance bottleneck. The reason that our proposed solution will not cause
serious fairness issues is due to the facts that:

(1) Each time when an expired data receiving process with packets waiting on back-
log queue or prequeue is moved to the active array, it gains at most the
tcp_recvmsg() amount of extra time compared to other processes in the runqueue;

(2) Each calling of tcp_recvmsg() will not take long. When Linux kernel processes
packets within backlog queue or prequeue, the processed data will be fed to the
socket out of sequence queue or receive queue, then TCP flow control will take
effect to slow down or throttle sender.

(3) The possibility that a data receiving process runs out of its timeslice and is moved
to the expired array with packets waiting on backlog queue or prequeue does not
occur often, compared to the Linux scheduling time scale. This has been shown in
Figure 8b. As iperf does pure data transmission, the received data will not be fur-
ther processed in the user space. Therefore, for a real network application, this
possibility is even lower.

Another justification for our proposed solution is that “Fairness is often a hard attribute to
justify maintaining because it is often a tradeoff between over global performance and
localized performance. For example, in an effort to provide maximum disk throughput,
the Linux 2.4 block I/O scheduler may starve older requests, in order to continue process-
ing newer requests at the current disk head position. This minimizes seeks and thus
provides maximum overall disk throughput – at the expense of fairness to all requests”
[40].

6. Conclusions

Suspension of TCP processing for incoming packets induces both an increase and a
greater variability of the round-trip time measured by the sender. A moderate or high sys-

 20

tem load on the receiver can delay TCP processing so long as to cause a timeout in the
sender, which will then resume sending at the minimum possible rate. Current storage
implementations in the High Energy Physics community and elsewhere exploit the disk
space of compute-farm worker nodes [41], making this a very topical concern.

So far, we have been discussing how the proposed solution behaves in improving TCP
performance, and resolving the bottleneck. Also, we evaluate the fairness performance of
our proposed solution. The proposed solution trades a small amount of fairness perform-
ance to resolve the TCP performance bottleneck. Our experiments and analysis have
shown that our proposed solution won’t cause serious fairness issues. The criteria for a
good scheduling algorithm also include efficiency, response time, turnaround, and
throughput [42]. How our first cut at a throughput-enhancing process scheduling policy
affects other processes and overall system performance needs further study. We will
cover this topic in other papers.

References

[1] W. Allcock et al., “The Globus Striped GridFTP Framework and Server,” Proceedings of the

ACM/IEEE Supercomputing 2005 Conference, Seattle, USA, 2005.
[2] I. Foster et al., The Grid: Blueprint for a New Computing Infrastructure, Second Edition, New York:

Wiley, 2004.
[3] F. Berman et al., Grid Computing: Making the Global Infrastructure a Reality, New York: Wiley,

2003.
[4] V. Jacobson, “Congestion Avoidance and Control,” in Proc. ACM SIGCOMM, Stanford, CA, Aug.

1988, pp. 314 – 329.
[5] K. Fall et al., “Simulation-based Comparison of Tahoe, Reno and SACK TCP,” ACM Computer

Communications Review, vol. 5, no. 3, pp. 5--21, 1996.
[6] R. Braden et al., “TCP Extensions for Long Delay Paths,” RFC 1072, 1988.
[7] R. Braden et al., “TCP extensions for high-speed paths,” RFC 1185, Oct. 1990
[8] L. S. Brakmo et al., “TCP Vegas: End to End Congestion Avoidance on a Global Internet”, IEEE

Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465 – 1480, 1995.
[9] C. Casetti et al., "TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless

Links", Proceedings of ACM Mobicom 2001, pp. 287-297, Rome, Italy, 2001.
[10] M. Gerla et al., "TCP Westwood: Congestion Window Control Using Bandwidth Estimation," Pro-

ceedings of IEEE Globecom 2001, vol. 3, pp. 1698-1702, San Antonio, USA, 2001.
[11] C. Jin et al., “FAST TCP: From Theory to Experiments,” IEEE Network, vol. 19, no. 1, pp. 4-11,

January/February 2005.
[12] L. Xu et al., "Binary Increase Congestion Control for Fast Long-distance Networks," Proceedings of

IEEE INFOCOM 2004, Hong Kong, 2004.
[13] D. J. Leith, et al., “H-TCP: A Framework for Congestion Control in High-speed and Long-distance

Networks,” Hamilton Institute Technical Report, August 2005.
[14] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649, December 2003.
[15] M. K. Gardner et al., “User-space Auto-tuning for TCP Flow Control in Computational Grids,”

Computer Communications, vol. 27, no. 14, pp. 1364-1374, 2004.
[16] J. Widmer et al., “A Survey on TCP-Friendly Congestion Control,” IEEE Network Magazine, Spe-

cial issue on Control of Best Effort Traffic, vol. 15, no. 3, pp. 28-37, 2001.
[17] J. Martin et al., “Delay-Based Congestion Avoidance for TCP,” IEEE/ACM Transactions on Net-

working, vol. 11, no. 3, June 2003.
[18] M. Mathis et al., "Forward Acknowledgment: Refining TCP Congestion Control," Proceedings of

SIGCOMM'96, August 1996, Stanford, CA.
[19] D. Freimuth et al., “Server Network Scalability and TCP Offload,” Proceedings of the 2005

USENIX Annual Technical Conference, pp. 209--222, Anaheim, CA, Apr. 2005.

 21

[20] D. D. Clark, et al., "An Analysis of TCP Processing Overheads," IEEE Communication Magazine,

vol. 27, no. 2, June 1989, pp. 23 – 29.
[21] M. Mathis et al., "Web100: Extended TCP Instrumentation for Research, Education and Diagnosis,"

ACM Computer Communications Review, vol. 33, no. 3, July 2003.
[22] T. Dunigan et al., “A TCP Tuning Daemon,” Proceedings of the ACM/IEEE Supercomputing 2002

Conference, Baltimore, USA, 2002.
[23] M. Rio et al., "A Map of the Networking Code in Linux Kernel 2.4.20," March 2004.
[24] J. C. Mogul et al., “Eliminating Receive Livelock in an Interrupt-driven Kernel,” ACM Transactions

on Computer Systems, vol. 15, no. 3, pp. 217--252, 1997.
[25] K. Wehrle et al., The Linux Networking Archetecture – Design and Implementation of Network

Protocols in the Linux Kernel, Prentice-Hall, ISBN 0-13-177720-3, 2005.
[26] www.kernel.org.
[27] R. Love, Linux Kernel Development, Second Edition, Novell Press, ISBN: 0672327201, 2005.
[28] J. Corbet et al., Linux Device Drivers, Third Edition, O’Reilly Press, ISBN: 0-596-00590-3, 2005.
[29] D. P. Bovet et al., Understanding the Linux Kernel, Third Edition, O’Reilly Press, ISBN: 0-596-

00565-2, 2005.
[30] C. S. Rodriguez et al., The Linux(R) Kernel Primer: A Top-Down Approach for x86 and PowerPC

Architectures, Prentice Hall PTR, ISBN: 0131181637, 2005.
[31] M. Mathis et al., "The Macroscopic Behavior of the Congestion Avoidance Algorithm," Computer

Communications Review, vol. 27, no. 3, July 1997.
[32] T. H. Henderson et al., “On Improving the Fairness of TCP Congestion Avoidance,” IEEE Globe-

comm conference, Sydney, pp. 539-544, 1998.
[33] P. Sarolahti et al., “Congestion Control in Linux TCP,” Proceedings of 2002 USENIX Annual Tech-

nical Conference, Freenix Track, pp. 49–62, Monterey, CA, June 2002.
[34] V. Paxson et al., "Computing TCP's Retransmission Timer," Nov. 2000, Internet RFC 2988.
[35] R. Ludwig et al., “The Eifel Algorithm: Making TCP Robust Against Spurious Retransmissions,”

ACM Computer Communications Review, vol. 30, no. 1, January 2000.
[36] P. Sarolahti et al., "F-RTO: an Enhanced Recovery Algorithm for TCP Retransmission Timeouts,"

Computer Communication Review, vol. 33, no. 2, pp. 51--63, 2003.
[37] http://dast.nlanr.net/Projects/Iperf/.
[38] http://www.tcptrace.org/.
[39] W. Wu et al., “The Performance Analysis of Linux Networking–Packet Receiving,” to appear in

Computer Communications, Elsevier, DOI: 10.1016/j.comcom.2006.11.001.
[40] R. Love, “Interactive Kernel Performance – Kernel Performance in Desktop and Real-time Applica-

tions,” Proceedings of the Linux Symposium, Ottawa, Onario, Canada, July 2003.
[41] A. Kulyavtsev et al., “Resilient dCache: Replicating Files for Integrity and Availability,” Proceed-

ings of Computing in High Energy Physics (CHEP), Mumbai, India, 2006.
[42] A. Silberschatc et al., Operating System Concepts, Seventh Edition, John Wiley & Sons, ISBN:

0471694665, 2004.

 22

	Iperf Fair CPU Share
	References

