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Abstract

This report describes work carried out under a Sandia National Laboratories Excel-
lence in Engineering Fellowship in the Department of Electrical and Computer Engineer-
ing at the University of Illinois at Urbana-Champaign. Our research group (at UIUC)
is developing a intelligent robot, and attempting to teach it language. While there are
many aspects of this research, for the purposes of this report the most important are
the following ideas. Language is primarily based on semantics, not syntax. To truly
learn meaning, the language engine must be part of an embodied intelligent system, one
capable of using associative learning to form concepts from the perception of experi-
ences in the world, and further capable of manipulating those concepts symbolically. In
the work described here, we explore the use of hidden Markov models (HMMs) in this
capacity. HMMs are capable of automatically learning and extracting the underlying
structure of continuous-valued inputs and representing that structure in the states of
the model. These states can then be treated as symbolic representations of the inputs.
We describe a composite model consisting of a cascade of HMMs that can be embedded
in a small mobile robot and used to learn correlations among sensory inputs to create
symbolic concepts. These symbols can then be manipulated linguistically and used for
decision making.

This is the project final report for the University Collaboration LDRD project, “A
Robotic Framework for Semantic Concept Learning”.
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1 Introduction

This report describes the study of cognitive development using a constructive approach. The
basis of our work can be summarized as follows. We believe that human intelligence, and
hence language, is primarily semantic. We believe that the mind forms semantic concepts
through the correlation of events and cues close together in time and/or space. We further
believe that an integrated sensory-motor system is necessary to ground these concepts and
allow the mind to form a semantic representation of reality—there is no such thing as a
disembodied mind.

Starting with these ideas, we are developing a robotic platform in ongoing work at
the University of Illinois at Urbana-Champaign, complete with basic sensory-motor and
computing capabilities. The sensory-motor components are functionally equivalent to their
human or animal counterparts, and include binaural hearing, stereo vision, tactile sense,
and basic proprioceptive control. On top of these components, our group is implementing
various processing and learning models, with the intention of creating and aiding semantic
understanding and intelligent behavior. Our goal is to produce a robot that will learn to
understand and carry out simple tasks in response to natural language requests.

This technical report describes work on a semantic learning model completed under a
Sandia National Laboratories Excellence in Engineering Fellowship. The rest of the report
is organized as follows. Section 2 gives a brief overview of our robotic framework. Section 3
introduces hidden Markov models (HMMs) and recursive maximum-likelihood estimation
(RMLE), both of which we use as part of our semantic learning model, described in Section 4.
We offer some further results and conclusions in Section 5.

2 Overview: A Robotic Framework for Studying Cognition

We use the cognitive cycle depicted in Fig. 1 to guide the design of our robotic system.
This simple diagram shows the flow of cognition among four systems: a sensory system,
an associative memory, a working memory, and a vocalization and motor system. The
diagram is reminiscent of ones used by psychologists to describe the human memory system
(see e.g., [1], p. 66), with some some additional emphasis on the associative nature of
memory and on the embodiment and interaction of the system with the environment. These
emphasized areas are key requirements for embodied learning. Below we describe two
different views of this cycle: the somatic system view (the body), and the noetic system
view (the mind).

2.1 Somatic System

The somatic system is the physical, “body” component of the mind-body system. It is
comprised of the physical components necessary for cognition: the senses, muscular (motor)
system, nervous system, and the brain.

To do the most human-like cognitive studies, we would like to work with a robot which
is as anthropomorphic as possible. For our work, we chose Arrick Robotics’ Trilobot [2]
(see Fig. 2). The robot’s anthropomorphic capabilities are rich enough to suit our pur-
poses. In particular, the robot can move freely via wheels, can move its head, and use its
arm to manipulate common objects, allowing relatively complex behaviors. A speaker is
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Figure 1: Cognitive Cycle. This figure shows the flow of cognition among the senses, long
term memory, working memory, the motor system, and the environment.

available on-board for the production of sounds and, with additional processing, speech.
We have added cameras and microphones to the robot to give it stereo vision and hearing
capabilities, and have implemented, in software, some basic audio and visual processing and
feature extractors to mimic aspects of these systems [3–8]. The robot also has a number
of touch and other sensors available. We have incorporated a computer on-board which
collects input from the cameras, microphones, and sensors, and sends control commands
to the robot. The computer can also handle limited processing of the data, but a wireless
transmitter is available to transmit the data to other workstations, where most processing
occurs. This distributed system of computers houses the “brain” of our robot. To facili-
tate the communications necessary for this system, we did extensive design and coding of
a distributed communications and processing framework early in this research. See [3] for
details.

2.2 Noetic System

The noetic system in Fig. 1 represents the “mind” aspect in the mind-body paradigm. The
main goal of our research is to implement functional equivalents for high-level cognitive
functions in this area. We can characterize this goal by looking at three different aspects of
the mind: memory, learning, and behavior.

Memory is often described hierarchically, dividing first into short-term memory and
long-term memory. Long-term memory is further divided into procedural, semantic, and
episodic memories [1,9,10]. While they are all connected and interrelated, our interest here
is on semantic memory—our knowledge and understanding of the world. As indicated in
the introduction, we believe that memory is primarily associative.
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Figure 2: Illy, one of two Arrick Robotics Trilobots we use for our cognition and language
acquisition research. The base unit for the robots was heavily augmented, to include stereo
cameras and microphones, an on-board computer and wireless ethernet.

Learning can be described informally as a transition from one mental state to another
where information is gained [11]. If memory is primarily assocative, then learning must
principally involve the formation of associations. According to D. Shanks, in associative
learning, “the environment provides a relationship among contingent events, allowing [a]
person to predict one [event] in the presence of others.” [11] Possible events include both
environmental cues and the subject’s own behavior. The relationship between or among
events can be causal or structural. In causal relationships, one event occurs, followed by
another, perhaps after a brief time interval. For example, there is a consistent causal re-
lationship between touching a hot burner and feeling pain. Structural relationships relate
features or properties of an object or event with other features which frequently co-occur.
For example, after both seeing and smelling a fire, the presense of one of these events gener-
ally indicates the presence of the other. A less obvious example of a structural relationship
is the association of a word with a particular object or event, a key focus of our research.
This type of association allows the formation of symbolic concepts, permitting symbolic
manipulation.

If memory contains our knowledge about the world, and learning modifies that knowl-
edge, behavior puts that knowledge into use. While behavioral expression is an integral
component of our long term research goals, it is not as immediately important to the re-
search described herein.

The work described in the next few sections describes our composite HMM for associative
learning. It consists of a cascade of hidden Markov models (HMMs), with models lower in
the cascade responsible for learning low-level sensory-motor concepts, and models higher
in the cascade responsible for learning higher concepts. The next section gives a formal
description of HMMs and briefly describes an on-line learning algorithm for training them.
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Section 4 then describes our hierarchical model for associative learning using HMMs.

3 Hidden Markov Models and Recursive Maximum Likeli-

hood Estimation

A hidden Markov model (HMM) is a discrete time stochastic process with two components,
{Xn, Yn}, where (i){Xn} is a finite-state Markov chain, and (ii) given {Xn}, {Yn} is a
sequence of conditionally-independent random variables. The conditional distribution of Yk

depends on {Xn} only through Xk. The name HMM arises from the assumption that {Xn}
is not observable, and so its statistics can only be ascertained from {Yn}.

HMMs have many interesting features that we believe can be easily exploited for learning
associations. As noted previously, concepts can be formed from the correlation in time
among events. HMMs by construction have a notion of sequence, and have proven quite
effective at learning time series and spatial models in areas such as speech processing [12]
and computational biology [13–15]. This characteristic of HMMs provides a useful starting
point for learning time correlation.

Another property of HMMs useful for learning concepts is their ability to discover struc-
ture in input data. Cave and Neuwirth [16] demonstrated this capability by training a low
order ergodic HMM on text. They found that the states of the model represented broad
categories of letters, discovering some of the underlying structure of the text. Poritz [17]
developed a similar model for speech data, and Ljolje and Levinson [18] created a speech rec-
ognizer based on this type of model. Our hierarchical model exploits this natural capability
of HMMs to discover structure in order to learn higher level concepts.

Finally, in addition to their familiar role as recognizers, HMMs can be used in a gener-
ative capacity. In particular, when placed in a hierarchy, we can drive the various HMMs
to produce sequences of states and corresponding output, roughly simulating thoughts and
actions.

Some characteristics of HMMs are not as useful for our work, however. Two of the
most common methods used for HMM parameter estimation, the Baum-Welch method
and methods based on the Viterbi algorithm (for both, see e.g., [12]), both require off-line
processing of large amounts of data. For our goal of learning concepts in real time using
a robot, these methods are not very useful. We would much prefer an iterative or on-line
training procedure.

There are generally two approaches researchers have used to implement on-line stochastic
training procedures for HMMs. The first minimizes the prediction error of the model via
recursive methods [19–21]. The other approach maximizes the Kullback-Leibler information
between the estimated model and true model, or equivalently, maximizes the likelihood of
the estimated model for an observation sequence [21–26]. This is the approach we have
chosen. Our recursive maximum-likelihood estimation (RMLE) algorithm is based mostly
on [26]. Using their general derivation for HMMs with continuous observation densities,
we have derived formulas specific to multidimensional Gaussian observations, and extended
their work and proofs to HMMs with discrete observations. We describe that work briefly
below. For details, see [3].
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3.1 HMM Signal Model

An HMM is a discrete time stochastic process with two components, {Xn, Yn} defined on
probability space (Ω,F , P ).1 Let {Xn}∞n=1 be a discrete time first order Markov chain with
state space R = {1, . . . , r}, r a fixed known constant. The model starts in a particular state
i = 1, . . . , r with probability πi = P (X1 = i). Define π ∈ Π by π = {πi}, where Π is the set
of length-r stochastic vectors. For i, j = 1, . . . , r, the transition probabilities of the Markov
chain are given by

aij = P (Xn = j|Xn−1 = i). (1)

Let A = {aij}. Then A ∈ A, where A is the set of all r × r stochastic matrices.
In a hidden Markov model, {Xn} is not visible, and its statistics can only be ascer-

tained from a corresponding observable stochastic process, {Yn}. The process {Yn} is a
probabilistic function of {Xn}, i.e., given Xn, Yn takes values from some space E according
to a conditional probability distribution. The corresponding conditional density of Yn is
generally assumed to belong to a parametric family of densities {b(·; θ) : θ ∈ Θ}, where
the density parameter θ is a function of Xn, and Θ is the set of valid parameters for the
particular conditional density assumed by the model. The conditional density of Yn given
Xn = j can be written b(·; θj).

Example 1 (Gaussian observation density): Suppose the observation density for each state
in an HMM is described by a univariate Gaussian distribution. Then parameter set Θ =
{(µ, σ) ∈ R × (0,∞)}, θj ∈ Θ, and {Yn} = {yn} is a sequence of continuously valued
conditionally independent outputs on R, each with probability distribution

b (yn; µj , σj) =
1√

2πσj

exp

[

−(yn − µj)
2

2σ2
j

]

(2)

for Xn = j.

Example 2 (Discrete observation density): Suppose observations Yn are drawn from a
discrete set of symbols V = {vk}, k = 1, . . . , s. Then Θ = {(b1, . . . , bs) ∈ [0, 1]s|∑s

k=1 bk =
1} is the set of length-s stochastic vectors, θj ∈ Θ, and {Yn} = {yn} is a sequence of discrete
symbols, each yn having probability

b(yn; θj) = bjk|yn=vk
(3)

for Xn = j.

Here, for simplicity, Yn are assumed to be scalar valued, although the formulation here
easily generalizes to vector-values.

Define the HMM parameter space as Φ = Π×A×Θ. The model ϕ ∈ Φ is then defined
as

ϕ = {π1, . . . , πr, a11, a12, . . . , arr, θ1, . . . , θr}. (4)

The model parameters for a particular model are accessed via coordinate projections, e.g.,
aij(ϕ) = aij . In some cases (e.g., when considering the RMLE algorithm below), we will not

1(Ω,F , P ) is needed for the formal definition of an HMM but is not necessary to grasp the rest of this
paper. Ω is a set of events of interest and F is a σ-field describing the class of subsets of Ω over which a
probability measure P is defined. See, e.g., Chapter 1 of [27] for a more complete description.
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be concerned with estimating π. In that case, Φ = A×Θ, and ϕ changes accordingly. Note
that the literature occasionally describes other model parameterizations (see, e.g., [20,22]).

Let p be the length of ϕ. When estimating model parameters, let ϕ∗ ∈ Φ be the fixed
set of “true” parameters of the model we are trying to estimate.

For a vector or matrix v, v′ represents its transpose. Define the r-dimensional column
vector b(yn; ϕ) and r × r matrix B(yn; ϕ) by

b(yn; ϕ) = [b1(yn; θ1(ϕ)), ..., br(yn; θr(ϕ))]′ (5)

and
B(yn; ϕ) = diag[b1(yn; θ1(ϕ)), ..., br(yn; θr(ϕ))]. (6)

b(yn; ϕ) and B(yn; ϕ) give the observation density evaluated at yn for each state (in model
ϕ), as a vector and diagonal matrix, respectively.

Using the definitions above, it can be shown (see, e.g., [28]) that the likelihood of the
sequence of observations (y1, . . . , yn) (also the joint distribution of (Y1, . . . , Yn)) for model
ϕ is given by

pn(y1, . . . , yn; ϕ) = π(ϕ)′B(y1; ϕ)
n

∏

k=2

A(ϕ)B(yk; ϕ)1r. (7)

3.2 Recursive Maximum Likelihood Estimation of HMM Parameters

Maximum-likelihood estimation (MLE) is formally defined as follows. For observation se-
quence (y1, . . . , yn), find

ϕ̂ = arg max
ϕ∈Φ

pn(y1, . . . , yn; ϕ), (8)

where ϕ̂ is the most likely estimate of the true underlying parameters ϕ∗. The recursive
maximum-likelihood estimation (RMLE) algorithm defined here is a online iterative solution
to this problem.

The derivation of the RMLE algorithm for HMMs proceeds as follows. We first show
how to calculate the likelihood pn(y1, . . . , yn; ϕ) for a given HMM model recursively, using
prediction (or forward) filters. We note that maximizing log pn(y1, . . . , yn; ϕ) is equivalent to
and generally easier than maximizing pn(y1, . . . , yn; ϕ) [29], and that log pn(y1, . . . , yn; ϕ) can
also be calculated recursively. We can then search for the maximum of log pn(y1, . . . , yn; ϕ)
using the derivative of the update of this recursion.

For the results of this section to hold, it is necessary to assume various conditions on
periodicity, continuity, and ergodicity for the model. For simplicity, we will assume all
necessary conditions hold. Please see [3, 26] for details. This derivation was largely taken
from [26].

Define the prediction filter as

un(ϕ) = [un1(ϕ), . . . , unr(ϕ)]′ (9)

where
uni(ϕ) = P (Xn = i|yn−1, . . . , y1), (10)
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is the probability of being in state i at time n given all previous observations. Using this
filter, the likelihood pn(y1, . . . , yn; ϕ) can be written as

pn(y1, . . . , yn; ϕ) =
n

∏

k=1

b(yk; ϕ)′uk(ϕ). (11)

(See [3], Appendix E.)
The value of un(ϕ) can be calculated recursively as

un+1(ϕ) =
A(ϕ)′B(yn; ϕ)un(ϕ)

b(yn; ϕ)′un(ϕ)
(12)

when initialized by u1(ϕ) = π(ϕ).

Let w
(l)
n (ϕ) = (∂/∂ϕl)un(ϕ) be the partial derivative of un(ϕ) with respect to (w.r.t.)

the lth component of ϕ. Each w
(l)
n (ϕ) is an r-length column vector, and

wn(ϕ) = (w(1)
n (ϕ), w(2)

n (ϕ), . . . , w(p)
n (ϕ)) (13)

is an r × p matrix. Taking the derivative of un+1(ϕ) from Equation 12,

w
(l)
n+1(ϕ) =

∂un+1(ϕ)

∂ϕl

= R1(yn, un(ϕ), ϕ)w(l)
n (ϕ) + R

(l)
2 (yn, un(ϕ), ϕ) (14)

where

R1(yn, un(ϕ), ϕ) = A(ϕ)′
[

I − B(yn; ϕ)un(ϕ)1′

r

b(yn; ϕ)′un(ϕ)

]

B(yn; ϕ)

b(yn; ϕ)′un(ϕ)
(15)

R
(l)
2 (yn, un(ϕ), ϕ) = A(ϕ)′

[

I − B(yn; ϕ)un(ϕ)1′

r

b(yn; ϕ)′un(ϕ)

]

[∂B(yn; ϕ)/∂ϕl]un(ϕ)

b(yn; ϕ)′un(ϕ)

+
[∂A(ϕ)′/∂ϕl]B(yn; ϕ)un(ϕ)

b(yn; ϕ)′un(ϕ)
. (16)

Using these equations, we can recursively calculate wn(ϕ) at every iteration.
For a set of observations (y1, ..., yn), we would like to find the maximum of pn(y1, . . . , yn; ϕ).

Equivalently, we can maximize log pn(y1, . . . , yn; ϕ). Define the log-likelihood of observations
(y1, . . . , yn) as

ℓn(ϕ) =
1

n + 1
log pn(y1, ..., yn; ϕ). (17)

Using Equation 11, we can rewrite this as

ℓn(ϕ) =
1

n + 1

n
∑

k=1

log[b(yk; ϕ)′uk(ϕ)]. (18)

To estimate the set of optimal parameters ϕ∗, we want to find the maximum of ℓn(ϕ),
which we will attempt via recursive stochastic approximation. For each parameter l in ϕ, at
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each time n, we take (∂/∂ϕl) of the most recent term inside the summation in Equation 18,
to form an “incremental score vector”

S(Ỹn; ϕ) =
(

S(1)(Ỹn; ϕ), ..., S(p)(Ỹn; ϕ)
)

′

(19)

with

S(l)(Ỹn; ϕ) =
∂

∂ϕl

log[b(yn; ϕ)′un(ϕ)]

=
b(y; ϕ)′[(∂/∂ϕl)un(ϕ)] + [(∂/∂ϕl)b(yn; ϕ)]′un(ϕ)

b(yn; ϕ)′un(ϕ)

=
b(y; ϕ)′wn(ϕ) + [(∂/∂ϕl)b(yn; ϕ)]′un(ϕ)

b(yn; ϕ)′un(ϕ)
(20)

where
Ỹn , (Yn, un(ϕ), wn(ϕ)). (21)

The RMLE algorithm takes the form

ϕn+1 = ΠG

(

ϕn + ǫnS(Ỹn; ϕn)
)

(22)

where ǫn is a sequence of step sizes satisfying ǫn ≥ 0, ǫn → 0 and
∑

n ǫn = ∞, G is a compact
and convex set (here, G ⊆ Φ, the set of all valid parameter sets ϕ), and ΠG is a projection
onto set G. The purpose of the projection is to ensure valid probability distributions and
maintain all necessary conditions. Note that Equation 22 is a gradient update rule, with
constraints.

Krishnamurthy and Yin have proved convergence of this learning method for HMMs
with continuous observation densities in [26]. In [3] we give an argument for extending this
proof to discrete observations.

Equations 16 and 20 can both be simplified for each type of parameter in ϕ. In [3] we
give derivations of both equations for

1. transition probabilities aij(ϕ),

2. observation probabilities bjk(ϕ) when assuming discrete observations,

3. mean vector µj(ϕ) and covariance matrix Σj(ϕ), when assuming continuous observa-
tions taken from multidimensional Gaussian distributions, and

4. Rj(ϕ) for Σj(ϕ) = R′

j(ϕ)Rj(ϕ), where Rj(ϕ) is the upper-triangular matrix of the
Cholesky decomposition of Σj(ϕ) in a multidimensional Gaussian distribution.

3.3 Numerical Simulations

The model and algorithm presented above were implemented in Matlab and tested via
Monte Carlo simulation, for various model types and parameters. Fig. 3 shows one example
of such a run.

For this example, we generated data from a simple two state model, with transition
matrix

A =

[

0.9 0.1
0.1 0.9

]

11
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Figure 3: Training example. (ε = .1
n0.5 )
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and observations generated from Gaussians with parameters

µ =

[−1.0

1.0

]

, σ =

[

0.6

0.9

]

.

For training, we set εn = 0.1
n.5 , and initialized the training model to

A =

[

0.5 0.5
0.5 0.5

]

, µ =

[−0.75

−0.50

]

, σ =

[

1.0

1.0

]

.

The parameters converged within 40,000 iterations.
Note, again, that this is an online training algorithm, so the model is always updating

model parameters as observations occur. The number of iterations for convergence is highly
variable and depends on a large number of factors, including the number of parameters in
the model, training rate parameters, and the characteristics of the data used for training.
However, we may be able to generally improve the efficiency of the training algorithm, using
ideas discussed in the next section.

More extensive testing and analysis with multiple initial parameter values are presented
in [3].

3.4 Model Averaging and Tracking

When analyzing stochastic approximation algorithms, one goal is to improve asymptotic
efficiency. One way to do this is to use averaging. Krishnamurthy and Yin [26] suggest
the averaging in both the iterates (i.e., ϕn) and the observations (as measured by S(Ỹ , ϕ)).
This averaging takes the form

ϕn+1 = ΠG(ϕ̄n + εnnS̄n) (23)

ϕ̄n+1 = ϕ̄n − 1

n + 1
ϕ̄n +

1

n + 1
ϕn+1 (24)

S̄n+1 = S̄n − 1

n + 1
S̄n +

1

n + 1
Sn+1, (25)

with εn = 1/nγ , 0.5 ≤ γ ≤ 1. In [26], Krishnamurthy and Yin provide convergence,
asymptotic optimality, and asymptotic normality proofs for the modified algorithm. These
formulas can also be modified to work with a “fixed history”by replacing n in Equations 23-
25 with a fixed constant k, or, alternatively, min(n, k). Various sources [23,26] also suggest
the use of fixed ε for use in tracking. Analysis of the RMLE algorithm for tracking slowly
varying HMM parameters also appears in [26]. We provide numerical simulations and
analysis of all of these variations in [3].

3.5 Learning a Model of Unknown Order2

For HMMs, it is generally assumed that the number of states needed to represent an under-
lying process is known. When working with a real system, however, knowing the optimal
number of states may be difficult or impossible. A recent tutorial paper on hidden Markov

2This work was completed after the end of funding from the Sandia National Laboratories Fellowship,
but is included in the interest of completeness.
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Figure 4: Initialization of an HMM with two-dimensional Gaussian observation densities.
Each density is indicated on the graph by its mean and a contour line containing 80% of
the density. Each density is also shaded according to the stationary probability of its state,
with more likely states shaded darker. Densities of the model to be learned are drawn in
red.

processes by Ephraim and Mehrev [30] summarizes the state of the art of order estimation
in hidden Markov models. In almost all cases this involves the comparison of a large number
of learned models with different state orders.

We propose an ad hoc approach for learning the underlying state order of a set of
observations. Our proposal is for HMMs with Gaussian observation densities, although it
should be valid for other densities.

Our method works as follows. First, we initialize a model with a large number of
states, with the observation densities initially covering the region of space occupied by the
observations. In our example, we assume that our observations will be contained in the
region {(x, y) : x, y ∈ (−10, 10)}, and we choose to start with 16 states with Gaussian
densities equally spaced throughout this region. Fig. 4 shows this setup,where the densities
for each state are drawn in blue. The densities of the states in the model to be learned are
drawn in red.

Note that there is no indication on this graph of transition probabilities. However, in
this figure and in the graphs in Fig. 5, the density associated with each state is colored
according to that state’s stationary probability, derived from the stationary distribution of
the transition probability matrix A. Initially, all transition probabilities are equal, so the
stationary distribution (and therefore the distribution coloring) is uniform. Darker coloring
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of mean and contour lines indicates higher stationary probability for a particular state.
The parameters of the source model in this experiment are

A =









.7 .1 .1 .1

.1 .7 .1 .1

.1 .1 .7 .1

.1 .1 .1 .7









, µ =









(−4.5, 4.5)
(−1, 1)

(2.4,−1.3)
(5,−5)









,

Σ1 =

[

1.0 0.75
0.75 1.5

]

Σ2 =

[

2.0 0.5
0.5 1.0

]

Σ3 =

[

2.0 −1.5
−1.5 2.0

]

Σ4 =

[

2.5 −0.1
−0.1 2.5

]

.

Fig. 5 documents the progression of the training. As can be seen, by 200,000 iterations,
the active states in the model have generally converged to the original model, and states
far away from sample data have remained inactive. More study is needed to analyze this
procedure.

3.6 Discussion

This section explored the use of the recursive maximum-likelihood estimation (RMLE) algo-
rithm for on-line training of hidden Markov models (HMMs). We have successfully trained
models using the algorithm, exploring how various combinations of training parameters af-
fect learning. We have also successfully demonstrated that a large model with states whose
distributions cover a section of space can correctly learn the structure of that space. The
next section will describe the use of HMMs in a cascade structure for learning semantic
concepts.

4 An Associative Memory Model for Semantic Learning

Let us restate our basic assumptions: first, language is primarily semantic, that is, it is
concerned mostly with our knowledge of the world; second, this understanding is gained
by recognizing and learning relationships between or among events and cues in the envi-
ronment; and third, that this learning requires the learner to be embodied and situated
in the environment. In this section, we will develop a basic model for learning semantic
associations from environmental cues.

Our focus is on semantic knowledge gained primarily through repeated stimulation from
the environment, and so, for now, we are ignoring one-shot or fast-map learning [31–34].

We also note that, because of our focus on learning, our work is similar to research in
multimodal learning. As such, our approach may be applicable to research in that area.

4.1 General Associative Memory Model for Semantic Learning

Semantics is meaning. It is our knowledge of the world and how it works. Evolutionarily and
developmentally, we have first learned our knowledge of the world through the correlation of
sensory-motor events and cues. Some examples pointed out in Section 2.2 include learning
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(b) 33,000 iterations
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(c) 208,000 iterations

Figure 5: Learning an HMM with two-dimensional Gaussian observations, using a model
with a large number of states. The model was run with history k = 1000, and constant
learning rate ε = .001.
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Figure 6: The apple concept is associated with the different ways we sense apples, as well
as with other related knowledge.

what happens when one touches a hot burner, learning to associate the sight and smell of
fire, and learning to associate a word with an event or some other co-occuring cue.

If we refer to learning simply as association, this has a high degree of agreement with
behaviorist theories, particularly with regard to learning the relationship between cues or
events and one’s own actions. When talking about animal learning, behaviorism is often the
best explanation, and it can describe much of human behavior as well. How do human and
animal behavior differ then? One important difference is that humans can communicate
meaning linguistically, using symbols representing concepts.3 The question becomes, can we
mimic this behavior, that is, can we build a system which can learn meaning in a behaviorist
manner (i.e., via association), and in addition, can create symbols that can be manipulated
and communicated? We think so.

According to [37], “concepts are the most fundamental constucts in theories of mind.”
While there is some debate about the definition of concepts, or even whether they exist [37],
a concept is generally defined in terms of the features that are associated with it, as well
as the rules that relate these features ( [10], pp. 409). Fig. 6 shows an example, where the
concept of “apple” is associated with its smell, taste, sight, sounds, and feel of an apple, as
well as other related knowledge.

One feature to note about Fig. 6 is the fact that the concept is represented as a discrete
unit. It does not simply exist as a set of weights connecting two sensory modalities. This
formulation differs from that of many of the models often used to associate different infor-
mation streams, where associative relationships are related directly (e.g., Hopfield networks
and related work [38,39], some Bayesian Networks [40], and fused or coupled HMMs [41,42]).
This difference is important because it allows the concept to be manipulated as a symbol.

Fig. 7 gives a more abstract illustration of concept connections.
Taking the models one at a time, the visual model independently learns visual concepts

of the objects or other cues in its environment. These concepts could include such things
as colors, shapes, textures, or types of motion, although each of these may be put into a
separate model. The audio model learns concepts from audio cues, including speech. At the

3As an aside, chimps, dogs, bees, and some other animals may be able to communicate and/or understand
symbols to a limited extent. See, e.g., [34–36].
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Figure 8: Associative learning of the word “apple”.
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lowest level, this might include environmental sounds and phonemes. The concept model
learns frequently co-occuring states or classifications of the lower models. Learning in all
models is unsupervised, although depending on the model and learning method chosen,
models may be initialized with a bias to learn better and/or faster. The model can, of
course, scale up to include more types of sensory models.

Note that Fig. 7 is greatly simplified, and as shown, would be able to learn the correlation
between the sight and sound of, say running water, but perhaps not word associations. For
implementation on a robot, this problem is dealt with in [3].

One necessary condition for effective communication is that the two people (or in our
case, the person and the robot) communicating share a similar set of concepts. Thus, the
learning of concepts can be described as an attempt to learn a model of another person’s
knowledge. Fig. 8 shows this idea graphically. The figure shows an interaction between
two subjects, a person and a robot, each with his own cognitive model of the world. The
immediate goal of the robot is to learn the cognitive model the person is using to understand
the immediate environment.

As hinted by the scenario in Fig. 8, we envision this model as one part of a more complex
model, designed around the cognitive cycle described by Fig. 1. For reasons highlighted in
Section 3.2, we have chosen to use HMMs for the individual models. The next section
describes this specialization of the model.

S1 S2 S3

ϕc

A S O

ϕa ϕv

qvqa

yc = {qa, qv}

qc

ya yv

Figure 9: A composite HMM model for associative learning.
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4.2 Composite HMM-based Associative Memory

Starting with Fig. 7 and using HMMs, we come up with the composite HMM model shown
in Fig. 9, where ϕa corresponds to the auditory model, ϕv corresponds to the visual model,
and ϕc corresponds to the concept model. The inputs to the visual and auditory models
are feature vectors representing corresponding visual and audio inputs. The output of these
models is the discrete state classifications, which are concatenated and used as the input to
the concept model.

Since this model is meant to be embedded in a robot, we require an online learning
algorithm. In our case, we have chosen to use the RMLE algorithm described in Section 3.
In [3], we discuss convergence of the full composite model using the RMLE.

Using the scenario presented in Fig. 8, we have run a Monte Carlo simulation of the
composite model in Matlab. In the simulation, we start with a composite HMM representing
the knowledge of the human, and another composite HMM representing the knowledge of
the robot. The goal is for the robot model to learn the parameters of the human model.
The simulation runs as follows:

1. First, a simulated visual stimulus is presented to both the robot model and the human
model.

2. The human model recognizes the visual stimulus (via his visual model), “thinks”about
it (the concept model recognizes the input), and randomly “speaks” a sound corre-
sponding to the concept (the concept model drives an audio model to produce out-
put).

3. The robot model uses its visual model to classify the visual stimulus according to its
current “understanding” (i.e., its current model parameterization), and also updates
that “understanding” to closer match the observation (i.e., the parameters of the ob-
servation probability distributions for the model states are updated using the RMLE
algorithm). It does the same with available audio input. Using the state classifications
from the auditory and visual models, the robot model classifies the concept with the
concept model and updates its parameters using the RMLE algorithm.

When the simulation is run, the robot model learns a parameterization similar to (though
not identical to) the human model. The discrepancy occurs because, as formulated, the
simulation is asymmetric. When the human concept model drives the auditory model to
produce output, it does not use the transition probabilities of the auditory model itself.
This means that the auditory transition probabilities in the robot model learn something
other than the transition probabilities of the auditory HMM in the human model. (In
fact, as currently implemented, the auditory transition probabilities more closely reflect the
human concept transition probabilities.) The concept HMMs transition and observation
probabilities in the robot model differ slightly from the human model for related reasons.
One possible workaround is to learn the robot model in the current setup, and then use
this model to teach a second robot model. This second robot model should be identical to
the first. We have not yet tried this experiment. What the results have shown is that the
composite model is able to learn associations between two input modalities.

Fig. 10 shows our vision of the full composite HMM as will be implemented in our robot.
The lowest level of the cascade consists of a number of HMMs from multiple modalities
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Figure 10: Vision of the entire associative learning system.

(i.e., various HMMs for auditory, visual, proprioceptive and kinesthetic senses). The state
outputs of these HMMs will then be used as the inputs to a subsequent layer of HMMs for
concept learning. This idea can be extended to more layers for learning higher level concepts.
We believe this particular approach to be novel for concept learning, and moreover capable
of modeling some of the deep structure of language and reality. See [3] for more details on
our implementation.

5 Conclusion

In this report we have described the background and recent progress of our work on a Com-
posite HMM architecture for associative semantic learning. In the past year, we have imple-
mented and extensively studied the RMLE algorithm for training hidden Markov models,
and successfully embedded HMMs in a composite model for associative learning of con-
cepts. We are in the progress of running experiments on our robot using this framework.
By constructing such a real-world device capable of learning and potentially manipulating
symbolic concepts linguistically, we believe this work will help advance the understanding
of human cognition and language acquisition.
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