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ABSTRACT 
Underground carbon storage may become one of the solutions to address global 

warming. However, to have an impact, carbon storage must be done at a much larger scale than 

current CO2 injection operations for enhanced oil recovery. It must also include injection into 

saline aquifers. An important characteristic of CO2 is its strong buoyancy—storage must be 

guaranteed to be sufficiently permanent to satisfy the very reason that CO2 is injected. This 

long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even 

if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, 

especially in the operational short term. This report proposes a hierarchical approach to 

permitting in which the State/Federal Government is responsible for developing regional 

assessments, ranking potential sites (“General Permit”) and lessening the applicant’s  burden if 

the general area of the chosen site has been ranked more favorably. The general permit would 

involve determining in the regional sense structural (closed structures), stratigraphic 

(heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the 

long-term fate of geologically sequestered CO2. The state-sponsored regional studies and the 

subsequent local study performed by the applicant will address the long-term risk of the 

particular site. It is felt that a performance-based approach rather than a prescriptive approach 

is the most appropriate framework in which to address public concerns. However, operational 

issues for each well (equivalent to the current underground injection control -UIC- program) 

could follow regulations currently in place.  

Area ranking will include an understanding of trapping modes. Capillary (due to 

residual saturation) and structural (due to local geological configuration) trappings are two of 

the four mechanisms (the other two are solubility and mineral trappings), which are the most 

relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and 

faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon 

a primary seal only but assumes that any leak can be contained by geologic processes before 

impacting mineral resources, fresh ground water, or ground surface. We examined the Texas 

Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers 

provide large potential storage volumes and defense-in-depth leakage protection. In the Texas 

Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the 

total depth of most wells (>2,400 m–8,000 ft). In addition, most faults, particularly growth faults, 
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present at the primary injection level do not reach the surface. A potential methodology, which 

includes an integrated approach comprising the whole chain of potential events from leakage 

from the primary site to atmospheric impacts, is also presented. It could be followed by the 

State/Federal Government, as well as by the operators.  
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EXECUTIVE SUMMARY 
The primary objective of the study was to develop a document providing guidance for 

carbon storage permitting. This topic is still in a state of flux. The scope of work consisted of 
- reviewing and evaluating permitting procedures in related fields, including deep-well 

injection, gas storage, nuclear waste disposal;  
- performing numerical modeling of long-term CO2 leakage after a data-gathering 

phase,  
- assessing risks of sudden and diffuse releases, and  
- providing recommendations for developing a permitting protocol by incorporating 

insights gained from procedural review and from modeling and risk assessment 
performed in the study. 

Review of current relevant permitting procedures led to the conclusion that none is 
directly applicable to carbon storage. Despite the presence of buoyancy and short-term 
operational aspects (underground injection control [UIC] Class I nonhazardous wells, natural 
gas storage) or the long-term aspect (nuclear waste), procedures addressing the combined 
issues of long-term storage of large amounts of a reactive buoyant fluid are missing. The oil and 
gas industry alone routinely injects such large volumes (UIC Class II wells). In all cases, 
postclosure monitoring is minimal when it is required—a common factor in all types of 
underground storage: siting must be done so that no long-term monitoring is required. For CO2 
injection, current UIC prohibition of any leakage from the injection horizon is not realistic or 
even desirable. CO2 is generally not toxic and some leakage, in the statistical sense, can be 
tolerated. However, no consensus exists on the amount of leakage that would be permissible 
and still address the concern of high atmospheric CO2 concentrations.  

Work focused on the State of Texas because of its large capacity for storage and its 
abundance of CO2 sources. In particular, the Texas Gulf Coast (TGC) is an attractive target 
because stacked sand-shale layers provide large potential volumes and defense-in-depth 
leakage protection. Major leakage pathways have been identified in Texas: boreholes 
(particularly older abandoned wells), faults, and seal heterogeneities. Well conduits represent 
the most direct conduit to fresh ground water and the ground surface. A study of a well dataset 
in the context of evolving state and federal regulations led to the following age groups relative 
to the quality of well plugging/abandonment: post-1983, 1983–1967, 1967–1935, and pre-1935. 
However, the assurance of a good plugging job does not guarantee the integrity of the well 
relative to CO2. Current studies suggest that CO2 could degrade enough of a cement plug to 
create an escape pathway. Even wells abandoned at current standards cannot be guaranteed to 
be leak-free in the long term. It is not even certain that their long-term probability of leakage is 
smaller than that of wells drilled in the late 19th century, although short-term (decades) leakage 
probability is likely less. On the other hand, favorable local factors (e.g., borehole closure due to 
clay action) could mitigate leakage. In addition, a comprehensive statistical analysis of the 
>130,000 wells in the TGC clearly shows that a deepening trend in the past century, which 
continues today but with a clustering in the 1,500- to 3,000-m (5,000- – 10,000-ft) depth range. 
This analysis suggests that CO2 should be injected as deep as economically feasible.  

Carbon storage modes are generally described according to their trapping mechanisms 
(capillary, solubility, structural, and mineral). Mineral (immobilization through reaction with 
rock matrix) and solubility trappings are the ultimate fate of injected CO2 and could be locally 
important. The current work, however, focuses on capillary and structural trappings. Capillary 
trapping results from the hysteresis inherent in multiphase flow processes that leave a trail of 
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immobile free-phase supercritical CO2. Estimation of the impact and capacity of capillary 
trapping requires a fine-tuned knowledge of both flow at the microscopic scale and formation 
heterogeneity. Capillary trapping does not require an obstacle to flow in order to be efficient; 
the moving CO2 plume will leave behind a trail at residual saturation, attenuating it until it is 
exhausted (“open traps”). This property makes capillary trapping also an efficient process for 
limiting and absorbing leakage from the primary injection level (“defense in depth”) and 
reinforcing the concept of deeper injection. On the other hand, structural trapping involves 
domal-like structures, in which CO2 can accumulate (“closed traps” analogous to oil and gas 
traps). This work analyzed the topography of a regional TGC formation and a likely candidate 
for injection in Texas (Oligocene Frio Formation). Faults could also create a direct connection to 
the atmosphere. However, most TGC faults present at the primary injection level do not reach 
the surface. Other leakage pathways, such as a closed trap overflowing through spill points, or 
seal failure, can be accommodated by the capillary trapping mechanism, which again provides a 
defense-in-depth mechanism. The effectiveness of this mechanism depends on the level of 
heterogeneity of the formations that must be thoroughly studied.  

Any permitting of saline aquifer carbon storage must address the primary reason for 
implementing it: reduction of CO2 atmospheric concentrations, which translates into large 
injection volume that must be “mostly” contained for long periods of time. However, current 
procedures break down for large volumes. Although current legislation addresses operational 
issues, no regulatory framework addresses long-term aspects of carbon storage. A solution is to 
shift the permitting from a rule-based process to fulfilling some well-defined, performance-
based criteria. Performance-based permitting puts the burden of proof onto the applicant 
raising the anxiety level of the State agency because of the inherent uncertainty associated with 
it. It follows that permitting should be done at the regional level (“risk assessment”) rather than 
at the well level, and the burden to show that the site is safe should be on the operator rather 
than a box-checking exercise by the regulator. This arrangement allows flexibility and 
innovation in the design of the injection operations. Because total reliance is placed on the 
geology to contain CO2 for thousands of years, it is critical that the geology, including well-
understood and accurately represented stratigraphy and structure, be a central part of any 
permitting process. It follows that some form of performance assessment through risk analysis 
is needed. Similarly, different aspects of monitoring (assessment of total injection volume, 
detect leakage, etc.), whose technology seems to develop and progress at a quick pace, cannot 
be assumed to last long after site closure. We have proposed a hierarchical approach in which 
the State/Federal Government is responsible for developing regional assessments ranking 
potential sites (“General Permit”) and lessening the applicant’s burden if the general area of the 
chosen site has been ranked more favorably. The general permit would involve determining in 
the regional sense (1) structural controls, (2) stratigraphic controls, and (3) petrophysical 
controls on the long-term fate of geologically sequestered CO2. The state-sponsored regional 
studies and the subsequent local study performed by the applicant would address the long-
term risk of the particular site. Operational issues for each well (equivalent to the current UIC 
program) will follow regulations currently in place. A recurrent observation during this work 
was the lack of easily accessible data. Geologic-themed databases could provide a lot of 
information but would also require a lot of effort to collect it. Information on operations and 
engineered systems (“wells”) is harder to gather and is mostly anecdotal. In this context, we 
developed semianalytical and numerical tools (STOMP-CO2) that could be used in the 
permitting process.  
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INTRODUCTION 
Generalities 

Geological sequestration of CO2 (also called carbon storage) has been recognized as an 

important way to mitigate the increase in atmospheric CO2 (Bruant et al., 2002; Gale, 2004; 

IPCC, 2005, Chapter 5) and has been touted as a way to address global warming (NRC, 2006). 

Injection of CO2 has the additional benefit of aiding in oil recovery (Enhanced Oil Recovery, 

EOR), if it is injected into oil reservoirs if some physico-chemical conditions are met (Holtz et 

al., 2001). CO2 Enhanced Gas Recovery (EGR), a novel concept, may also grow from a few 

current experimental projects to a more widespread technology. CO2 could also enhance 

coalbed methane recovery (ECBMR) because carbon dioxide sorbs more strongly to coal than 

methane does. All this has led to the concept of stacked storage. First, CO2 is used to 

economically recover more hydrocarbons and jump-start the second step. This second step 

involves injection of larger volumes of CO2 in neighboring saline aquifers using pipelines and 

other needed infrastructure built during the first step. The current work mainly addresses this 

step of injection in saline aquifers.  

Carbon storage will strongly take hold in the industry only if it can be demonstrated that 

the hazards involved are known and that their potential negative consequences can be 

mitigated. The primary objective of this study is to develop a document to guide permitting of 

geological sequestration of CO2 by reviewing permitting procedures in other programs, results 

of related research programs, and results of modeling and risk assessment. Permitting is critical 

to stakeholders (industry, regulators, environmental groups, the public at large) because 

restrictive permitting could markedly limit the use of geologic sequestration, although overly 

lax regulation could result in widespread public objection to the technique or negative 

consequences. Legislation and regulations for EOR and ECBMR are already in place that 

address the important operational issues of the injection phase. This study focuses on long-term 

(hundreds to thousands of years) postclosure migration of CO2 in the subsurface, less so on the 

fate of CO2 remaining in the formation(s). IPCC defines plant life time as medium term, whereas 

short term involves operational decisions and long term suggests a duration of from 100 years to 

a few centuries (IPCC, 2005, p.1–23). Millennia are qualified as very long term. This work 

emphasizes Texas, which contains two important hydrocarbon provinces on the world scene 

(the Permian Basin and the Gulf Coast), with excursions in other geographic areas when 
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appropriate (Ohio–West Virginia). Both large volumes of CO2 are currently being released, and 

high-quality data are available from pilot injections in these areas. The emphasis on Texas is 

appropriate because about 40% of the electric power in Texas is generated by coal-fired power 

plants, often located above formations that are good candidates for CO2 sequestration (Figure 

1). The study is, however, limited to the Texas Gulf Coast for two reasons, the first of which is 

the abundance of saline aquifer candidates (Hovorka et al., 2000) as well as the abundance of 

sources (Hendriks et al., 2002). Administrative limits defining the Texas Gulf Coast for this 

work are shown in Figure 2, which do not discount the possibility that additional CO2 could 

come from out of state. A second reason for locating the study along the Texas Gulf Coast is that 

many reservoirs are susceptible to CO2 flooding (Holtz et al., 2001). Historically, for a variety of 

reasons (e.g., CO2 availability via pipelines developed primarily to access the Permian Basin, 

Texas), most CO2 floods in the state have taken place in West Texas and far fewer in the Gulf 

Coast. The Texas lignite belt is also located in the Gulf Coast area but further inland (e.g., Kaiser 

et al., 1980). The concept of stacked storage makes it likely that CO2 captured from the coal-fired 

power plants will be initially transported by pipeline toward the coast, where it is most likely to 

be used, although it could be injected in deep unminable coal seams in a later stage (e.g., 

Hernandez et al., 2006). Another tangential reason is that the Texas Gulf Coast has a very low 

level of seismic activity (Frankel et al., 2002; Hovorka et al., 2003) and is not a credible candidate 

for any type of volcanic activity in the near future. We will also develop the contention that a 

depth of ~3,000 m (10,000 ft) is ideal for CO2 storage because (1) most well bores do not reach 

that depth, (2) it maximizes storage (Holtz, 2006), and (3) it increases natural defenses against 

leakage.  

A typical 500-MW coal-fired plant releases approximately 2.9 Mt CO2/yr (0.8 Mt C/yr). 

Because capture consumes energy, a 500-MW plant would have to send 3.4 Mt CO2/yr (0.9 Mt 

C/yr) to storage if 85% of the CO2 present in the flue gas is captured (IPCC, 2005, p.1–15). At the 

Sleipner site, Norway, 1 Mt CO2 is injected annually. The injected amount is higher at Weyburn, 

Canada (~1.5 Mt), and Salah, Algeria (~1.2 Mt), and even higher in EOR operations, such as at 

Rangely, Colorado, and in the Permian Basin, Texas. Most projects will inject a CO2 flux within 

the 1 to 10 Mt/yr range, equivalent to 850 to 8,500 gpm or 1.2 to 12 MGD or 29,000 to 290,000 

bbl/day, assuming a CO2 downhole density of 0.6 t/m3. Such flow rates will most likely require 

multiple injection wells but could require only one well (with the caveat that a second one may 
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be mandated by rule to receive the CO2 flux when the first one is down). A related study 

investigating the capacity of the Frio Formation to accept fluids in the Southern Gulf Coast 

(Nicot et al., 2005, p.160) found, using actual Class II well specifics, actual formation parameters, 

and current rule requirements, that the median injection flow rate is ~280 gpm, with the 95th 

percentile being in thousands of gpm.  

The terms sequestration and storage are used interchangeably in this report. Strictly 

speaking, sequestration carries a concept of permanence, whereas storage does not. If 

sequestration implies that the CO2 will stay underground forever, storage can be understood in 

at least two ways: either CO2 will be retrieved for industrial or other use at a later time or it will 

progressively leak. Another term with possibly multiple meanings is leakage, which can be 

understood as any migration from the primary formation in which CO2 was injected. Or it can 

be more restrictively defined as migration beyond the deep subsurface into the fresh-water zone 

and then into the biosphere. Terminology is an important part of public acceptance, and 

agencies should carefully think about naming their program and the nomenclature that they 

use. This report also uses the term abandoned wells in a broad sense: all nonactive wells either 

plugged according to regulations or orphan, but not in temporary standby, are included.  

Technical Aspects 

Below a depth of ~800 m in average pressure and temperature conditions, CO2 is 

supercritical, with a density in the 600 to 800 kg/m3 range and a viscosity at least one order of 

magnitude lower than that of water. The large resulting mobility contrast between water and 

CO2 has a deep impact on the system-flow dynamics resulting in the following four main 

categories for CO2 underground storage modes in saline aquifers: 

- residual or capillary trapping owing to multiphase flow processes (e.g., Akaku et al., 

2006; Akervoll et al., 2006; Ide et al., 2006); 

- solubility trapping through the dissolution of CO2 into the aqueous phase; 

- structural trapping, when fluid is trapped in the fashion of hydrocarbon 

accumulation, and hydrodynamic trapping (e.g., Bachu and Adams, 2003), when the 

residence time and flow rate of both water and supercritical fluid are so low that CO2 

is essentially trapped; and 

- mineral trapping due to the reaction of CO2 with host rocks (e.g., Gunter et al., 2000; 

Xu et al., 2003; Xu et al., 2006). 
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Figure 1. Location of coal-fired power plants (brown circles), natural-gas-fired power plants 
(yellow circles) and some potential candidates for CO2.-EOR. Major oil and gas 
reservoirs are also shown for reference.  

One can also add sorption trapping, important for coal seams and black shales, as well 

as cavern trapping in salt domes. Several studies have suggested that mineral trapping, 

although representing the ultimate fate of CO2 in the subsurface, is a slow process (e.g., Noh, 

2003), except maybe in basalts, and that short- to medium-term (tens to hundreds of years) 

trapping mechanisms are capillary (e.g., Kumar, 2004) and structural trapping. The Frio 

experiment, where 1,600 tons of CO2 was injected into a saline formation at a depth of ~1,500 m 

(~5,000 ft) in the Texas Gulf Coast (e.g., Hovorka et al., 2005; Kharaka, et al., 2006) has 
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confirmed the validity of the process. In general, solubility trapping seems also to be a minor 

component of the total storage, although induced water density changes may alter flow 

dynamics. The convection put forward by some researchers (e.g., Ferer et al., 2002; Ennis-King 

and Paterson, 2003) seems to be effective only in a higher permeability medium. However, 

dissolution could be enhanced through engineering solutions (e.g., Leonenko et al., 2006; 

Georgescu et al. 2006). One of the goals of this report is to investigate the ways through which 

structural and capillary  trapping mechanisms can fail and the resulting implications for 

permitting.  
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Figure 2. Map showing (a) the 23 Gulf Coast counties and (b) the three RRC districts (2, 3, and 4) 
used in the statistics work 

The capillary trapping mechanism does not perform well if the CO2 path is cut short 

intrinsically by fingering or by external features, such as a well or a conductive fault. Similarly, 

structural trapping is ineffective if seals are poor and/or some of the CO2 can leak at natural 

spill points. Of all the mechanisms, only structural trapping is typical of hydrocarbon 

accumulations and it only requires a seal. It can be argued that solubility trapping does require 

a seal too because water flows. However, it is much less critical than for structural trapping 

because CO2-enriched water tends to sink owing to density differences.  

A good understanding of CO2 leakage entails a good knowledge of the local geology, 

and the general geology of the Gulf Coast is simple, albeit complicated in the details (e.g., 

Ambrose et al., 2006; Appendix A). It consists of thick Tertiary and Quaternary wedges (totaling 
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several kilometers) of alternating sandy and clayey layers resulting from the deposition by 

rivers of their sediments in deltas and farther out in the ocean in multiple, offlapping cycles that 

record deltaic and shoreface progradation (Figure 3). The process, resulting in fluvial, deltaic, 

barrier bar/strandplain, and slope/basin depositional systems, such as those of the modern 

Mississippi River and smaller coastal rivers, is still active today. Growth faults, resulting from 

sediment loading on unstable substrates, periodically develop. Intermittent movement along 

these growth faults has accommodated accumulation of enormous masses of sediments. 

Growth faults are mostly syndepositional faults (still active in the Houston area on sediments of 

wedge “6” of Figure 3) but could be reactivated at a later time. In the northern section of the 

Texas Gulf Coast, salt domes have been moving upward from the kilometer-thick Louann salt 

layer. This movement has resulted in a contrast in oil traps and, consequently, in carbon storage 

potential targets, where, in the Houston area, upturned sediments abutting diapirs act as a trap, 

whereas farther south, in the Corpus Christi area, oil reservoirs are made by more common 

structural and stratigraphic traps.  

What are the Objectives of this Work? 

Development of permitting guidelines for geologic sequestration of CO2 is a primary 

goal of this project. Development of reliable guidelines is critical to ensuring the selection of 

safe, suitable sites that are monitored effectively and provide long-term subsurface storage of 

CO2. To accomplish this objective, we will perform the following tasks: (1) review and evaluate 

permitting procedures in related fields (deep-well injection, natural gas storage, nuclear waste 

disposal), (2) determine what data are needed to perform a risk assessment and collect them if 

possible, (3) develop a risk assessment approach, and (4) provide recommendations drawn from 

risk assessments performed in this work but also gathered from the literature, as well as drawn 

from our general work experience dealing with subsurface processes.  

Slow, long-term leakage is an inescapable part of any large injection program. Slow 

leakage is, however, acceptable because stabilization of the atmospheric concentration at a 

reasonable level for a long enough period is the goal of carbon storage. In any case, most 

accumulations of natural fluids leak. Oil and gas reservoirs provide a good tool for assessing 

leakage despite a few differences to be detailed later. These reservoirs are construed as perfect 

containers because they were able to trap hydrocarbons through geologic times (although 

numerous wells could have destroyed their initial integrity). Some hydrocarbon accumulations 
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have been trapped for hundreds of millions of years. However, more recent reservoirs may 

represent only some dynamic steady state between leakage and charge from a feeding downdip 

source. In addition, it is also known anecdotally that most hydrocarbons generated in the deep 

subsurface were not trapped but were released to the surface through geologic times. The real 

question then is “what fraction of the generated amount has leaked to the surface?” 
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Source: Adapted from Galloway (1982) and Galloway et al. (1982) 
Note: Wedges of interest for carbon storage are #4 (Vicksburg/Frio) overlain by a regional seal 

(Anahuac Shale, white wedge between #4 and #5) and #5 (Oakville/Fleming) overlain by 
another regional seal (Amphistegina B Shale, white wedge between #5 and #6), 
complementing the low permeability of the upper half of the wedge (Burkeville confining 
system). The last major progradation wedge of Plio-Pleistocene age (#6) is still active and 
too shallow to be of prime interest for CO2 storage. 

Figure 3. Southern Gulf Coast major sand-rich progradational packages and growth-fault zones 
beneath the Texas Coastal Plain.  

A succinct description of leakage consequences can be put into a matrix with three 

entries: timeframe (short/long term), footprint (local/global), and rate (catastrophic/diffuse) 

(Table 1). Consequences are related to the health and safety (H&S) of facility staff and 

neighbors, local environment (tree kill and other biological effects on animals, decrease in 

agricultural yield, heat island effect, seismicity), alteration of minerals and energy (oil, gas, 

geothermal, etc.), and water (brine displacement, contaminant mobilization) resources and 
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global environment (global warming). Catastrophic risks do not include operational risks, such 

as a well blowout, but, rather, natural sudden releases. For example, Birkholzer et al. (2006) and 

Pruess and Garcia (2002) suggested that CO2 loss through fault zones could lead to substantial 

fluxes from the reservoir through self-enhancing processes, possibly periodically (fault-

valving).  

Comprehensive list of hazards have already been compiled in several publications (e.g., 

Saripalli et al., 2002a; Wilson, 2002). Short-term catastrophic risks and asphyxiation risks are 

likely to retain the public’s attention. The 1986 Lake Nyos catastrophe (e.g., Zhang, 1996) could 

generate public anxiety vis-à-vis CO2 storage, despite the lack of similarity between possible 

storage sites and the Lake Nyos area (in particular, local topographic features preventing the 

plume from dispersing). The Lake Nyos catastrophic event suddenly released 0.1 to 0.3 Mt CO2 

(Zhang, 1996). A similar event in Texas lakes and reservoirs is unlikely to happen mainly 

because CO2 would not accumulate at the bottom of a lake, thanks to the annual turnovers due 

to seasonal temperature changes. Leakage from natural CO2 accumulation at Mammoth 

Mountain released 0.2 Mt CO2 in 1996 (Farrar et al., 1999), which caused trees to die within an 

area of approximately 0.4 km2 (100 acres). More likely local hazards include impacts on the 

ground water (heavy metal mobilization, brine displacement, and other flow-regime changes 

because of CO2 interaction with underground rocks and fluids) and at the surface (CO2 

concentration, radon and other gas stripping, microseism and fault reactivation, soil heave, 

impact of water well mechanical integrity, etc.). Some external economical risks are also present: 

uncontrolled oil mobilization and natural gas contamination. Global risks (storage performance) 

obviously result from an increase in atmospheric CO2 through a release flux of the stored 

volume that would be larger than the global injection rate and that would negate its 

effectiveness.  

Table 1. Simplified table of hazards. 

 Short-Term 
(preclosure injection period) 

Long-Term 
(postclosure) 

 Catastrophic Diffuse Catastrophic Diffuse 

Local √ 
H&S 

√ 
H&S, L. Env. 

√ 
H&S, L. Env. 

√ 
H&S, L. Env. 

Global N/A Can be fixed N/A √ 
Global Env. 
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Report Content 

As described in the initial work plan (“proposal”), the objective of this study was to 

develop science-based permitting procedures for CO2 sequestration based on 

- review of existing permitting procedures (Task 1), 

- simulation of flow and transport of CO2 in a generic reservoir and evaluation of CO2 

migration pathways (diffuse vs. focused) and potential leakage (Task 2), 

- valuation of risk on the basis of probability distributions of input parameters (e.g., 

permeability, densities of faults, abandoned) and related consequences, 

- ranking of parameters analyzed in the risk assessment to allow site characterization 

and monitoring in order to focus on critical parameters for CO2 sequestration (Task 3), 

and 

- recommendation for permitting guidance (Task 4). 

Overall, this report follows this initial description. Not including this introduction, the 

work is divided into five sections. In Section I, we summarize pertinent aspects of current 

permitting procedures of carbon storage analogs, corresponding to Task 1 of the grant.  

Section II contains general material addressing parts of Task 2. Section III and the beginning of 

Section IV develop Task 3 issues, after describing potential injection horizons in the Gulf Coast 

in order to explain the nature of the geological components relevant to leakage (formations, 

seals, faults). Section III presents some aspects of risks linked to wells, faults, and the nature of 

the overlying layers. Quantification of related hazards (Task 2) is presented in Section IV. Using 

all information presented in the other sections, Section V, as called for in Task 4, puts forward 

permitting guidelines, as well as relevant aspects of monitoring and allied issues. Appendix A 

contains specific notes about the geology of Texas and the Gulf Coast. Targeted information on 

oil leakage and fault analysis is provided in Appendices B and C, respectively. Appendices D 

and E develop numerical aspects of the scaling analysis used in the report. The semianalytical 

and numerical models used in Section IV are presented in Appendices F and G. Appendix H 

lists papers, abstracts, and presentations stemming from this work.  

EXPERIMENTAL METHODS 
No experimental methods or equipments were used in this study.  
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RESULTS AND DISCUSSIONS 

I. Compilation of Permitting Requirements 
The Compilation of Permitting Requirements section addresses Task 1 of the agreement. 

Central to all industrial projects is the permitting process, particularly its cost and what it 

involves in terms of time investment. The first step in developing guidance for permitting CO2 

sequestration sites is to evaluate all applicable permitting approaches, such as those previously 

developed for deep-well injection, gas-storage systems, and radioactive waste disposal. Many of 

the substances being considered in these permit processes are hazardous and/or radioactive, 

whereas CO2 is generally regarded as nontoxic and not hazardous. CO2 is generally not 

considered as a waste (Coddington, 2006, oral communication; Van Voorhees, 2006, oral 

communication), but there are legislative efforts in that direction; a Supreme Court decision is 

expected in 2007 on whether to label CO2 a pollutant (Massachusetts et al. vs. EPA et al., case 

05-1120). Nevertheless, the general approach used may be adapted for CO2 sequestration sites. 

On the other hand, CO2 is routinely injected into the subsurface for EOR, although the 

permitting process for this type of injection focuses on resource protection and short-term 

environmental protection, and it does not assess the effectiveness of the subsurface geology in 

isolating CO2. In general there is no provision or limited provisions for postclosure monitoring. 

Any CO2 storage project needs to address these issues, but in addition it must guarantee that 

CO2 will be reasonably sequestered in the long term in order to be effective in obtaining 

reduction in atmospheric concentrations. This latter requirement could translate into additional 

constraints in the permitting process or additional assurances required to make the CO2 credits 

fungible. 

There are two broadly defined legislative philosophies: goal oriented and design 

oriented. Examples for the former include one-of-a-kind nuclear waste disposal facilities, where 

it is required that the dose at some locations be below legislated levels, which is true for both 

high-level and low-level facilities. Facility design and other means to reach the goal are left to 

the operator/applicant under general rules set by the responsible agency. On the other hand, 

design-oriented legislations spell out construction specifications (e.g., area of review of fixed 

radius, thickness of cement plug). This last type of legislation is well suited to standardized 

features built in numerous occurrences each year (e.g., oil and/or gas production well, 

underground injection control UIC Class II injection wells). An equivalent description of the 
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approaches would be “process based” and “regulation driven”. The two philosophies are not 

mutually exclusive, as demonstrated by current UIC Class I legislation. It requires no leakage of 

the injected fluid outside of the injection formation, but it also requires an operator to follow 

strict design specifications. In general, the larger the project or/and the longer the timeframe, 

the more latitude is given to the project designer/operator. This policy structure directly 

parallels the end members of the many ways that carbon storage permitting could be 

approached: from the reservoir scale and single-well injection operation, to the basin scale, with 

hundreds of injection wells injecting over a few decades to a few centuries.  

The following compilation, pertaining to permitting requirements in the U.S., does not 

pretend to be comprehensive in all aspects of permitting but focuses on three selected aspects of 

permitting: is it process-based or regulation-driven, what is the level of subsurface 

characterization needed, and how is postclosure monitoring approached? 

I.1 Injection Wells 
Injection wells, whatever the material injected, have to abide by UIC rules. The UIC 

program was established in 1980 at the Federal level, with EPA following the Safe Drinking 

Water Act (1974) and the Resource Conservation and Recovery Act (1976). Its implementation is 

in general delegated to the states. The UIC program defines five classes of wells (e.g., EPA, 

2002): Class I, which is used to inject hazardous, industrial and municipal wastes; Class II , 

which is used to inject fluids related to oil and gas production; and Class III , which is used to 

inject fluids for mineral extraction. Class V includes all other types of wells and Class IV has 

been banned. A large body of information can be found on EPA and Ground Water Protection 

Council (GWPC) websites. The UIC program focuses on protection of ground-water resources. 

It essentially states that the quality of the ground water should not be degraded by injection 

operations. All permits of Classes I through III follow the same basic process: geologic 

characterization to define “underground source of drinking water” (USDW), demonstration of 

integrity of seal and well penetrations in area of review, and calculation of injectivity of 

receiving zone from which maximum surface injection pressure will be defined. Permits are 

issued for a given period, at given maximum pressure, at a given maximum flow rate, and in a 

given interval of a given formation. In addition, for Class I wells, nature of the injected 

hazardous fluids is also defined within strict compositional range(s). The UIC program 

emphasizes pressure impacts of injection, with a secondary emphasis on transport (Class III 
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wells, “no migration” petition for Class I wells). Class I to III fluids do not have the density or 

viscosity contrast brought forward by CO2, except possibly municipal wastes. Possible 

detrimental impacts on aquifers of carbon storage include acidification of the aquifer if it has no 

buffering capacity and displacement of saline formation fluids into potable water supplies. In 

the only case of CO2 injection in a saline aquifer for disposal purposes—at the Frio experiment 

site in Texas—a Class V research or experimental permit was agreed on because of the limited 

amount injected, that is, ~1,600 tons of CO2 (Hovorka et al., 2003). It was not possible to apply 

for a Class II well because injection was not related to hydrocarbon production, despite the use 

of an abandoned oil well retrofitted as a monitoring well.  

Florida municipal waste wells are probably the closest operations to CO2 injection 

because of the buoyancy of the waste and the large volumes involved. Failure to appropriately 

characterize the primary seal is the main reason for current and past contamination problems 

(McNeill, 2000). Zinni (1995) hypothesized that Class I wells in Louisiana could also jeopardize 

USDW water quality through leaking faults, but he was refuted by Warner (1997).  

Area of Review and Emphasis on Pressure 

Pressure-effect emphasis in the regulations led to the concept of area of review (AOR). It 

has been traditionally defined by a fixed radius with a strong regulatory requirement that the 

injectate stays within the injection layer, although a calculated zone of endangering influence 

(ZEI) is another option. The fixed AOR radius was chosen to include the footprint of the cone of 

influence around the well where the fluid is pressured by the injection and covers the area 

where corrective actions may have to be taken to protect USDW. The UIC 40 CFR defines AOR 

in §146.03 as “the area surrounding an injection well described according to the criteria set forth in 

§146.06 or in the case of an area permit, the project area plus a circumscribing area the width of which is 

either ¼ of a mile or a number calculated according to the criteria set forth in §146.06.” Within the 

AOR, before starting any injection, an operator must identify all wells penetrating the injection 

zone or the confining zone (§146.64) and assess their status for possible corrective action. The 

legislation, however, does not carry an absolute requirement of locating known abandoned 

wells whose exact location has been lost. The overarching purpose of the AOR is protection of 

drinking water resources due to pressure buildup in the injection zone. Drinking water 

resources, also called USDW, are defined in §146.03 as a formation with water quality below 

10,000 mg/L total dissolved solids. In addition, water wells and land and mineral ownership 
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within the AOR should be documented. The AOR applies mainly to Classes I through III and 

focuses on the pressure aspect of the injection. Within an AOR, the operator must make every 

effort to characterize and to plug, if needed, all well penetrations into the injection formation 

within a given radius (at least 2 miles as required by federal law and 2.5 miles in Texas for  

Class I and 0.25 mile for Class II). In the case of an area permit, as is often the case for Class III 

wells, the AOR includes the area being permitted, with a buffer zone whose width is 

numerically equal to the “radius.” An unsuccessful but reasonable and honest effort may be 

deemed to be sufficient by the regulating agency to award the permit (especially for Class II 

wells).  

Section UIC 40 CFR §146.06 states that the AOR should be determined for each well or 

field through either a zone of endangering influence (ZEI) or a fixed radius, which cannot be 

smaller than ¼ mile. The radius of the ZEI is calculated as the lateral distance in which the 

pressures in the injection zone may cause migration of the injection and/or formation fluid into 

a USDW. Some EPA offices are questioning the adequacy of a fixed radius for traditional 

injection wells (Frazier et al., 2004), which can certainly be justified in the case of CO2 injection. 

A fixed radius of influence seems impractical and would in most cases be larger than the  

2.5 miles required by UIC Class I rules. The typical elongated shape of a trap (see Figure 12) 

does not fit well into a circular area of review. 

In most cases, Class I hazardous waste wells must meet the additional “no-migration” 

petition, in which the operator shows, through numerical modeling, that the waste will stay 

confined to the injection zone for at least 10,000 years. The requirements of the geological 

review emphasize the characterization of faults and fractures, both laterally in the injection 

formation and above in the injection zone. Current requirements from the Railroad Commission 

of Texas (RRC) for Class II wells (RRC, 2006) include making best efforts to identify all wells in 

a ¼-mile radius of the proposed injection well and providing evidence that all abandoned wells 

intersecting the injection formation have been plugged. In some circumstances, this radius can 

be increased to ½ mile (shallow disposal wells in the Barnett Shale area of North-Central Texas). 

Class III wells are used for (1) solution mining or in situ leaching for production of sulfur and 

salts and (2) metals (uranium, gold, copper), respectively. A relevant aspect of Class III permits 

is that they often involve multiple wells permitted at the same time in an area permit. Because 

the mineral deposit targeted may be above the lowermost USDW (the aquifer is then “exempt”), 
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Class III permit also involve several monitoring systems during operations. Monitoring is done 

at the edges of the injected domain in the injection formation, as well as in the aquifers above 

and below the injection horizon (for example, 30TAC §331.82).  

Acid gas (mixture of H2S and other gases with a dominant fraction of CO2) permitting is 

probably the current closest analog to CO2 injection because it is injected for disposal. A total of 

~44 sites in Canada and ~20 in the U.S. capture, transport, and inject acid gas (Bliss, 2005). In the 

U.S., those wells are Class II wells, with some additional restrictions because of the hazardous 

nature of H2S, and are covered by current legislation.  

Monitoring Requirements 

Monitoring is often required only on the injection well during its operational life and 

shortly thereafter. There are several monitoring procedures in place related to the injection well, 

including the mechanical integrity test (MIT), internal and external to the well bore. However, 

there is generally no requirement for ambient monitoring of the injection formation. Similarly, 

there is no requirement to monitor aquifers, including USDW aquifers, above the injection 

formation. The concern might be not to create additional leakage pathways, as has happened in 

several instances in Florida (McNeill, 2000). Postclosure monitoring, if any, generally involves 

pressure measurements until the impact of the cone of influence subsides below the base of the 

lowermost USDW. In the case the most similar to carbon storage, Florida requires monitoring 

wells below, in and above the injection formation as well as within the USDW. There, leaking 

fluids have been detected in several USDW (McNeill, 2000). 

During the operational phase, monitoring of the injection well is always required, 

particularly pressure on the annulus. Monitoring of water quality in the lowermost USDW and 

in the first aquifer overlying the injection zone can also be required (Rule §331.63g, TAC, 2006) 

for Class I wells. This monitoring must take place “until pressure in the injection zone decays to the 

point that the well’s cone of influence no longer intersects the base of the lowermost USDW or freshwater 

aquifer” (Rule §331.68b, TAC, 2006, for Class I). Monitoring of the USDW is rarely undertaken in 

Texas for Class I and is not required for Class II wells (Platt, 1998). Monitoring wells, especially 

if located upgradient in the injection horizon, may turn out to be an additional leakage 

pathway. As noted by Benson et al. (2002, p. 91) for Class I wells, nonmandatory monitoring 

only exposes an operator to litigation, and many may be reluctant to implement it. 
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I.2 Natural Gas Storage 
Many natural gas storage projects use depleted oil and gas reservoirs, salt or granitic 

caverns, or saline formations. Although permit requirements for natural gas storage may apply 

to some extent to CO2 sequestration, the time periods for such storage are much shorter  

(<1–3 yr) than the times required for CO2 sequestration. The RRC of Texas presents monthly 

statistics on natural gas storage in the State (http://www.rrc.state.tx.us/divisions/gs/rap/gsrap.html ). It 

reports that, in December 2005, there were a total of 21 natural gas storage facilities in depleted 

oil and gas reservoirs and 14 natural gas storage salt caverns. Chapters §3.96 and §3.97 of the 

Texas Administrative Code address gas storage in reservoirs and salt caverns, respectively. 

Permitting of these structures is focused on operating pressures. It is Class II wells that have to 

follow the requirements of Area of Review, and monitoring of injection wells is more stringent 

than that of other Class II wells. Depleted oil and gas reservoirs, aquifers, and salt caverns are 

all used to store natural gas. They operate on cycles of production/injection on an annual or 

shorter basis. Overall, rules are those of UIC Class II injection wells. An interesting aspect in 

Texas is the requirement of leak detectors installed on wells located less than 100 yards from 

buildings and other places where people can gather (RRC, 16TAC, §3.96(i) and §3.97(h)(4)). This 

is an analog mostly relevant to the operational period. There is no postclosure monitoring 

requirement related to leakage because the reservoir/aquifer/cavern is generally blown down 

before closure and is left pressure depleted, with no driving force for leakage.  

I.3 Nuclear Waste Disposal 
Although CO2 is currently not classified as a waste, its disposal, like that of nuclear 

waste, includes the necessity of long-term confinement. Solid and nuclear waste disposal falls 

under RCRA and NWPA and is regulated by EPA and NRC, respectively. Both low-level and 

high-level nuclear waste disposal sites are process driven, with a focus on risk assessment, 

numerical modeling, and site characterization. Use of risk-informed, performance-based 

analysis is written into the regulations (NRC policy statement 60CFR 42622 “Use of Probabilistic 

Risk Assessment Methods in Nuclear Activities”).  

An approach that has worked well for nuclear waste disposal is the feature, event, and 

processes (FEPs) approach, which consists of building, initially through brainstorming, a list as 

comprehensive as possible of potential issues that can affect the site or the region. Subsequent 

work consists of sorting and grouping these in categories and subcategories. The next step 
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assigns some kind of probability to each FEP, as well as the possible consequence for the 

system. In general, permitting of nuclear facilities focuses on the individual performance of the 

usually unique features that make the site desirable. There are three main aspects to the studies: 

(1) compilation of FEPs, along with their probability and consequences; only those FEPs having 

a probability of less than one in 10,000 over 10,000 years are considered in the next step; and  

(2) performance assessment (PA) modeling. The great difficulty of PA is that predictions are 

projected far into the future. PA studies require field measurements and laboratory experiments 

to calibrate the model. The literature is extensive about the (in)validity of such a jump (Oreskes 

et al., 1994; Ewing et al., 1999; Konikow and Ewing, 1999; Bredehoeft, 2005). In general, 

permitting of nuclear waste disposal sites also calls for a limited monitoring period—hence the 

importance of the third element, quantification of uncertainty that can be due to a lack of 

knowledge or to an inherent variability. 

The Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, which opened in 1999, 

is scheduled to operate for a few decades. Current plans for the WIPP facility call for a 

postclosure monitoring for “as long as practicable, and/or until the DOE can demonstrate to the EPA 

that there is no significant concern to be addressed by further monitoring” (DOE, 2005, Section 5). Line 

40 CFR §191.14(b) states that “Disposal systems shall be monitored after disposal to detect substantial 

and detrimental deviations from expected performance. This monitoring shall be done with techniques 

that do not jeopardize the isolation of the wastes and shall be conducted until there are no significant 

concerns to be addressed by further monitoring.” Postclosure monitoring includes surveillance of 

the overlying aquifer for a duration on the order of 1 century. It is unclear whether this period is 

enough for problems to appear in the monitoring system. The facility is designed to contain the 

waste for at least 10,000 years. This was also the initial regulatory time frame envisioned for the 

proposed Yucca Mountain facility in Nevada, although it is likely to be significantly increased 

to include a higher risk period however far in the future. A recent decision by the U.S. Court of 

Appeals for the District of Columbia (Nuclear Energy Institute, Inc., v. EPA, case 01-1258, July 

2004) compels the EPA to look further into the future than 10,000 years. Monitoring is obviously 

not an option for such long time frames, and the facility must be designed to withstand such 

time. The WIPP site in New Mexico has included a confirmation period of postclosure 

monitoring until performance can be reasonably proven to behave as expected (Benson et al., 

2002, p.133), and it could be as long as 1 century.  
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I.4 Conclusions 
Table 2 contains a summary of salient points. No current permitting procedure 

addresses, in the same regulation, three of the major characteristics of CO2 sequestration: large 

volumes, buoyancy of the fluid, and long-term capture for centuries or millennia. Buoyancy is 

addressed in natural gas storage, CO2 EOR (UIC Class II wells), and nonhazardous Class I wells 

(municipal waste) regulation, and securing the stored material in the long run is approached in 

Class I hazardous and nonhazardous waste and low-level and high-level nuclear waste 

disposal. Large injection volumes (essentially water, sometimes contaminated) is practiced by 

the oil and gas industry (see Section II). Developing procedures for use during the injection 

phase is within the realm of current legislation and does not represent a departure for current 

usage. On the other hand, long-term storage is typically demonstrated by performance 

assessment using more or less conservative assumptions. A simple performance assessment, 

combined with prescriptive rules, is used for injection of hazardous Class I wells, whereas very 

sophisticated, expensive, and time-consuming performance assessments are used in the case of 

nuclear waste (for both high- and low-level material).  

Conduits for leakage to USDW can be natural (faults) or human made (wells). In the 

case of traditional water injection, hazardous or not, injection pressure is the driving force 

behind leakage, and mainly faults and wells are of concern. In the case of injection of a buoyant 

fluid such as CO2, gravity forces continue acting, even after dissipation of the pressure pulse. 

No permitting process currently enforces long-term monitoring. On the contrary, the focus is on 

engineered and natural barriers to contain the waste/product. The reliance on engineered 

features may be problematic for long-term storage because of the lack of a long track record 

(hundreds of years, at best, in most cases). It follows that predictions with the help of numerical 

modeling are a crucial part of the permitting process. It is thus imperative to ensure that all 

important processes are included and modeled (they might be different from site to site). The 

scientific community is still in that investigating phase.  

The EPA’s current view seems to favor an absolute prohibition of fluid movement into 

any USDW for Class I and II wells, although the SDWA itself does not impose such a 

prohibition (Michel Paque, GWPC, CO2SC Symposium, Berkeley, CA, March 20–22, 2006, 

Conference). This interpretation was reiterated by new permitting requirements of municipal 

wells (Class I nonhazardous), where fluid movement could be recorded in a USDW without 
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necessarily endangering it. It is, however, sensible to think that the EPA might remain flexible 

as draft carbon storage regulation evolves.  

 



19 

Table 2. Compilation of permitting requirements 

Permit Process Monitoring Comments 
UIC Class I (hazardous 
wastes) 

Mostly regulatory driven with 
a “No-migration petition.” 

Operation and postclosure monitoring: limited to 
injection well pressure. 
No monitoring wells. 

 

UIC Class I (industrial and 
municipal wastes) 
Permit 

Regulatory driven.  
Injected fluid must be 
confined to the injection 
zone. 
 
 

Operation and postclosure monitoring: limited to 
injection well pressure.  
However, nonhazardous Class I well permits in Florida 
require USDW monitoring because of the buoyancy of 
municipal wastes, but enforcement is lax (Benson et 
al., 2002, p.100). 
No monitoring wells. 

Performance established 
by predictive modeling. 

UIC Class II (oil/gas 
injection well, including 
EOR) 

Regulatory driven. No postclosure monitoring.  

UIC Class III (mineral 
extraction, solution mining) 

Regulatory driven. Extensive operational monitoring. 
No postclosure monitoring 

 

UIC Class V   No monitoring  
Low-level nuclear waste Fully process-driven 

approach in combination 
with risk assessment. 

Monitoring until confirmation that the site is working 
properly. 

Performance established 
by predictive modeling. 

High-level nuclear waste Fully process-driven 
approach in combination 
with risk assessment. 

? Performance established 
by predictive modeling. 

Natural gas storage in 
aquifers or depleted oil and 
gas reservoirs 

Fully regulatory driven. Monitoring of the injection well(s) during operational 
life of facility. 
Rarely ambient monitoring wells. 
No postclosure monitoring. 

Abandonment is done at 
low pressure. 

Natural gas storage in salt 
caverns 

Fully regulatory driven. Monitoring of the injection well(s) during operational 
life of facility. 
No postclosure monitoring. 

 

Acid gas injection (U.S.) Regulatory driven. No postclosure monitoring.  
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II.  Carbon Storage in the Texas Gulf Coast 
II.1 Oil and Gas Reservoirs 

To analyze impact of leakage globally, one must first understand potential location of 

storage sites and allowable leakage rates. A high storage site density will be more prone to 

leakage because of the likely saturation of the potential buffers. It is thus relevant to take a 

detour on methods for estimating regional capacity. Carbon storage poses new challenges 

related mainly to CO2 buoyancy and to the huge injection volumes needed to make a significant 

impact. The contiguous U.S. emits more than 2.9 Gt CO2/yr from relatively large stationary 

sources (Dooley et al., 2006, p. 28), a sizable fraction of which comes from Texas. Municipal 

waste waters are injected at a rate on the order of 0.5 Gt/year, mainly in Florida (Wilson and 

Keith, 2003; EPA, 2002, p.7). Volumewise this is equivalent to 0.3 to 0.4 Gt CO2/year. Class I 

hazardous waste volumes are much smaller. In 2002, a total volume of 5,370 million barrels 

(MMbbl) of mainly water was injected through Class II injection wells in Texas (RRC Website). 

This is equivalent to 0.850 Mt water per year (Figure 5), whose volume is similar to 500 to  

650 Mt of supercritical CO2. RRC reports for previous years show similar numbers. It should be 

noted that most of that volume is also produced and that the net balance for the subsurface 

fluid volume is ~0. Operators in the Permian Basin (Figure 4) inject ~30 Mt/yr CO2, maybe half 

of it recycled. It is thought that the SACROC unit, making up about 40% of the injected volume, 

has accumulated more than 55 Mt CO2 since injection started in the early 1970s. It follows that 

more than 100 Mt CO2 is most likely already sequestered in the Permian Basin. The higher 

injected volumes in the Permian Basin are a reflection of the operational technique 

(waterfloods) and geologic reality (little natural water drive). The natural water drive existing in 

many Gulf Coast reservoirs also suggests that operators should not expect pressure-depleted 

reservoirs because water would have invaded the space previously occupied by the produced 

hydrocarbons. Acid-gas injection was also small by those standards in 2001 (Heinrich et al., 

2003). 
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Source: Bureau of Economic Geology (BEG) 
Figure 4. Map of major oil and gas fields in Texas 
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Figure 5. Annual injected water volume per county related to oil and gas production (year 2002)  
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Note: Production provided in barrels has been converted to m3 and then equivalent million tons 

of water for easy comparison with CO2 injection volumes. Volume changes from 
reservoir to stock tank has been neglected 

Figure 6. Cumulative oil production per county 

From the end of the 19th century, cumulative oil production is on the order of ~18 billion 

barrels (Bbbl) for RRC districts 2 through 4 (Figure 2) (total of 60 Bbbl in Texas). Including 

offshore fields, the U.S. has produced ~190 Bbbl as of 2006 (EIA Website). Given a median 

American Petroleum Institute (API) density of 34 in districts 2, 3, and 4—that is, a density of 

~0.855—this volume can be converted to ~3 Gt of water (a total of 10 Gt in Texas; Figure 6). This 

translates into an absolute upper limit of 1.5 to 2.5 Gt of CO2 (6 to 8 Gt in Texas) that could be 

injected in already discovered oil fields. Additional capacity from gas fields could be as high as 

10 times this amount (Holtz, personal communication, 2006; Bergman et al., 1997). The actual 

capacity is likely to be much lower than that absolute upper limit of ~660 Gt, as suggested by 

the 98 Gt CO2 (~140 Gt water) cited by IPCC (2005, p. 5–32) for the whole U.S.  

Storage estimates in saline aquifers vary widely (1,000–56,000 Gt CO2, IPCC, 2005, p. 5–

34 & ff). The scientific community has not agreed yet on the total capacity in oil and gas fields or 

saline aquifers, at a world, regional, or local scale.  
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II.2 Storage Locations and Volumes 
Previous work has already shown that the Texas Gulf Coast has a high potential for 

sequestering large volumes of CO2 in saline aquifers (Hovorka et al., 2000). This section builds 

on the work previously done by Hovorka et al. (2004a), Doughty et al. (2004), Hovorka et al. 

(2004b), and Pruess et al. (2001), who relied mainly on CO2 saturation in the pore space to access 

capacity. Other methods for devising capacity have also been put forward. Some studies focus 

on the CO2 that can dissolve in water and assume that most of the basin will be filled with CO2-

rich brine (e.g., Bachu and Adams, 2003; Brennan and Burruss, 2003). We assume that 

dissolution in a large volume of the basin is a long-term process and that structural and 

capillary trapping are more representative of capacity. Using the former method, Dooley et al. 

(2006, p.17) estimated at 3,630 and 12 Gt CO2 the U.S. capacity of saline aquifers and depleted 

oil and gas reservoirs, respectively. 

Hovorka et al. (2004a) defined a (specific) capacity C as the volume fraction of a 

formation or some domain of a formation able to contain CO2 as C=CiCgChφ, where φ is the 

porosity. Parameter Ci is the intrinsic capacity function of the CO2 saturation—in general 

gi SC ~≅ , where gS~  is some central value of the gas saturation. The geometric capacity Cg 

accounts for nonidealized behaviors, such as dipping formations and partially penetrating 

injection wells. Hovorka et al. (2004a) also defined a heterogeneity factor Ch that accounts for 

bypass resulting from geological variability; this factor is related to sweep efficiency. The 

capacity is understood as the capacity of the injection horizon (Hovorka et al., 2004a). We 

extend the definition to include all volumes contacted by the CO2, and we define the total 

capacity CV as the sum of the formation of individual subdomains k of volume Vk, where 

intrinsic and geometric capacities can be assumed constant: 

∑∑ ≅=
k

kkgkgk
k

kkgkik VCSVCCCV φφ ~  

In this report, the target-rich Gulf Coast has been subdivided into multiple subdomains 

that can be grouped into three categories of increasing interest for CO2 injection, using 

geological criteria (see Section III.1): (1) salt domes and the surrounding formations, whose dip 

will lead any injected fluid to the dome; (2) updip sections of the subdomains that may or may 

not be the current locus of oil and/or gas reservoirs; these sections are typically well-rich; and 
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(3) downdip sections of those subdomains. The geological characteristics of these subdomains 

have been analyzed statistically, as described later.  

II.3 Acceptable Surface Leakage Rates 
Acceptable surface leakage rates are related to the to-be-agreed-upon atmospheric CO2 

stabilization level (i.e., in the range of 450 to 650 ppm) and its implementation in time and 

space, as well as emission reduction from the primary sources. Fugitive leaks from other 

operational features such as pipelines and processing units should also be taken into account. 

Surface leakage is not necessarily equal to the leakage from the injection zones because, as will 

be described later, several mechanisms can capture the leaking CO2 on its way to the surface. 

Gale (2004) suggested that the leakage rate should be <0.1% of the injected volume per year. 

IPCC (2005) stated that the fraction retained in storage is “very likely” (that is, a probability 

between 90 and 99%, according to IPCC definitions) to exceed 99% over 100 years (that is, 

leakage rate <0.01%) per year and is “likely” (probability between 66 and 90%) to exceed 99% 

over 1,000 years (leakage rate <0.001% per year). In a thorough analysis, Hepple and Benson 

(2005) put forward similar numbers and suggested that an annual surface leakage rate <0.01% 

would ensure effectiveness of carbon storage for all IPCC forecast scenarios (IPCC, 2000) but 

that an annual surface leakage rate of 0.1% would still be acceptable. Global injection operations 

will not last forever; the injection time frame could be ~ 1 century (e.g., Caldeira et al., 2004), the 

time to transition to a mostly carbon-free energy source. Others have proposed longer time 

frames—1,000 to 10,000 years (e.g., Brennan and Burruss, 2003).  

A few groups have tentatively computed leakage from specific sites. At Weyburn, 

Monitor Scientific (2005, GWPC Portland conference; Strutt et al., 2002) estimated that the 

cumulative leakage rate in 5,000 years through the ~1,000 wells contacted by the EOR would be 

0.03 Mt (0.14% of the 20 Mt CO2 in place). Oldenburg and Unger (2003) presented simulations of 

CO2 surface fluxes assuming leakage rates at the base of the unsaturated zone. Oldenburg et al. 

(2002) noted that a large storage site of 200 Mt of CO2 uniformly leaking 1% of the initial stored 

amount per year would produce a flux smaller than natural fluxes due to plant metabolism, 

whereas leakage focused on a fault could be much higher. NGCAS Forties oil field, in the North 

Sea, was also studied extensively, and leakage was estimated to be negligible. IPCC (2005, 

Chapter 5) referenced studies suggesting that leakage is small: ignoring abandoned wells, the 

Forties oil field in the North Sea will experience no more than a 0.2% loss of stored CO2 from the 
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injection formation after 1,000 years, whereas modeling of Sleipner field, also in the North Sea, 

suggested that no CO2 will reach the seafloor before 100,000 years. As a matter of comparison, 

natural fluxes have also been estimated. Mörner and Etiope (2002) presented natural CO2 fluxes 

from a variety of environments, in particular, active tectonic areas. The value spread is large but 

mostly within 0.01 to 1 Mt CO2/yr (their Tables 1b and 2a), with corresponding fluxes in the 0.1 

to 10 Mt CO2/yr/km2 range. In the course of the CO2 EOR flood at Rangely, Colorado 

(Klusman, 2003a), 23 Mt of CO2 was stored between 1986 and 2003. Leakage at the surface 

minus the biological signal has been calculated to be less than 0.0038 Mt/yr over 78 km2  

(~0.13 g/m2/d) and more likely ~0.00017 Mt/yr (determined by using isotopes). The biological 

signal is estimated at 3.8 g/m2/d (summer) and 0.23-0.33 g/m2/d (winter). Natural fluxes 

typically vary from ~4 to thousands of g/m2/d, but most likely in the 10 to 100 g/m2/d range. 

Natural background soil fluxes at CO2 EOR, Weyburn, Canada, were reported at 12.7 g/m2/d 

(2002) and 68.8 g/m2/day (2001) (Strutt et al., 2002); there is so far no evidence of diffuse gas 

leakage.  
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III.  Leakage Pathways 
A risk assessment study starts off with a compilation of the hazards associated with a 

process (Step 1: identify hazards). It then calculates its likelihood (Step 2: determine probability 

distribution of hazard) and researches its consequences and magnitude of the consequences 

(Step 3: consequence evaluation). Important Step 4 consists of the uncertainty analysis (Rechard, 

1999). If, in layman’s terms, risk of a particular event often equates with the consequences of 

that event, a more scientific approach defines risk as a function of both probability and 

consequences. An approach typically taken in risk analysis of industrial and/or engineered 

systems (e.g., power plant, industrial site, space shuttle) consists of building a fault tree, which 

is a mapping of a succession of events and determining the ultimate probability of the 

consequences of the primary event. However, natural systems hold extreme uncertainty relative 

to their human-made counterparts, and the approach is not necessarily feasible in the field of 

CO2 subsurface storage.  

In this section we assume that the operational risks have been fully addressed—that is, 

that the injection horizon has been carefully chosen to maximize the sweeping area, that the 

number of wells and their locations have been well engineered to avoid seal overpressure and 

potential subsequent fracturing, and that the subsurface has been sufficiently characterized and 

sited away from large faults (at least those located updip). We focus more on determining 

hazards and their probability rather than on estimating their consequences.  

An important body of work is available on specific aspects of CO2 storage risk (well 

leakage, health and safety aspects at the surface near a storage site, etc.). This is an active field of 

research with several workshops organized and proceedings and reports published every year. 

Several international groups have been developing guidelines and analyses related to risk. The 

International Energy Agency Greenhouse Gas (IEA GHG) R&D program, funded by multiple 

countries and private sector sponsors, developed the most comprehensive risk study to date in 

analyzing the Weyburn project in detail (Wilson and Monea, 2004). The European Union-

funded SACS project and the CO2 Capture Project (CCP), whose goal was to monitor the 

Sleipner project, focused more on monitoring than on the risk aspects. Another North Sea 

reservoir (the Forties) underwent a qualitative risk analysis (e.g., Ketzer et al., 2005). Other sites 

(in Salah, Algeria, and Snöhvit, Norway) may undergo risk analysis. However, all sites studied 

in some detail are oil reservoirs under CO2 flood, and there has been, so far, no detailed risk 
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analysis of saline aquifers. Most national organizations or programs have also shown a strong 

interest in risk assessment: GEODISC in Australia (Bowden and Rigg, 2004), TNO in The 

Netherlands, and SINTEF in Norway.  

The CO2 storage community is also very active in building and developing tools to 

model risks and their consequences using off-the-shelf software—for example, Goldsim (e.g., 

Pawar et al., 2006, at Los Alamos National Laboratory), Crystal Ball® (Walton et al., 2004)—or 

dedicated software—for example, CQUESTRA (Walton et al., 2004, LeNeveu et al., 2006). 

Software models are also being developed specifically to handle carbon storage at Idaho 

National Laboratory and PNNL.  

The FEP approach used for high-level radioactive waste disposal may be extremely 

useful in developing a comprehensive list of potential issues that need to be considered in 

permitting geologic sequestration of CO2. However, the user of FEP approach should be careful 

in not being lost in cataloging numerous very improbable events. At least two organizations 

have developed FEP databases: the Dutch TNO-NITG, supported by the CO2 Capture Project, 

and Quintessa, a private sector company, supported by the Weyburn Project. Other projects 

have also been through a more informal process. 

CO2 can leak as supercritical fluid (buoyant and less dense than surrounding fluids) and 

then as gas in the saturated zone, but also in the unsaturated zone and in the atmosphere 

(denser than surrounding fluid, mostly air). It can also leak as CO2-saturated brine that will 

outgas near the surface, where the confining pressure is lower. It is generally recognized that 

there are two main avenues for sudden, possibly high-rate, and catastrophic leakage: wells and 

faults (e.g., IPCC, 2005). They can also be effective at releasing CO2 at a low rate. A third 

pathway, spill point from closed traps, is considered less risk-prone because it includes built-in 

safeguards. For example, the longer the path to the surface/shallow subsurface, the more 

capillary trapping will take place. Hence, the focus of this section is to describe and quantify 

wells, faults, and spill points in the Gulf Coast area as a template for possible studies elsewhere.  

III.1 Conceptual Model for the Creation of Subdomains 
An overview of the geology of the Gulf Coast is given in Appendix A. The main points 

pertinent to this section’s discussion are: (1) there are thick layers of alternating “sand” and 

“shale,” with a fraction of the latter and the total formation thickness increasing gulfward;  

(2) the layers are compartmentalized by both growth faults, with strike approximately parallel 
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to the shore, and whose dip flattens gulfward and radial faults form slowly raising salt domes; 

and (3) fault movement and other processes have created rollover anticlines and other 

structural traps for buoyant fluid (e.g., Figure 7 and Figure 8). The charging process can be 

conceptualized as described in Figure 9, and it can be applied to CO2 migration (as will be 

described in Figure 12 below).  

West     East 

 
Source: Tyler and Ambrose (1985) 
Note: This is a very large gas play with some large oil reservoirs (Carlson, Cornelius, Cayce). It 

represents a common type of trap in the Gulf Coast. 
Figure 7. West-east strike-oriented cross section of the double-crested rollover anticline that 

forms Markham North-Bay City North field in Matagorda County, Texas  
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Note: Well density is higher in traps. Natural gas often accumulates downdip because it is 

generated last and displaces oil previously present in the trap 
Figure 8. Cartoon of hydrocarbon accumulation in the Texas Gulf Coast  
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Note: Both closed traps, where water is at residual saturation, and open traps, where CO2 is at residual 

saturation, are shown. 
Figure 9. CO2 travelpath and trapping mechanisms  

This buoyant migration leads to the description of two types of traps: closed traps, 

where water is at residual saturation and CO2 occupies the remainder of the pore space, and 

open traps, where CO2 is at residual saturation and where water can flow freely. 

Closed Traps 

Despite a general gentle dip toward the Gulf of Mexico, local geometry of the layers 

does include numerous structural traps (e.g., Galloway et al., 1983; Kosters et al., 1989), owing 

to the activity of growth faults and radial faults around salt domes and to the deformation near 

diapirs. Hydrocarbon traps represent good analogs for closed CO2 traps. They occur in areas 

where these sediments have been tilted or deformed within anticlinal structures bounded by 

growth faults. Deformation of strata above the kilometer-thick Jurassic Louann salt layer has 

resulted in a contrast in types of structural traps. In the northern section of the Texas Gulf Coast, 

salt movement has been focused around piercement diapirs, resulting in numerous and 

complex traps associated with locally steeply dipping strata. Farther south, regionally aligned 

reservoirs in the Corpus Christi area are more commonly created by structural and stratigraphic 

traps along the downthrow of growth faults. This contrast in trap style is visible on a map of oil 

and gas well surface locations (Galloway et al., 1983; Tyler et al., 1984, p.31; Kosters et al., 1989), 

which are clustered around salt domes in the Houston area and more spread out elsewhere 

(Figure 10). 

Open Traps 
Within the range of buoyancy of most hydrocarbons (more than oil, less than gas), CO2 

will also follow similar pathways and accumulate in similar traps, as described in the previous 
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section. However, if the injected volume is larger than the capacity of the first encountered trap, 

CO2 will continue to flow upward until it reaches another trap, leaving behind a trail at residual 

saturation (Figure 9). It follows that closed traps are charged with CO2, with water at residual 

saturation, whereas open traps consist of the trail of the CO2 plume at residual saturation. 

Relying on capillary trapping will work well if the two other avenues for leakage, wells and 

faults, can be shown to impact the behavior of the storage site only minimally. Capacity of an 

open trap depends on the heterogeneity of the injection formation and on that of the overlying 

layers (Figure 11). Potential subsurface storage sites in sedimentary basins fall into a large range 

of geological heterogeneity, and the Gulf Coast is rather heterogeneous by those standards.  
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Source: RRC digital map data 
Note: Note the contrast in style between the Houston area, where a significant fraction of wells 

and hydrocarbon traps are related to salt domes, and the Corpus Christi-Victoria area, 
where salt domes are deeper or nonexistent. More than 100,000 well locations are 
displayed. 

Figure 10. Surface well location in the (a) Corpus Christi-Victoria and (b) Houston areas  

Application to Selected Area of the Gulf Coast 

In order to estimate capacity from open and closed traps, we collected and interpreted 

data from Geomap (http://www.geomap.com ) structural maps for the upper Gulf Coast. As 

an example, we used the top of the Frio Formation. Multiple similar maps can be produced for 

the main formations of the Gulf Coast, with variations from the example presented both 

because of faults tapering off with depth and toward the surface and because of the increased 

impact of salt domes with depth. We divided the top Frio structure into “drainage basins” 
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under conditions of buoyant flow. We digitized the outlines of these drainage basins and the 

area of structural closure on the structural trap within the drainage basin. We also measured the 

throw on faults that compartmentalize the region. Areas with likely higher-than-background 

risk of leakage, including oil fields characterized by closely spaced wells, and highly complex 

zones around salt domes were also digitized. From this database, we could create a probabilistic 

model for the geologic features that CO2 would encounter when it is released from a well in any 

location. The database can also be used in a deterministic sense to assess capacity of the 

subsurface from a given location. Figure 11 shows CO2 being released at a well, traveling across 

a drainage basin to accumulate in a structural trap, exceeding the storage capacity of that trap, 

and spilling into the next basin, where the process is repeated. Capacity can be calculated by 

summing the trapping mechanisms along this flow path, which include CO2 trapped by 

capillary processes as residual saturation, dissolved CO2, and CO2 trapped in structural traps.  

Injection
point

 
Note: Sand bodies are typically fluvial channels or deltaic accumulations. CO2 migrating 

upward fills up closed traps and leaves a trail at residual saturation between them. 
Closed traps are often well expressed next to a growth fault (visible on the vertical panel 
of the block diagram). 

Figure 11. Example of CO2 migration in a typical Gulf Coast setting  
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Note: Closed structural traps abut growth faults, whereas each open trap (“fetch area”) is 

located downdip of the associated closed trap (more than one fetch area can lead to a 
single closed trap). Areas left in background color eventually lead to a salt diapir and are 
not primary targets for CO2 injection. 

Figure 12. CO2 trapping on top of the Frio or equivalently beneath the base of the regional seal 
(Anahuac Shale) 

Actual mapping of the structural traps on top of the Frio Formation (Figure 12) clearly 

shows the impact of growth faults on the location of the traps. A total of slightly more than 400 

coupled fetch/closure areas are represented over an area of ~40,000 km2 (~16,500 mi2). A 

statistical analysis of the data will be done in a later section, but about half of the study area is 

left in the background color because any injected buoyant fluid particle will ultimately reach a 
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salt dome (salt domes are structurally complex and not likely the first choice for large injection 

operations). The presence of deep salt domes generates a bulge in the top of the Frio Formation, 

as evidenced by some radial features visible on the map. Approximately 15% of the area  

(~6,000 km2) corresponds to structural traps, whereas about 35% (~14,000 km2) corresponds to 

the downdip fetch areas leading to the traps.  

III.2 Well Leakage 
This work does not focus on future injection wells whose construction characteristics 

will be tailored to CO2 storage. Their safeguards are assumed sufficient to make their potential 

leakage small when compared with that of older wells. Again, the concern with well leakage is 

not so much with CO2 injection wells or future wells that can be outfitted to resist CO2 attacks, 

than it is with the abundance of older wells in parts of the world, including Texas. This section 

attempts to describe well leakage as it applies to the Texas Gulf Coast. Leakage through well-

punctured seals has been a concern since the onset of enhanced oil recovery. A worldwide well 

density map (Figure 13) suggests that the problem is most acute in the Western Gulf Coast 

(mainly Texas), the Permian Basin (again, mainly Texas), and the Alberta Basin, where the well 

density is higher than 2.3 wells/km2. There are also other smaller areas of concern in the U.S. 

The very fact that the Texas Gulf Coast is an oil-rich province makes it attractive for CO2 

sequestration (abundance of seals and traps). However, it also brings the inconvenience, from 

an integrity standpoint, of multiple perforations. It is true that these formations contained oil 

and gas for millions of years with negligible leaks (see Appendix A for more details), but they 

had not yet been punctured by millions of direct conduits between the subsurface and the 

ground surface. The well density on the Texas Gulf Coast is ~4 wells/km2, but it is not uniform 

(Figure 10) and it is obviously concentrated in areas with traps and hydrocarbons. Salt domes 

have a particularly high well density, sometimes reaching a few hundreds of wells per square 

kilometer. Compare this figure with the reported average value of 4 wells/km2 in Gasda et al. 

(2004) for the Alberta Basin. Spatial well density is related to hydrocarbon accumulation volume 

but also to formation permeability and to number of stacked productive formations. A typical 

lease size of 40 acres (0.162 km2) will have one production well for a particular reservoir, but the 

piece of land could host more wells, all tapping different reservoirs.  

Three main variables relate to well leakage: well density (how many wells per unit 

area?), well depth (how deep is the well and in which formations are the completion intervals?), 
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and well age (an older well is more likely to experience leaks because environmental rules have 

become progressively stricter in the 20th century). Inadvertent intrusion when a well is drilled 

in the formation tens to hundreds of years after CO2 emplacement is not considered. The 

assumption that a CO2 injection well will be built or retrofitted to very strong and durable 

standards and will not be a leakage source even in the long term is reasonable but possibly 

wrong. Smith (1993, p.5) reported that more than 3 million wells have been drilled in the U.S. 

for oil and gas exploration and production, one-third of them in Texas. He also stated that there 

are more than 14 million active water wells and most likely many more abandoned ones. An 

interesting issue that we will not be able to solve in this report is whether recent wells are truly 

more CO2-leakage resistant than older wells in the long run.  

 

 
Source: IPCC (2005, Figure 5.27) 
Figure 13. Worldwide well density map 

III.2.1 Introduction  
Texas has a long history of hydrocarbon production. The first successful oil well drilling 

occurred in the East Texas Basin at Oil Springs near Nacogdoches in 1866. The first major 

discovery followed in 1894 with the Corsicana field, still in the East Texas Basin. A few years 

later, hundreds of wells in the area produced most of the state’s production (~0.07MMbbl/yr). 

The discovery of Spindletop field in the upper Gulf Coast Basin, at the edge of Beaumont, near 

the Louisiana state line, launched the modern age of hydrocarbon production in Texas  

(18 MMbbl/yr in 1902). Many other fields were discovered in the upper Gulf Coast Basin in that 

same decade, mainly on salt dome structures, which was the focus of exploration at that time in 

the wake of the Spindletop salt dome discovery. Smaller discoveries were also made in South 
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Texas in the lower Gulf Coast Basin. Then oil production extended to the Fort Worth Basin 

around Wichita Falls, north of Dallas. In the twenties more fields were discovered in those same 

basins, as well as in the Texas Panhandle and West Texas. In the thirties, a map of the oil and 

gas producing areas would have looked similar to that of today. Events following the discovery 

of the supergiant East Texas field in the East Texas Basin led to an awakening by the State of a 

need for State-enforced rules to regulate the oil and gas industry. Consequently, it was not 

before the early thirties that the RRC was truly able to implement rules concerning well density 

and, a matter of concern in this study, well abandonment. By then, hundreds of thousands of 

wells had already been drilled and abandoned. In 1936, there were, in Texas, a total of ~70,000 

wells producing mainly oil (419 MMbbl/yr). As of the end of 2003, there were ~150,000 and 

70,000 wells producing mainly 357 MMbbl/yr of oil and 5.67 Tcf of gas, respectively (RRC 

Website). In addition, there were ~30,000 injection wells, 35,000 service wells and ~110,000 

administratively inactive wells. Count plots, such as Figure 14, helps explain the well 

population through time. Gas production is not too sensitive to world events because of its 

mainly regional markets, as demonstrated by the lack of deviation from a slow growth trend. 

On the other hand, oil production responds strongly to world events: a slight slump in growth 

at the end of WWII (A), and then a steady growth in the fifties and sixties (B), interrupted in 

1971 by the decision of the RRC to lift production limits that led to a decrease in oil prices (C). A 

strong recovery (D), owing to higher prices at the time of the oil embargo of 1973 and the Iraq-

Iran war (1980–1988), and a sharp drop (E) due to a later collapse of oil prices in 1986 are 

eventually followed by the slow production decrease, with minor peaks, of mature basins (F).  

III.2.2 Historical Look at Well Technology and Regulations 
Risk of leakage through abandoned wells is a function of the rules, both toward drilling 

and abandonment, enforced at the time of plugging (if any); of the care expressed by the 

operator during the plugging operation; and of the materials used in the plugging operation. 

Plugs serve two purposes: (1) to isolate and prevent fresh water or other resources to drain and 

(2) to prevent cross-contamination. Because leakage is most likely to occur through wells drilled 

and abandoned early in the production history of a basin, a look at the history of plugging and 

its techniques is warranted. Wells consist of a succession of casings having different diameters 

that are introduced in a borehole. The most common configuration includes a surface casing, 

running from the surface to some depth, in general below the base of the USDW, and a 
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production casing running from the shoe of the surface casing to the formation of interest. The 

surface casing’s main role is to protect fresh water from contamination of fluids. Typically, a 

surface casing is not required for shallower wells, at least in Texas, if the production casing is 

cemented from the shoe to the ground surface. Historically, the trend of these rules had been 

toward a greater protection of the hydrocarbon resource, but also of the shallow aquifers, 

potential sources of drinking water. Warner (1996, p.11) noted that until the 1970s, the surface 

casing was meant to protect water resources with a total dissolved solids (TDS) (<3,000 mg/L) 

lower than the current limit (10,000 mg/L).  
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Figure 14. Oil and gas production well count in Texas through time 

As described below, examination of the rules leads to the grouping of wells into four 

time categories according to their abandonment year: post-1983, 1983–1967, 1967–1935, and pre-

1935. Relative to the protection of fresh water, watershed years are 1934, 1967, and 1983. These 

categories are justified by the following events. In 1934, the RRC promulgated specific plugging 

instructions, and did so again in 1967. Another important period not captured in the category 

breakdown is the then-recent widespread use of improved cement additives in 1953, following 

standardization by the API. Improvement of the quality of material used in well construction 

and abandonment led to an overall improvement of well abandonment. However, enforcement 

was still an issue. Another incremental quality improvement in well abandonment occurred in 

1983 because of increased scrutiny by the State. However, as Ide et al. (2006) suggested, many 

A 

B C 
D 

E 
F 
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wells could have been left unplugged in 1986 after many companies became bankrupt (peak E 

in Figure 14), overwhelming agency enforcement staff. Targeted studies on hundreds of West 

Texas (Warner et al., 1997) and Gulf Coast (Warner et al., 1996) wells also suggest that natural 

breaks relative to the quality of plugging were 1967 and 1983. Johnston and Knape (1986) stated 

than there is a high probability that wells abandoned after 1967 are properly plugged. 

There is plenty of anecdotal evidence that well abandonment was not executed in the 

spirit of the regulations until recently. Out of 19 penetrations in the area of review of the new 

well drilled for limited CO2 injection at the Frio site, only three had been plugged with cement 

below the lowermost USDW. Most of these wells had been drilled in the 1950s and plugged in 

the 1970s (Hovorka et al., 2004b, p. 125).   

III.2.2.1 Well Construction and Abandonment Rules 
In the 19th and early 20th centuries, the Texas state legislature passed a few laws aimed at 

conserving oil and gas and at protecting producing formations (Table 3). In 1919, Senate Bill 350 

set down general plugging rules. They were little observed or enforced (RRC Website). 

Regulation did not start to take hold before the 1930s, after the discovery of the super-giant East 

Texas oil field and subsequent events. Before that time, little thought was given to well 

abandonment, and wooden plugs, if any, were common (Smith, 1993, p. 8). The year 1934 saw 

the first specific plugging rules, which required the producing formation to be plugged with 

recirculated cement. One of the methods used was the balance method, which involved 

injecting cement slurry through the inside of a pipe until cement level outside and inside the 

pipe were the same. The pipe was then removed. In the two-plug method, two plugs that 

isolated the cement slurry were run. The two-plug method is superior to the balanced method, 

which is in turn superior to the bailer method. A previously widespread method, which led to 

many problems, was to bail cement slurry behind the pipe. Other formations, such as water-

bearing formations, could be plugged with mud-laden fluids. In 1957, protection of fresh water 

was made a requirement. However, records, if any, are often missing, and it cannot be assumed 

that abandonment was done properly. Pervasive problems created by previous poor 

abandonment techniques led to the creation by the RRC of “Well Plugging Funds” in 1965. As 

of 2005, the program had plugged over 20,000 wells. The years 1966–1967 represent a second 

milestone in the history of protection of the drinking water resource because of improved 

regulations on surface casing. The RRC (2000, p.2) stated that an average of $4,500/well was 
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needed to plug wells (from 1984 through 1999, the RRC had plugged 15,169 wells at a cost of 

~$66 million (RRC, 2000, p.5) and was doing it at a rate of more than 1,000 wells/yr (1,218 in 

2004), including 50 to 150 priority I (actively leaking) wells per year. It is funded by revenue 

collected from the oil and gas industry. As of 2000, there were, across Texas, more than 25,000 

delinquent shut-in wells (that is, not active but not abandoned). As of end of 2005, the RRC 

estimates that there were 15,000 orphaned wells (that is, with no owner to turn to in case of 

problems) in Texas. 

Prior to the 1930s, cable tool drilling with no need for drilling fluid was mainly used. 

Crude rotary drilling rigs appeared in the 1930s. Considerable progress was then made in the 

1940s because of the war effort, and most post-1940 wells have been drilled using this 

technology, allowing greater depths to be reached. Initially water mixed with cuttings made up 

the drilling fluid and early on, bentonite and barite were added to improve mud stability and 

increase mud weight (Johnston and Knape, 1986). The industry then transitioned to the complex 

and sophisticated drilling muds used nowadays.  

Table 3. Milestones for well construction and abandonment in Texas  

Date  Well Construction/Abandonment 
1866  First producing Texas well drilled at Melrose, Nacogdoches County 
1891  RRC founded to oversee railroads 

1899  

Legislature enacted H.B. No.167, “An Act to Provide for the Inspection of Refined Oils 
Which Are the Product of Petroleum, and Which May Be Used for Illuminating Purposes 
Within This State, and to Regulate the Sale and Use Thereof, and to Provide Penalties 
for the Violation of Same.” 

1899 S H.B. 542 $100 fine for failure to plug wells according to statutes, but RRC had no 
enforcement authority 

1901  First salt dome discovery, and first great gusher brought in at Spindletop, Jefferson 
County 

1905 S Legislature amended Act of March 29, 1899, declaring an emergency pertaining to 
regulations of the drilling, operation, and abandonment of oil, gas, and water wells. 

1917  
Legislature declared pipelines to be common carriers and gave RRC jurisdiction over 
same. This was the first act to designate the RRC as the agency to administer the laws 
relating to oil and gas. 

1919 S 

RRC adopted first Statewide Rule regulating the oil and gas industry. RRC Oil and Gas 
Division created S.B. 350 about plugging rules.  
“All dry or abandoned wells must be plugged by confining all oil, gas or water to the 
strata in which they occur by the use of mud-laden fluid” and a $5,000 fine for failure to 
do so 

1934 S 
Specific plugging instructions issued (cement was required to be circulated through 
tubing or drill pipe across producing formations; nonproducing formations could be 
plugged with mud-laden fluid if no high-pressure sands were encountered).  

1940s  Transition from cable-tool frilling rig to rotary drilling rigs 

1951  Legislature authorized the RRC to plug improperly capped oil wells that were flowing 
salt water into the Frio River, McMullen County 

1955 S RRC adopted Statewide Rule 55, regarding fresh-water pollution abatement, including 
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Date  Well Construction/Abandonment 
for wildcat operations 

1957 S Protection of fresh-water sands (early version of “surface casing” requirement) was 
made a requirement 

1950s  Records often missing; cannot assume abandonment was done properly 

1965 S 

Legislature enacted the Well Plugging Statute, placing a duty on the operator, 
nonoperator, and landowner to plug abandoned oil and gas wells or dry holes and a 
duty on the Commission to determine whether wells were properly plugged; and the act 
also gave to the State a cause of action if the Commission plugged the wells and also 
authorized the Commission to accept money to properly plug wells (general fund).  

1966-
1967 S 

RRC Special Order No. 20-56,535 contained many of the current well plugging 
requirements (Statewide Rule 14 “Plugging”).  
- Cement emplaced with the circulation method 
- 10-ft cement plug on top of the well 
- 100-ft cement plug placed above uppermost perforated horizon 
- If production casing was removed (or not installed), 100-ft cement plug centered on 
the surface casing shoe should be installed; same on fresh-water formations located 
below the surface casing but initially protected by the production casing 

1974 F Safe Drinking Water Act  

1976 S Statewide rules 13 “Casing, Cementing, Drilling, and Completion Requirements” and 14 
“Plugging” were initially promulgated; multiple amendments followed.  

1980 S 
RRC amended section pertaining to plugging wells. Plugging operations on each dry or 
inactive well must be commenced within a period of 90 days after drilling or production 
operations have ceased and must be pursued with diligence until completed.  

1980 F UIC Regulations promulgated (Federal) 

1981 S H.B. 1379 gave RRC comprehensive authority to regulate underground injection 
activities 

1983 S 

Amendments were made to Statewide Rule 13 “Casing, Cementing, Drilling, and 
Completion Requirements,” detailing technical requirements for the casing and 
cementing of oil, gas, and other wells subject to the RRC jurisdiction. 
Rules were made more specific: Only approved cementers can perform cementing 
operations 

1983  Well Plugging Fund supported by fees on new wells and penalties instead of general 
fund 

1985  House Bil1 2431 required filing with the RRC a copy of each electric log made after 
September 1, 1985, in conjunction with the drilling of a well.  

1988 S Statewide Rule 14 “Plugging” was amended to make permanent the provision that dry 
or inactive wells have up to 1 year before plugging must begin. 

1991  Well Plugging Fund replaced by Oil Field Cleanup Fund (OFCU Fund) (State) 

1993  RRC approved a well-plugging priority system that included additional environmental, 
wildlife, and human health factors.  

Italics: event related to oil and gas production history 
S = State; F = Federal legislation 
Source: RRC (2000), Warner (2001), and RRC Web pages 
(http://www.rrc.state.tx.us/history/history/hist.html ) 

III.2.2.2 Material Quality 
Three types of material—cement, mud, and steel—need to be examined in the light of 

their resistance to corrosion, both under “natural” conditions and in the presence of CO2. Prior 

to 1928, the cementing industry manufactured only one type of material for well cementing 

(Montgomery and Smith, 1959, p. 13; Smith, 1976, p. 3). In 1940, there were two types of 
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Portland cement (Smith, 1976, p. 2) and three additives. That same year, bulk cementing was 

introduced. Before, only sacks were used. Since then, API has devised several classes of cement 

for different well conditions (pressure, temperature, and chemical conditions, in particular, 

resistance to sulfate attack). Starting in the late 1940s, the number of additives available on the 

market progressively grew. The API published for the first time in 1953 national standards on 

cements for use in wells (Smith, 1976, p.7). Operators were then able to tackle more difficult 

cementing jobs and ensure a better cement placement. Still, the rules in place were not fully 

followed and/or enforced. Nowadays, multiple additives are available for custom jobs. Cement 

can shrink (most common) or expand during curing, depending on the additives (typically 

sulfate based). Shrinkage is a function of the availability of water and can be between 0.5 and 

5% ( Baumgarte et al., 1999).   

Regulations called for mud-filled sections between cement plugs, and rotary-drilled dry 

holes without proper plugging records can be assumed to have been left mud filled because 

there is no economic incentive to recover the mud (Johnston and Knape, 1986). Attention to 

mud is most relevant to older dry holes. Water-based muds could include clay minerals, lime, 

gypsum and other additives in variable proportions. Gel strength of water-based mud increases 

indefinitely with time at a fast rate first, and then more and more slowly, but the gel becomes 

denser with time (filtration loss into adjacent formation) or it will break down into pockets of 

filtercake and fluid (Johnston and Knape, 1986, p. 97) and could lose its barrier effect. Bentonite 

muds do not solidify and stay in a liquid state, whereas lime and gypsum muds could solidify 

(Johnston and Knape, 1986, p.90). Currently, water-based drilling muds are used from the 

surface to depths of ~1,500 m (~5,000 ft), after which depth, oil-based drilling fluids are used. 

After drilling, the well bore is filled with a completion fluid, generally a brine.  

Although sometimes protected from ambient liquids by scale, the degradation rate of 

casing, typically made of carbon steel, is high in wet environments containing CO2. Metals tend 

to degrade faster in acidic conditions. Corrosion could also be slowed because of the buffer 

effect of limestone, carbonate clasts, and calcite. IPCC (2005, Chapter 4) suggested 0.7 mm/yr 

from experiments on coupons. In any case, the installed well materials have been chosen and 

designed to withstand production and related processes only for the life expectancy of a field—

that is, optimistically, for 50 years. Although they can last longer, as supported by anecdotal 

evidence from the Frio experiment where a well from the 1950s was in good shape when 
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reentered, how the materials will behave in a CO2-rich environment is still an open and debated 

question.  

III.2.2.3 Quality Assurance during Well Operations 
The current common prevalence of cement bond logs and tools shows that adequate 

cement interface with the formation on one side and the tubing on the other side is still a 

problem. It is particularly a problem when a well is readied for production, and it also occurs 

during plugging and abandonment, especially in slanted wells. Often the problem does not lie 

in the quality of the material used but in the quality of the plugging/abandonment 

performance. Smith (1976, p. 3) mentioned that a 1928 study on Gulf Coast cores that suggests 

that those deep wells of the time (>610 m [>2,000 ft]) show a high failure rate, often due to mud 

contamination. Heathman et al. (1994) noted that problems prevalent in the 1930s were still 

common in the 1990s. Primary causes of failure identified in their study include poor mud 

removal (most common), unstable cement slurries, insufficient slurry volume, and poor job 

execution.  

Mud contamination is the most common failure mode. The two-plug method, which 

limits mud contamination, was patented by Halliburton in 1922 (Smith, 1976, p. 4). Use of 

centralizers, which help distributing the cement more uniformly in wells with tubing, was not 

introduced until 1930 (Smith, 1976, p. 4). Precise quantity of cement needed for a thorough job 

was not accessible before the invention and widespread use of a caliper survey instrument in 

the 1940s. In the past, plug location was not checked but assumed to be where located, as 

planned. Now, tagging of the plug, where a drill pipe or some other device is inserted to check 

the location of the plug, is mandatory and a third person must observe the plugging operations. 

In addition, since 1997, only preapproved plugging operators have been allowed to perform 

plugging operations. All this suggests that the quality of the plugs is getting better because their 

emplacement date is closer to the present, although the question of the resistance of the material 

to corrosion in CO2-rich environments is still open.  

III.2.3 Well Leakage Pathways 
Potential well leakage pathways have been described in many publications (e.g., Gasda 

et al., 2004; IPCC, 2005). Interface between cement and casing and between cement and tubing is 

of particular concern for CO2 leakage when the well is not simply left open. In a recent study, 

Bachu and Watson (2006) determined from regulatory mandatory reports that ~4.6% of wells in 

Alberta, Canada, show some kind of vent flow or, less commonly, gas migration, apparently 
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most often from the shallow subsurface (90% of cases <210 m [<700 ft]). There are also less 

obvious properties that can create well leakage pathways, in particular, the relative stiffness of 

cement, casing if any, and formations and their evolution through time. These different well-

bore elements could settle or react differently to pressure changes (fluid withdrawal or 

injection, subsidence, etc.).  

In addition to “regular” pathways present in typical subsurface environmental 

conditions, carbon storage introduces a significant corrosion enhancer. In batch experiments, 

Portland cement degrades rapidly in the presence of CO2; corrosion attacks on well materials is 

slower but still of concern. There have been several analytical solutions to leakage through wells 

applicable to CO2 storage (e.g., Avci, 1994; Striz and Wiggins, 1998; Nordbotten et al., 2004; 

Nordbotten et al., 2005). However, attempts to use those solutions and models have been 

hampered by a severe lack of actual field data.  

Cement Degradation 

Cement degradation in wells has been a concern for a long time (e.g., South and 

Daemen, 1986). The main degradation processes in the subsurface are sulfate attack and 

carbonation. Several groups at leading institutes (e.g., in the U.S., Los Alamos National 

Laboratory, Princeton University) are actively investigating the issue of cement degradation in 

the presence of CO2 (or carbonation) in the subsurface. Experiments tend to suggest that 

Portland cement can be easily degraded, but field observations, especially in the Permian Basin, 

do not support this conclusion so far. Laboratory experiments are designed to enhance contact 

between the CO2-rich solution and cement, contact that may not be as pronounced in the 

subsurface. Attacks on cement are often located at interface either with tubing or formation. An 

explanation may be that experiments are designed to favor CO2 contact with the cement, 

whereas, in actual wells, CO2 has to diffuse into fresh cement. As for any other water-rock 

interactions, overall rate is impacted, not only by the intrinsic rate, but also by the relative 

surface area and availability of reactants.  

Cement is a mixture of mainly portlandite (Ca(OH)2) (20–25 wt.%) and multiple phases 

of hydrated calcium alumino-silicates in a gel of calcium silica hydrate (60–70 wt.%). 

Carbonation of cement is thermodynamically favored through the conversion of portlandite 

into calcite in the more acidic conditions produced by the presence of CO2 (Ca(OH)2 + CO2 =  

Ca CO3 + H2O) and the alteration of the calcium-silica hydrate into calcite and an amorphous 
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silica gel (C-S-H + CO2 = CaCO3 + SiO2am). In good-quality cement, carbonation has a beneficial 

effect of decreasing porosity and permeability and increasing mechanical strength. Molar 

volume of portlandite and calcite is 33.056 and 36.934 cm3/mol, respectively (Wolery and 

Daveler, 1992). Increase in volume could also have the downside of favoring cracking. 

Treatment by supercritical CO2 has been suggested to improve cement quality for waste 

disposal (Rubin et al., 1997; Hartmann et al., 1999; Purnell et al., 2001). However, carbonation 

increases shrinkage upon drying (prompting crack development possibly filled with calcium 

carbonate) and lowers the alkalinity of interstitial water (Kosmatka and Panarese 1994, p. 72). 

Carbonation also has the effect of decreasing pH, which leads, in porous, low-quality cement, to 

an increase in corrosion of metals, such as tubing. After initial carbonation stages, if CO2 is still 

available, dissolution and leaching of calcite can occur (bicarbonation) (CaCO3 + H2CO3 (aq) = 

Ca(HCO3)2 (aq)). An increase in porosity/permeability may then result. Some have suggested 

that cement permeability, not accounting for possible cracks, may increase by 3 orders of 

magnitude, from 0.001 md initially to 1 md after 100 to 1,000 years (Zhou et al., 2004). The poor-

quality cement put in place before the API standardization and advances of the 1950s is likely 

porous and will be very susceptible to carbonation. Cement degradation increases with 

decreasing pH and increasing temperature. Cement in a carbonate environment is more 

protected than in a sandstone environment because carbonate minerals buffer pH. It would 

seem that the solution would be neutralized as the cement reacts; however, some have 

suggested (Celia, oral communication, 2005) that the process is self sustained because of well 

coning. There are many ways to improve future cement formulations to resist CO2 attacks, e.g., 

calcium phosphate cements or resins. However, it is not clear whether they will be used instead 

of Portland-based cements. 

Sulfate attack is another common cement degradation mode. Specific cement 

formulations, low in aluminum (ASTM Type II and V, API Type C), are designed to withstand 

this type of attack, but they did not exist for most of the first part of the 20th century. Sulfate 

attacks lead to (1) byproduct formation, with a volume larger than that of initial constituents, 

and (2) potentially, to cracking. Sulfate concentration in most of the Frio Formation, an ideal 

target for carbon storage, is low except in a few instances in South Texas (Morton and Land, 

1987; Kreitler et al., 1988, Tables 3 to 5; Land and Macpherson, 1992), but it is not true for all 

Gulf Coast formations. The low sulfate concentrations most likely result from a reducing 
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environment in the slightly acidic (pH = 5–6, Kreitler et al., 1988, p. 181), organic-rich waters. 

Organic acids contribute up to half of the total alkalinity (Kreitler et al., 1988, p. 141)—a 

consequence of the numerous hydrocarbon sources. Frio brines are generally noncorrosive, as 

anecdotally shown by the good condition of the casing of the monitoring well of the Frio 

experiment drilled in 1951 (Hovorka et al., 2003, p. 97).  

III.2.4 Well Data Collection 
Currently no agency or private information vendor has a comprehensive list of oil and 

gas wells ever drilled in Texas. At the inception of API numbering and following a regulatory 

impetus, data collection has improved considerably since the 1970s. RRC has an extensive set of 

data, not all of them in electronic format, and additional information can often been found in 

county courthouses when a specific location is being studied. RRC regularly updates several 

databases, some of which are the basis for the work presented below. Arguably the most 

complete set of well locations can be found in the GIS maps available for a fee at RRC (“Digital 

Map Data”). These provide location coordinates, location reliability, well type (among ~100 

types: oil/gas injection/production, dry wells, service wells, geothermal wells, etc.). An 

additional database, the “API Well Database,” is associated with the Digital Map Data and 

includes an API number when available (about half of the wells), as well as completion and 

plugging dates. Location information for older wells (~400,000 wells) comes from digitization of 

older maps. However, other types of information are often lacking. The “Digital Map Data” 

present information on ~1,100,000 well locations across Texas. On the other hand, the “Well 

Bore Database” is a most complete database, with historical well-bore information. It provides 

completion, plugging, formation, and other information related to the well-bore history of all 

wells with an assigned API number. Dummy API numbers have been assigned to old wells 

drilled prior to implementation of the API numbering technique (1977). The API number is a 

unique number allowing cross-referencing of databases. The “Well Bore Database” contains a 

total of ~860,000 wells with location information. Although in an ideal world the two sets of 

data would be perfectly consistent, in reality, many wells in the “Well Bore Database” have only 

approximate locations, whereas many wells precisely located on GIS maps lack historical 

information. They, however, provide global information on more than 800,000 wells. The total 

number of oil and gas wells is probably at least twice this number. It follows that the currently 

operating wells represent only a small fraction of the total number of wells in Texas and that 
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most of the wells are operationally abandoned. Technically, the expression “abandoned wells” 

refers to those wells abandoned and plugged according to the regulations in place at 

abandonment time. In this report, we make no distinction between abandoned wells sensu 

stricto and orphan wells, whose owners have disappeared without properly abandoning the 

well. A “Field Database” is also available. It contains information about the ~75,000 oil and gas 

fields (administratively defined) in Texas, including year of discovery, average depth and 

cumulative production, as well as the current number of wells in operation.  

We contacted RRC and purchased, or otherwise obtained, the “Field Database,” the GIS 

maps and the “Well Bore Database.” The latter is in Oracle format and required lengthy 

processing to be in a format exploitable for this work. Merging and queries from other 

databases were also required to obtain better latitude/longitude information. Private vendors 

can provide well location coverage, but they focus more on more recent production data (e.g., 

drillinginfo.com, Datastar, IHS, Laser, etc.). RRC also owns a database with more than 1,000,000 

well locations in a GIS format. However, about half of these do not have an API number that 

would allow us to link them with the “Well Bore Database,” which contains the information 

needed for this work. Out of the ~800,000 wells listed in this database and covering the 254 

Texas counties (~135,000 with location coordinates in the 23 Gulf Coast counties), we selected 

the 79,281 contained in the 23 Gulf Coast counties. We were able to find accurate locations for 

39,065 of these wells; Figure 15 shows an example. In the past 20 years, an additional 

10,000±2,500 wells (oil and gas production and dry holes) have been added annually to the 

Texas well count (RRC Website). 
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Source: RRC databases 
Note: There are a total of ~1,500 wells with depth information out of a total of ~3,900 wells 

represented in the selected area. 
Figure 15. Map of the Corpus Christi area (Nueces and San Patricio counties) showing contrast 

between database with location only (digital data map) and database with location 
and well depth information (API well database) 

The Texas Water Development Board (TWDB) and Texas Commission on 

Environmental Quality (TCEQ) keep track of water wells, most of them shallower than most 

hydrocarbon-production-related wells. A registered water well driller is required by law to 

send in a report to the State for every well that is drilled. This requirement began in 1965, and it 

is estimated that approximately 500,000 water wells have been drilled in Texas since then 

(TWDB Website, 2005). The TWDB database contains information about ~130,000 of those wells, 

14,665 of which are located in the selected 23 Gulf Coast counties, and within this area at least 
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9,000 were completed before 1965. Other types of wells also exist: waste disposal (>100 class I 

wells), geothermal, and solution mining. These are numerically insignificant, and their 

construction follows more stringent UIC rules.  

III.2.5 Well Distribution Statistics 
Examination of oil/gas field average depth as a function of year of discovery (Figure 16) 

clearly shows that operators went (or were able to go) deeper and deeper to access the 

hydrocarbon resource but that a significant fraction of the fields at any given time is in the 1,500 

to 3,000-m range (5,000–10,000-ft). In other words, the slope for the trend of the deepest 

producing fields through time is much steeper than that of the average field. The time/depth 

density is consistent with the observations made about Figure 14, with the additional 

information about completion depth also shown by Figure 17. The two major peaks and the dip 

of the 1970s are all present. The density plot also illustrates that approximately 10% of the fields 

are deeper than 3,000 m (10,000 ft) (0.3% deeper than 4,570 m [15,000 ft]), 30% are shallower 

than 1,500 m (5,000 ft) (7% shallower than 2,500 ft), and 60% are included in the 1,500 to 3,000 m 

(5,000 to 10,000 ft) interval.  

Total well depth plotted against completion and abandonment years displays a pattern 

similar to that of the fields (Figure 18). The database has only 78 wells completed before 1934 

and grossly underestimates the number of older wells. Before the 1930s only the out of the 

ordinary wells made their way to RRC central records (deep for their time, good producers, 

etc.). An alternative explanation is that the database contains mostly pre-1934 wells that had 

been recompleted and plugged at a later date, when regulations and record enforcement were 

stricter. The vicinity of the City of Corsicana, Navarro County, location of the first Texas fields 

to produce oil and gas in important quantities, had 47 wells in 1897, and an additional 342 were 

drilled in 1898 (Handbook of Texas Online). Spindletop oilfields, on a salt dome on the Texas-

Louisiana border, had hundreds of wells in the early 1900’s. RRC does not have complete 

records for wells drilled before the 1930’s. The low abandonment well density (Figure 18b) 

before 1974 (year of the Safe Drinking Water Act) is a sampling artifact because of lack of 

records. Anzzolin and Graham (1984) suggested that there are a total of ~1,650,000 such wells 

across the U.S. (Figure 19). There is also a discrepancy between the number of wells recorded as 

completed (that is, just after drilling) and abandoned. It most likely represents a bias in which 

operators are inclined to report drilling information more than they are inclined to be diligent 
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about reporting plugging or even doing the plugging. Another partial explanation could be the 

lag between completion and abandonment, as well as recompletion or deepening of older wells. 

However, this explanation is unlikely to hold for wells completed before 1950.  

A plot of the average total completion depth at 1,830 to 2130 m (6,000–7,000 ft) (Figure 

20) illustrates that it has not changed significantly since the 1940s, reflecting the simple fact that 

most fields are located in the 1,500 to 3,000 m (5,000–10,000 ft) interval. Observations by 

Johnston and Knape (1986) can be added as a complement to the conclusions drawn from these 

density plots. They undertook a comprehensive study of the impact of abandoned wells on 

ground-water resources. They interviewed specialists and concluded that wells drilled and 

abandoned prior to 1930 are probably not much deeper than 915 to 1,220 m (3,000 to 4,000 ft), 

with a maximum of 1,830 m (6,000 ft) (p. 5, 78, 80). In addition, wells drilled during the 1920s 

apparently range from 150 to 305 m (500–1,000 ft) deep, with a maximum of 760 m (2,500 ft). 

Cumulative distribution function (CDF) curves for selected time intervals (Figure 21, Figure 22, 

and Figure 23) depict and quantify that observation. Figure 23, where all CDFs are 

superimposed, illustrates that the general shape of the distribution stays the same, with some 

shifting and difference at both ends. The differences at the end of the distribution are confirmed 

by a closed distribution exercise (Table 4). All well depth distributions are well fitted by gamma 

distributions, as indicated by passable goodness of fit values for Chi-Square and Kolmogorov-

Smirnov tests. Other distributions with slightly better fit values were also sometimes suggested 

(logistic, Student-t), but gamma distribution was retained for all categories for consistency. In 

general, distribution peaks are not well captured, and terrible values for the Anderson-Darling 

test, which put more weight on distribution tails, are obvious. This observation suggests that 

the underlying actual distribution is more complex and that the distribution should be captured 

in a Monte Carlo analysis by the data themselves rather than a relatively poor fit.   

As expected, water well total depth is much smaller than that of oil and gas wells 

(Figure 24). Although the sample is smaller than the total number of water wells, it is thought to 

be representative of the whole population or to slightly biased toward deeper wells because 

many early 20th-century shallow domestic wells are not in the TWDB database. It follows that 

most wells are in the shallowest section of usable quality water and clearly above the minimal 

injection depth for CO2 storage.  
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To get a better picture of the uneven well distribution through space, a spatial analysis 

and well count was performed in ArcGIS 9.1 using the “point distance” tool. We did it after 

creating a 1-km-square grid and leaving the appropriate buffer so as not to bias the results with 

areas having no data. Results are presented in histograms (Figure 25 and Figure 26) showing 

the number of wells existing within a given radius of any arbitrary point located within the 23 

counties considered (shown in Figure 2). Figure 25a shows not only that more than 70% of the 

Gulf Coast area has four or fewer wells within a 1-km radius, but also that approximately 1% 

has more than 40 wells within that same radius. The left-hand-side column of Figure 26 

illustrates that the likelihood of having no wells within a 1-km radius increases with depth. The 

top row of Figure 26 should match Figure 25 but does not because Figure 25 uses all well data, 

whereas Figure 26 uses only those wells with depth information. As expected and 

demonstrated by other plots, the number of wells within a given distance of a given point 

increases with distance, possibly to very high values, which is likely related to the presence of 

salt domes. Salt dome areas typically experience the highest surface well density.  
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Source: RRC field database 
Note: Bins are 1 year/100 ft (1ft = 0.3048 m) 
Figure 16. Time/depth density of oil and gas fields in RRC districts 2, 3, and 4 
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Source: RRC field database 
Note: median year is 1973 
Figure 17. Distribution of the year of discovery of oil versus number of fields in RRC districts 2, 
3, and 4 
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Source: RRC API Well Database 
Note: Bins are 1 year/100 ft (1 ft = 0.3048 m) 
Figure 18. Time/depth density of oil and gas wells with available data in RRC districts 2, 3, and 

4; (a) completion year and (b) abandonment year 
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Source: Anzzolin and Graham (1984); World Oil (1992) 
Figure 19. Tentative abandoned well count in the U.S. (1859-1974), including dry holes 

 

0

2,500

5,000

7,500

10,000

1900 1920 1940 1960 1980 2000

Calendar Year

Av
er

ag
e 

D
ep

th
 (f

t)

1

10

100

1,000

10,000

Ye
ar

ly
 N

um
be

r o
f C

om
pl

et
ed

 W
el

ls
  Average Depth

Number of Wells

 
Source: RRC Well Bore Database 
Figure 20. Average completion depth as a function of time, and the number of wells used in the 

computation (RRC districts 2, 3, and 4) 
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Source: RRC Well Bore Database 
Figure 21. Depth distribution of wells completed in selected time intervals 
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Source: RRC Well Bore Database 
Figure 22. Depth distribution of wells abandoned in the selected time intervals 
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Source: RRC Well Bore Database 
Figure 23. Depth distribution of and (a) completed and (b) abandoned wells 
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Note: Bins are 1 year/50 ft (1 ft = 0.3048 m); Y-axis has been arbitrarily stopped at 2,000 ft. 
Figure 24. Time/depth density of water-supply wells in the Gulf Coast area (RRC districts 2, 3, 

and 4) 
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Source: RRC digital map data 
Figure 25. Distribution of wells at a given distance from an arbitrary point located in one of the 

counties of interest: (a) 1 km, (b) 4 km, and (c) 8 km.  
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Source: RRC API well database 
Figure 26. Histogram matrix showing number of wells in a given radius (1, 4, or 8 km—horizontal direction) below a given depth 

(all, >4,000 ft, >8,000 ft, and >12,000 ft—vertical direction) at an arbitrary point within the 23 counties (4,000 ft =1,220 m; 
8,000 ft = 2,440 m; 12,000 ft = 3,660 m) 
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Table 4. Goodness of fit statistics for well depth distribution 

Goodness-of-fit Tests 

Parameter 
Data 
Mode 

Data 
Mean 

Data 
Standard 
Deviation 

Distrib.Law 
Preferred / 
(Best Fit) 

Distrib. 
Mean 

Distrib. 
Standard 
Deviation A-D 

C-S 
χ2 / do K-S 

Well depth (ft) Wells 
plugged between 1968 
and 1983—3,713 points 

6,000 6,553 2,605 Gamma 
6,553                 2,597 

Location=-6,254, Scale=527, 
Shape=24.3 

6.7 395 0.05 

Well depth (ft) Wells 
plugged after 1983—
13,512 points 

5,200 6,393 2,875 Gamma 
6,393                 2,868 

Location=-4,667, Scale=744, 
Shape=14.9 

22.1 1207 0.04 

 
Well depth (ft) Wells 
completed between 1937 
and 1967—7,769 points 

6,000 6,681 2,541 Gamma 
6,681                 2,537 

Location=-10,387, Scale=377 
,Shape=45.3 

13.7 658 0.05 

Well depth (ft) Wells 
completed between 1968 
and 1983—15,231 points 

6,000 6,287 2,767 Gamma 
6,182                 2,798 

Location=-7,124, Scale=569, 
Shape=23.6 

33.0 1671 0.05 

Well depth (ft) Wells 
completed after 1984—
12,084 points 

8,000 6,817 3,195 Gamma 
6,817                 3,165 

Location=-2,296, 
Scale=1,099, Shape=8.3 

16.7 1046 0.04 

Well depth (ft) All 
completed wells—35,162 
points 

6,000 6,554 2,885 Gamma 
6,554                 2,868 

Location=-4,665, Scale=733, 
Shape=15.3 

62.9 4097 0.04 

Note:  Goodness-of-fit tests: A-D = Anderson-Darling; C-S = Chi-Square; K-S = Kolmogorov-Smirnov 
1 ft = 0.3048 m 

Explanations: AD<1.5, C-S>, and K-S<0.03 indicates a good fit; fitting computations done with Crystal Ball 
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III.3 Faults 
For a fault to be a leakage pathway, at least three factors must be met (Warner, 1997):  

(1) CO2 must reach the fault, (2) CO2 phase must have sufficient pressure, and (3) fault must be 

transmissive, especially in the vertical direction. Faults are typically described either as a 

leakage pathway or as a sealing feature. In actuality, most probably act as both at different 

locations of the fault plane and at different points in time. Faults may allow flow in only one or 

two of the possible three directions (across the fault and transversally or vertically along the 

fault plane) or a combination of these (Harding and Tuminas, 1988; Knott, 1993; Ligtenberg, 

2004). There is a huge body of literature about fault seals in the petroleum literature, fault being 

one of the main hydrocarbon trapping features. Faults are envisioned mostly as features sealing 

most of the time but that would let fluids through by pulses. Regional tectonic stresses are 

currently low and extensional in the Gulf Coast area, and most of the faulting is related to 

sedimentation. Three main types of faults are represented in the Gulf Coast area: 

syndepositional growth faulting (listric normal and their possibly associated antithetic 

members), radial faults associated with shale or salt piercement structures, and, less commonly, 

regional postdepositional faults. Growth faults form contemporaneously with sedimentation, 

with a fault throw increasing with depth. They stay active until the sediment load has been 

better stabilized and until the next unconsolidated sediment package adjusts itself by creating 

its own set of growth faults. These faults remain active in areas where sedimentation is still 

active (e.g., Houston area). Salt domes produce radial fault patterns, whose throw can be 

important but quickly attenuated away from the dome. As seen previously (Figure 7), folding 

and its associated traps is allied with faulting and diapirs. More information about faulting is 

given in Appendix A.  

III.3.1 Fault Geometry  
In the Gulf Coast, growth faults are organized in systems with major faults that extend 

along strike 20 to 50 km (Figure 12 and Figure 27). Growth faults are often arcuate in plan view, 

denoting their origin as mass wasting accommodation. To illustrate that faults are generally 

restricted to one depth section of the subsurface, five areas with available 3D-seismic 

information were examined through a detailed mapping of fault pattern and density at different 

depths (Table 5).  
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Figure 27. Distribution of (growth) fault throw within a ~100 × 60 km rectangle 
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Table 5. 3D-seismic survey location 

Name Location 
Area 

(km2 / mi2) 
GC1 Gulf Coast 195 / 75 
GC2 Gulf Coast 440 / 170 
Stratton West of Corpus Christi 20 / 7.7 
Liberty Salt dome—Houston area 44 / 17 
Gillock Salt dome—Houston area 23 / 9 

Note: exact location of sites GC1 and GC2 not provided because of proprietary information 

For each of the five 3-D seismic surveys, six structure maps were constructed to 

represent the density of faults at different depths (±460 m [±1,500 ft] vertical sampling), to verify 

fault lateral distribution versus depth, and to test the possibility of vertical connectivity through 

fault relays. A series of seismic-reflection profiles were used to map the structure and fault 

distribution at six different levels approximately 500 ms apart. The shallowest horizon was 

interpreted near 500 ms (460 m [1,500 ft]), and the deepest at near 3,000 ms (3,660 m [12,000 ft]). 

Time-depth relations were used through velocity measurements at wells drilled in these areas. 

Horizon picking was done every 10 × 10 lines and traces for every surface in each survey. 

Interpreted horizons were then carried out, preparing for calculating continuity (coherency) 

maps. The end result was s fully interpreted horizon/layer, and the coherency gaps are faults 

represented by polygons. Seismic data were used in identifying principal fault plane geometry. 

Faults were correlated using an integrated loop method that requires that seismic indications of 

structural elements must correlate to intersecting and nearby parallel lines. Fault correlations 

were also based on fault plane shapes and stratal geometries found at both upthrown and 

downthrown sides of the faults. Coherency seismic attributes, which measure trace-to-trace 

similarity of the seismic waveform, were also used for mapping faults. Variable seismic 

windows 40 to 100 ms were designed to measure the incoherency in seismic markers in order to 

generate the best image of the principal faults. The small correlation windows were used at the 

shallow intervals where the quality of seismic data is better. The larger correlation windows 

were performed at the deeper level, where a low signal-to-noise ratio was encountered. Figure 

28 shows a coherence map through the Stratton seismic volume and highlights individual fault 

expression. Picking errors can bias the result of the coherence extraction; therefore, vertical 

sections through the seismic volumes were used to QC the results.  

Faults for the GC1, GC2, and Stratton field sites impact mainly the Frio Formation and 

are traditional growth faults, whereas faults impacting the Liberty and Gillock sites are related 

to salt diapir growth. Vertical sections across Stratton field (e.g., Hardage et al., 1994) (Figure 28 
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and Figure 29) in the Frio Formation provide an example of growth faults not impacting 

overlying layers. Shorter, along-strike, second-order faults, numbered “Fx,” (Figure 30) are also 

visible. Those second-order faults whose dimension statistics for Stratton field will be derived 

later are important for studying the compartmentalization of an area. Sites GC1 and GC2, also 

located in the Gulf Coast area, (Figure 31) show a similar picture, with clear attenuation of 

growth faults toward the surface. Figure 31c clearly shows the radial pattern of some smaller 

faults due to the localized upward motion of shales which are the result of primary growth fault 

movement. Faults associated with salt domes also show horizons where faulting is concentrated 

(Figure 32 and Figure 33). It would be, however, imprudent to apply such conclusions to all 

diapirs.  
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Figure 28. Coherency map in Stratton 3-D measured at a deep layer (±7,000 ft = ±2,130 m) 

showing the faults affecting the area. White areas coincide with continuous seismic 
marker (layer) with no faults. Blue areas represent incoherent event or cracks. Faults 
are represented by polygons with light-blue outlines. Lines 1 and 2 are shown in the 
next figure.  

We used a simple quantitative method to calculate the variation of fault density with 

depth. Once horizons and faults were mapped and correlated in each seismic volume, we 

measured fault length and distances between faults in matrix form for each horizon and 

recorded them in Excel files. The measurements were made along regular selections of vertical 

sections in each seismic volume. The selection of vertical sections was chosen to capture the best 
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representation of faults in each seismic volume, taking into account the coverage area of seismic 

data. 
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East        West East        West 

  
Note: Vertical scale in milliseconds. See Figure 33 for representative depth equivalence. Fault identification numbers are consistent 

with previous figure. 
Figure 29. Lines 1 and 2 are examples of vertical sections chosen to best represent faults in the Stratton area.  
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Note: Brighter colors denote structure highs, and darker colors indicate depressions or structure 

lows. Faults are represented by polygons. Depths of ~2,000, 6,000, and 7,000 ft show no 
fault, faults with smaller throws, and faults with larger throws, respectively.  

Figure 30.  Structure maps in Stratton area constructed at three depth levels: (a) shallow, (b) 
moderate, and (c) deep. The maps depict the population of the fault density varying 
with depth.  

2000 ft

4500 ft

4650 ft

2000 ft

1600 ft

1670 ft

2000 ft

6000 ft

6700 ft

2000 ft

4500 ft

4650 ft

2000 ft2000 ft2000 ft

4500 ft

4650 ft

4500 ft

4650 ft

2000 ft

1600 ft

1670 ft

2000 ft

1600 ft

1670 ft

2000 ft2000 ft

1600 ft

1670 ft

1600 ft

1670 ft

2000 ft

6000 ft

6700 ft

2000 ft

6000 ft

6700 ft

2000 ft2000 ft

6000 ft

6700 ft

6000 ft

6700 ft

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 

 



65 

 
Note: Brighter colors denote structure highs, and darker colors indicate depressions or structure 

lows. Faults are represented by polygons. 
Figure 31. Structure maps in GC1 and GC2 areas constructed at three depth levels: (a) shallow, 

(b) moderate, and (c) deep (±10,000 ft = ±3,050 m). The maps depict the population of 
the fault density varying with depth.  
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Figure 32. Structure maps in Liberty (L) and Gillock (G) areas constructed at three depth levels: (a) shallow, (b) moderate, and (c) 

deep (±10,000 ft = ±3,050 m). The maps depict the population of the fault density varying with depth. Brighter colors 
denote structure highs, and darker colors indicate depressions or structure lows. Faults are represented by polygons. 
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Note: See Figure 32 (G) for location of the cross section. Stratigraphic horizons are denoted by 

approximately horizontal lines, whereas faults are more inclined and show data picks.  
Figure 33. Gillock cross section showing denser faults at the interval between 8,000 and 9,000 ft 

(2,440 and 2,740 m) compared with the faults affecting the deeper levels.  

III.3.1.1 Fault Spacing and Fault Length 
Knowledge of fault and fracture/joint density and aperture can help in quantifying CO2 

leakage. It has been noted that field observations at some scales can be extrapolated to other 

scales because fault parameters generally follow a power law (Bonnet et al., 2001): cbXN −= , 

where b and c are empirical constants and N is the cumulative number of faults whose measure 

of interest (length, spacing, displacement, aperture, etc.) is larger than X. Power law 

distributions plot as a line on log-log charts. Alternatively, fault/fracture length and spacing 

have often been described as having a lognormal distribution because they are biased toward 

small lengths. Some authors (e.g., Bonnet et al., 2001) favor a power law distribution because of 
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the likely incomplete sampling on the small length side. This is true not only in the field, but 

also in seismic surveys whose resolution is such that faults with small offsets are not visible 

from reflection data. This study, however, focuses on larger faults, more likely to have a larger 

vertical extent.  

Along-strike length of all second-order faults was recorded for Stratton field, as well as 

for sites GC1 and GC2. A total of 7 and ~70 faults have been measured, respectively, with the 

help of imaginary scanlines (Figure 28 and Figure 34). Length distributions are presented as a 

CDF (Figure 35) and with the power law assumption (Figure 36). The cumulative coefficient c of 

the power law describing the relationship number of faults larger than a given length to that 

given length is c=1.25 (Figure 36) over an area of 635 km2. This number was obtained with a 

number of samples (~100) at the limit of the validity of the method (Bonnet et al., 2001) but on a 

length range covering 2 orders of magnitude. This value of the coefficient is consistent with 

Table 2 of Bonnet et al. (2001) and falls within the average of seismic studies (a=c+1~2.25) 

(Figure 12 of Bonnet et al., 2001). CDFs of the fault spacing (Figure 37) and its percentiles  

(Table 6) suggest that in the GC1 and CG2 sites (covering 635 km2) fault density increases with 

depth, albeit irregularly.  

Table 6. Fault spacing percentiles 

Horizon 
(ms) 

Equivalent 
Depth (ft) 

# of 
points 

5th Perc. 
(km) 

25th Perc. 
(km) 

50th Perc. 
(km) 

75th Perc. 
(km) 

95th Perc. 
(km) 

3,000 12,000 63 0.24 0.59 0.98 2.19 6.69 
2,400 9,500 137 0.23 0.45 0.68 1.13 5.66 
1,800 6,500 9 N/A 1.72 5.31 13.7 N/A 
1,300 4,500 6 N/A N/A 3.14 N/A N/A 
900 3,000 11 N/A N/A N/A N/A N/A 
500 1,500 2 N/A N/A N/A N/A N/A 

1 ft = 0.3048 m 

III.3.1.2 Fault Displacement 
Fault displacements, as measured from the map of the top of the Frio Formation  

(Figure 27), show a lognormal distribution of mean and standard deviation of 63 and 55 m (207 

and 180 ft), respectively (Figure 38). As expected, it also shows, on average, an increase of 

maximum fault displacement with fault length (Figure 39). The relationship between fault 

displacement and length has been extensively studied (Bonnet et al., 2001, p.365). Power law 

distribution for both length L and maximum displacement D translates into the following 

relationship: nLD ∝ , where n is an exponent. Yielding et al. (1996, Table 1) found that n ranges 

from 1 to ~2.
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Source:  Horizon 4—1,800 ms for sites GC1 and GC2 
Note: all faults have been given numbers, as seen for some of them in the graphic 
Figure 34.  Fault scanlines for sites GC1 and GC2 
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Source: GC1 and GC2 sites (Figure 31) and Stratton field data (Figure 29) 
Figure 35. CDFs of fault length (GC1 and GC2 sites and Stratton field) 
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Source: GC1 and GC2 sites (Figure 31) 
Note: Regional first-order growth fault has been added relative to Figure 35. Coefficient of the 

power law was computed with samples of fault length >1 km. Shorter fault lengths have 
not been sampled comprehensively.  

Figure 36. Power law distribution of fault length (GC1 and GC2 sites) 



71 

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Fault Spacing (km)

C
D

F

Horizon 6 - 3,000 ms Horizon 5 - 2,400 ms

Horizon 4 - 1,800 ms Horizon 3 - 1,300 ms

Horizon 2 -    900 ms Horizon 1 -    500 ms

 
Source: GC1 and GC2 sites (Figure 31) 
Note: The shallowest horizon (horizon 1) has only two data points and has been included to 

confirm the trend discussed in the text 
Figure 37. Distribution of spacing between second-order faults 
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Note: Throw measurements from map are accurate within 16 m (±8 m) [50 ft (±25 ft)] 
Figure 38. Fault throw distribution at the top of the Frio 
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Figure 39. Cross-plot of estimated fault length and displacement 

III.3.1.3 Trap Size within Fault Compartment 
The distribution of trap and fetch areas, as described in Figure 12 and Section III.1, 

follows an approximate lognormal distribution (Figure 40 and Table 8), illustrating their 

generally small size (median at 8.0, 14.4, 21.9 km2 for the trap, fetch, and combined areas, 

respectively). A similar work on their height (Figure 41 and Table 8) leads also to approximate 

lognormal distribution with median of 45 and 275 m for the trap and fetch areas, respectively. 

These numbers are consistent with our knowledge of the Gulf Coast, where a long, shallow-

dipping run-up leads to a domal structure. These results are consistent with the work done by 

Morton et al. (1983, Table 5), who looked only at fault compartments (that is, the sum of trap 

and related fetch subdomains) in the Frio of South and Central Texas. Although average size of 

the compartments in their study (Table 7) are somewhat smaller (16th percentile 1.5 and 3.6, 

median 5.7 and 11.2, 84th percentile 17.6 and 32.9, and average 11.9 and 19.2, respectively), the 

agreement is much better when Central Texas data are considered. In both cases, as in their 

additional dataset on the Wilcox Formation, the distribution is skewed toward the small 

compartment, suggesting a lognormal distribution. 

Table 7. Statistics of the fault compartment  
 16th Perc 50th Perc. Average 84th Perc. 

Morton et al. (1983) 
(mi2) 1.5 5.7 11.9 17.6 

Closure + fetch 
This study (mi2) 3.6 11.2 19.2 32.9 



73 

0

20

40

60

80

100

3 18 33 48 63 78 93 10
8

12
3

13
8

>1
50

Area of Trap Subdomains (km2)
Number of bins: 51; Bin size: 3 km2

N
um

be
r 

of
 S

ub
do

m
ai

ns

N=404

 

0

20

40

60

80

100

3 18 33 48 63 78 93 10
8

12
3

13
8

>1
50

Area of Fetch Subdomains (km2)
Number of bins: 51; Bin size: 3 km2

N
um

be
r 

of
 S

ub
do

m
ai

ns

N=403

 

0

10

20

30

40

50

60

6 24 42 60 78 96 11
4

13
2

15
0

16
8

18
6

20
4

22
2

24
0

25
8

27
6

29
4

Area of Combined Fetch and Trap Subdomains (km2)
Number of bins: 51; Bin size: 6 km2

N
um

be
r 

of
 D

om
ai

ns

N=403

 
Note: Last bin includes all samples with values larger than the bin before last (>60 or >120 km2). 

Occurrence of closure areas with two fetch areas and closure areas with no fetch areas 
explains the slight discrepancy in the number of fetch and closure areas. 

Figure 40. Statistical distribution of trap and fetch subdomain area 
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Figure 41. Distribution of height of trap areas 
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Note: average dimension computed in ArcGIS, with perimeter P and area A of the fetch area as 

the geometric mean of the solution of the following quadratic equation: 
0)2/(2 =+− AxPx  assuming fetch areas are shaped as rectangular quadrangles.  

Figure 42. Distribution of (a) vertical height and (b)average horizontal dimension of fetch area 
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A computation of trap capacity (Figure 43) can be performed by assuming that CO2 

density is 700 kg/m3, that sand porosity is 30%, that sand fraction is 30%, that the area is cone 

shaped (1/3 of the product of the area by height), and that gas saturation is 70%. Trap height 

was also measured from contour maps. Figure 43 suggests that most traps will not hold more 

than 10 Mt CO2, an amount smaller than the lifetime output of a typical power plant (5 Mt/year 

for 30 years). 
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Figure 43. Distribution of trap subdomain capacity with a bin size of (a) 5 Mt and(b)10 Mt  
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Table 8. Goodness-of-fit statistics for structural features 

Goodness-of-Fit Tests 

Parameter 
Data 
Mean 

Data 
Standard 
Deviation 

Distrib. Law 
Preferred / 
(Best Fit) 

Distrib. 
Mean 

Distrib. 
Standard 
Deviation A-D 

C-S 
χ2 / do K-S 

Trap area (km2) 14.72 26.33 Lognormal 14.73 25.55 0.32 9.86 / 0.03 
Lognormal 40.52 121.65 1.75 31.38 / 0.05 Fetch area 

(km2) 32.56 48.17 (Weibull) Location=0.06,Scale=9.75 
Shape=0.69 1.00 33.80 0.04 

Combined area 
(km2) 49.73 59.26 Lognormal 51.86 77.93 0.35 12.24 / 0.04 

Lognormal 100.93 156.74 6.43 421.78 0.14 

(Weibull) Location=4.45,Scale=84.44 
Shape=0.82 5.49 411.73 0.13 Height of trap 

area (m) 98.62 115.83 

Most likely multimodal    
Lognormal 364.51 374.67 2.24 125.08 0.08 

(Weibull) Location=12.19,Scale=359.6 
Shape=1.22 1.22 61.60 0.06 Height of fetch 

area (m) 348.86 276.87 

(Gamma) Location=12.78,Scale=221.1 
Shape=1.52 0.98 76.77 0.06 

 

Trap capacity 
(Mt) 32.29 123.45 

Product of 
2 Lognormal = 

Lognormal 
37.31 249.00 1.08 25.16 0.05 

Original oil in 
place, RRC 
districts 2,3, and 
4 (106 m3) 

4.24 14.44 Lognormal 2.9 5.8 22.46 339.23 0.11 

 
Lognormal 6.70 6.10 1.15 30.43 0.05 

(Gamma) Location=0.56,Scale=4.13 
Shape=1.45 0.31 24.70 0.03 Fetch area 

horizontal 
dimension (km) 

6.54 5.09 

(Weibull) Location=0.58,Scale=6.31 
Shape=1.18 0.92 27.46 0.04 

Note:  Goodness-of-fit tests: A-D = Anderson-Darling; C-S = Chi-Square; K-S = Kolmogorov-Smirnov 
Explanations: AD<1.5, C-S>, and K-S<0.03 indicates a good fit; fitting computations done with Crystal Ball 
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III.3.2 Fluids and Faults 
Faults can localize fluid circulation or act as seals. The nature and configuration of the 

material present within the fault planes are the main parameters affecting the hydraulic 

properties of the fault. Fault quiescence or activity also greatly affects the fluid history within 

the fault plane. The geometry of the fault is another parameter that affects fault gouge nature 

and distribution along the fault plane and indirectly impacts fluid circulation. Four scales of 

investigation concerning the relationship between fault geometry and fluid circulation can be 

highlighted: (1) basin scale, in which fluid migration and accumulation along faults are related 

to large-scale geological parameters such as basin fill, tectonic events, and burial and thermal 

histories. Subsurface studies (Welte et al, 1997; Colling et al., 2001) or modeling studies are used 

for investigation at that scale; (2) fault system or reservoir scale, in which fluid migration and 

accumulation along faults are related to local fault system geometry; at that scale, fault 

connectivity and distribution are the main geometrical characteristics affecting fluid 

distribution and possible migration; (3) fault zone scale, in which fluid migration and 

accumulation along faults are related to small-scale characteristics such as gouge nature, 

distribution, and geometry within the fault zone; and (4) grain scale, in which fluid migration 

and accumulation along faults are related to microscopic parameters. The main parameters 

include fault zone material, grain-size distribution, and porosity configuration. 

III.3.2.1 Fluid Circulation 
Fluid circulation can be very rapid when associated with earthquakes or certain human 

activities. Some studies show fluid leakage related to earthquakes (Schwartz and Coppersmith, 

1984; Sibson, 1989). This phenomenon, called fault-valving, (Sibson, 1990) is defined by a 

succession of fluid flux—fluid accumulation periods leading to overpressure. Interseismic 

periods show the presence of an impermeable fault zone (e.g., clay-rich gouge in the fault core), 

which becomes permeable owing to fluid injection in the fault zone. Therefore, a fault growth 

event can allow overpressured zones, originally intercepted by impermeable faults, to abruptly 

release fluids upward through the fault plane that just became permeable. Other studies 

indicate that human activity such as hydrocarbon production or dam construction (Kisslinger, 

1976; Maury, 1997) can allow reactivation of faults. These studies show fluid pressure variations 

that trigger faulting with seismicity of magnitude 4 to 6 (Maury, 1997). In petroleum fields, such 

phenomena are observed during reservoir depletion and are often recorded during fluid 

injection (e.g., Snipe Lake, magnitude 5.1; Gasli, Ouzbekistan, magnitude 7, Maury, 1997). Many 
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other observations show that fluid circulation is mostly slow: oil migration within faults, oil 

seeps at fault tips, water leakage through faults, water table and spring behavior changes 

associated with earthquakes along the active fault zone, and mineralization within the fault 

zone.  

Fluids can have physical (fluid pressure) and/or chemical (e.g., dissolution) effects on 

faulting. Variation in fluid pressure may influence permeability and deformational mechanics 

(Fisher and Zwart, 1996). Overpressure increases permeability and decreases fault effective 

stress, allowing the fault to move more easily. Such variation of fluid pressure can trigger fault 

growth periods without any change in regional tectonic stress. On the other hand, a decrease of 

fluid pressure (e.g., fluid leakage) can “freeze” fault activity. The presence of impermeable 

intervals (e.g., shales) within a permeable stratigraphic series (e.g., sands) can allow local fluid 

pressure to increase by differential compaction, which can trigger rupture (faulting) (Mandl, 

1988). The dissolution and precipitation of solids due to fluid interaction are common processes 

within fault zones. These processes are more efficient when fluids and solids are in chemical 

imbalance (Feucht and Logan 1990) and when fluid circulation sustains this imbalance (De 

Boers, 1977; Gratier et Guiguet, 1986; Parry et al., 1988). The right chemical balance can trigger 

sealing of the fault plane. These effects can also vary spatially when different rock types are 

connected to a single fault plane, which can allow dissolution, transport of fluid, or 

mineralization. Microstructural evidence of porosity reduction indicates that dissolution-

precipitation processes are important for fault weakening in hydrothermal conditions (Streit 

and Cox, 2000). Natural faults may therefore be weaker than predicted by dry frictional 

experiments if pore fluids migrating through active faults activate dissolution-precipitation 

processes. 

III.3.2.2 Fault Hydraulics and Sealing Processes 
Faults seal by several processes: (1) diffusive mass transfer, (2) crystallization, (3) plastic 

deformation, (4) cataclasis, and (5) clay smearing. Studies on pressure-solution processes in 

relation to diagenesis (Durney, 1972; Angevine and Turcotte, 1983; Fuchtbauer, 1983) indicate 

that diffusive mass transfer occurs at depths greater that 1,000 to 1,500 m. Nevertheless, 

pressure solution processes become more predominant owing to (1) grain-size reduction (Weyl, 

1959; De Boers, 1977), (2) temperature increase (De Boers, 1977), and (3) clay presence (De Boers, 

1977). Crystal growth can increase sealing of tension cracks and faults by reducing pore 
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configuration. These processes reduce porosity and permeability (Knipe, 1992). The 

rearrangement of crystals by elastic deformation within the fault zone can affect the spatial 

permeability configuration and potentially increase fault sealing. Grain size and pore size are 

reduced by cataclasis (matrix porosity) (Pittman, 1981; Aydin and Johnson, 1983; Antonellini et 

al., 1994). Nevertheless, increase of fracture density (fracture porosity) by cataclasis can have the 

opposite effect and can increase permeability (Crawford, 1998). 

Pores can be plugged or filled by clay material (sometimes bitumen), which reduces 

porosity of the fault core. Clay occurrence in fault zones has been documented by many authors 

(Niger Delta: Weber et al., 1978; Gulf Coast: Smith 1980; North Sea: Knott, 1993). The presence 

of clay within the fault core can be explained by several processes that are regrouped under the 

term of smearing (Lindsay et al., 1993): 

- Clay intrusion by diapiric processes (Bruce, 1973; Lyndsay et al., 1993) 

- Segmentation with remaining contact of shaly intervals by fault array within a 

composite fault zone (Smith, 1980; Downey, 1984) 

- Cementation due to clay minerals transported by fluids within the fault zone (Wu, 

1978) 

- Clay shearing (Weber et al., 1978) related to incorporation of clay within the fault core 

followed by ductile shearing during fault movement 

- Abrasion that relates to cataclasis of fault core material down to a clay grain-size 

material (Lindsay et al., 1993) 

Fault zone hydraulic properties have been evaluated using analog and natural examples. 

These studies allow quantifying of porosity and permeability in deformed zones. Measurements 

have been obtained on (1) sheared porous sandstone (Antonellini et al., 1994), (2) deformed clay 

samples (Al Taaba and Wood, 1987), and (3) fault gouge (Faulkner and Rutter, 1998; Gibson, 

1998;). Analog models (Crawford, 1998; Zhang et al., 1999) and outcrop studies (Engelder, 1974; 

Chester and Logan., 1986; Rutter et al., 1986; Antonellini et al., 1994; Faulkner and Rutter, 1998; 

Gibson, 1998) demonstrate the variability of processes within the fault zone. Different studies 

describe physical or physico-chemical mechanics within the fault zone, such as grain-size 

reduction (Aydin and Johnson, 1983) and dissolution and mineral growth (Pittman, 1981; 

Knipe, 1992). These phenomena often reduce fault permeability and allow faults to act as 

barriers for fluid circulation. These studies do not account for the longitudinal drains often 
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observed (Sibson, 1987; Gratier et al., 1993). Results of these studies show a reduction of 

permeability in the deformed material (fault core) (Gibson, 1998) and the presence of an 

anisotropic permeability configuration that follows the clay mineral orientation (Faulkner and 

Rutter, 1998) and that is proportional to the deformation applied (Vasseur et al., 1995; Zhang et 

al., 1998).  

III.3.3 Fault Leakage 
III.3.3.1 Leakage in Space 

Faults limit cross-fault flow for two reasons—juxtaposition of permeable strata against 

less permeable layer and clay smearing along fault planes (Yielding et al., 1997). Juxtaposition 

considers the nature of the contact between sediments on both sides of a fault plane (Downey, 

1984; Knipe, 1992; Jones and Knipe, 1996). The juxtaposition is efficient as a barrier if low-

permeability intervals on the upthrown side of a fault plane are in contact with high-porosity 

intervals on the downthrown side of the fault plane (e.g., shale interval present on upthrown 

side of a fault down to the downthrown side spill point within a sandstone interval). Other 

authors (Smith, 1966; Watts, 1987) introduced the concept of a membrane for a fault working 

partly as a barrier and where there are juxtaposed sedimentary series across the considered 

fault plane. Processes involved in the membrane concept take into account capillary and fluid 

pressure within the rock. Such an approach allows investigation of a more dynamic fluid/fault 

relationship, with faults acting either as barriers or conduits in relation to a wide range of 

parameters. It has been observed that fluid circulation along fault planes is concentrated in the 

outer damage zone, where small connected fractures are observed. In contrast, the fault core 

shows a decrease of cross leak (transversal permeability) due to cataclasis, clay smearing, and 

other processes that reduce local fluid movement. These results indicate that fluid circulation 

can occur upward along transversally sealed fault planes. Numerous observations indicate that 

faults play a major role in the migration pathways of rock fluids. Studies of hydrocarbon seeps 

are important sources of information about leaking systems (Peckmann et al., 1999; Campbell et 

al., 2002). Several giant oil and tar accumulations were discovered from their leakage to the 

surface, e.g. Athabasca (Canada), Maracaibo province (Venezuela), Akanskoye (Volga-Urals), 

Surakhanskoye (Azerbaijan), Masjid-i-Suleman (Zagros, Iran), and Tampico province (Mexico).   

III.3.3.2 Leakage in Time 
Most faults have complex episodic behavior that is related to fault geometry, 

décollement zone characteristics (in the case of salt or shale-related growth faults), 
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loading/burial history, and fluid/pore pressure characteristics. Most of these parameters are 

interconnected (e.g., burial affects compaction and fluid movements), and the kinematic study 

of faults is often a difficult task.  

For Morrow et al. (1981) and Morris et al. (1996), continuous or discontinuous fault 

behavior is related to the shear strength of the fault plane. This parameter is related to 

mechanical properties of the faulted rock and to the preexisting fault plane’s geometrical 

properties (e.g., a highly rugose fault plane allows higher fault stress; Miller, 1996). Some 

permeability studies on faulted rock masses (Barton et al., 1995) present strong evidence that 

faults that are critically stressed in the current stress field (i.e., capable of slipping) are 

permeable, whereas those that are not critically stressed are not permeable. 

Wiprut and Zoback (2000) proposed that as gas accumulates in a permeable reservoir 

bounded by a sealing fault, pore pressure at the fault/reservoir interface increases because the 

pore-pressure gradient in the gas is considerably less than the hydrostatic gradient owing to the 

lower density of the gas. As the height of the gas column increases, at some point pore pressure 

will be sufficient to induce fault slip (reactivation), providing a mechanism to increase fault 

permeability and allow leakage from the reservoir. These authors studied a normal fault in the 

northern North Sea that followed the Sibson (1990) fault-valve model (or pressure-regulated 

valve), in which sealed faults allow pressures to accumulate and rise to a certain value before 

fault slippage occurs and fluids leak upward along the fault. 

Cartwright et al. (1996) and Bouroullec (2001) showed that normal syndepositional 

faults have mechanical thresholds that, if exceeded, allow fault activation. Faults accumulate 

stress by friction and pore pressure rise during small fault growth activity that leads to a sealing 

of the fault (period of fault inactivity), followed by a more intense fault growth period, during 

which fluids are released and pore pressure drops. Bouroullec (2001) documented this 

phenomena using throw versus depth analysis on 81 normal faults located in the Gulf Coast, 

Texas. Each fault shows a different mechanical threshold at which slippage occurs. This 

threshold is reached after a period of fault inactivity that allows pore pressure to increase and 

reach a critical value. The fault-slip rates measured for these faults are higher after an inactive 

period. This result is interpreted as an increase of fluid amount within the fault planes that 

allows decreasing of fault friction (lubrication). 
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Hooper (1991) presented a long list of evidence that a growth fault can seal or actively 

transmit fluids. Galloway (1982) showed in a South Texas uranium province that currently 

sealing or minimally leaking growth faults were conduits in the past, as demonstrated by 

mineralogical evidence. Reducing fluids were released periodically, allowing the precipitation 

of uranium, traveling with meteoric waters. Similarly, generally higher water salinity of the 

uranium province has also been attributed to periodic deep discharges into the shallow 

aquifers. Current temperature distribution data also suggest that the same Wilcox fault trend is 

at least periodically leaking (Bodner and Sharp, 1988). In this case, as in most other cases, the 

length of leaking vs. sealing periods remains an unresolved problem.   

III.3.4 Fault Parameters 
The ultimate effect of faulting is compartmentalization of the subsurface. Fault 

properties will control the open/closed nature of the compartments that will, in turn, control 

injection pressure, maximum capacity for CO2 storage, and leakage potential. Relevant 

parameters for fault/fractures include orientation, length, density, and flow properties. Many 

studies have been performed on the compartmentalization of oil and gas reservoirs by faults 

and the impact of fault tightness on flow properties. Sealing properties of faults can be 

described as membrane or static sealing, which results from capillary forces and is relevant to 

multiphase flow, or as hydraulic-resistance or dynamic sealing, in which low permeability of 

the medium impedes flow (valid in both single- and multiphase flow) (Watts, 1987).  

By studying the juxtaposition of lithology across fault planes in cross section (one 

dimensional, Knipe, 1992) or over the entire fault plane (two dimensional, Yielding et al., 1997), 

it is possible to characterize the distribution of permeability in relation to the host rocks series. 

Shale gouge ratio (SGR) has been used as a parameter for estimating fault seal (Yielding et al., 

1997). SGR takes into account the proportion of clay in the gouge in relation to the quantity of 

clay in the sediments on both sides of the fault plane and in relation to the fault throw. Some 

have questioned its accuracy and have suggested that it underestimates fault sealing strength 

(Eichhubl et al., 2005). It is defined by:  

D
BV

SGR sh∑=  with DB =∑   

where Vsh is clay fraction over thickness B, and D is fault throw. Clay fraction is not defined as 

the percentage of clay mineral in a small sample but as the fraction of clay beds of sufficient 
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thickness to be recognized on geophysical logs. Total thickness ∑B  must be equal to the throw 

and be measured in the fault section of interest. It follows that SGR must be in the 0 to 100% 

range. In most cases, some average measure of Vsh is equated with SGR. Calibration is required 

to determine the leaking threshold in a particular site. It follows that this approximation is more 

valid for faults with larger throws, where the average shale content of the formation will 

approach Vsh and SGR. James et al (2004), Yielding et al. (1997), and Yielding (2002, p. 2), 

following Watts (1987), postulated that the probability that clay smear is continuous is close to 1 

for Vsh>40% or SGR>20%, that is, that any fault section with a SGR higher than 20% is 

membrane sealing. Higher SGR values do not translate into better sealing performance. Several 

other measures have been developed, including the Clay Smear Potential (CSP), which takes 

into account the potential for a clay-rich interval to be incorporated within the fault zone (clay 

shearing).  

Some have correlated this easy-to-compute SGR parameter with more complicated 

parameters. For example, Bretan et al. (2003) calculated the following expression for capillary 

entry pressure Pc (in bar) of the fault gouge: 

 
⎟
⎠
⎞

⎜
⎝
⎛ −

=
CSGR

cP 2710   

where C is a constant equal to 0.3 for depths less than 3 km (~9,850 ft), 0.25 for depths between  

3 km and 3.5 km (~11,500 ft), and 0 for depths larger than 3.5 km. This expression assumes an 

oil density of 0.6 t/m3 and a correction factor should be applied before its use in carbon storage 

computations. Another important parameter is permeability. Once the membrane seal is 

breached, the next defense against leakage is slowness of flow across the seal (hydraulic seal). 

Hydraulic seals may be insufficient to retain hydrocarbons for geologic periods, but they could 

perform satisfactorily for CO2 storage, especially because of the compounding effects of relative 

permeability, expected to be small at low, nonwetting fluid saturation. Manzocchi et al. (1999) 

suggested a simple curve-fitting relationship to estimate the seal permeability k (in mD): 

     log k = – 4SGR – ¼ log D (1 – SGR)5 

where D is the displacement (throw) in meters or, more simply, SGRk 5log −= . However, 

Sperrevik et al. (2002) showed that those expressions do not capture actual measurements well.  
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III.3.5 Application to Gulf Coast  
We estimated a reasonable trap volume distribution in a previous section using 

topographic attributes. Another way to estimate trap size is to use the volume of fluids trapped 

in them. Cumulative oil production from individual reservoirs is easily obtained from the RRC 

database (Figure 44). More than 80% of the individual reservoirs have a capacity of less than  

5 million m3 (roughly equivalent to 3.5 Mt CO2). A comparison of Figure 44c and Figure 43b 

shows that there is an order-of-magnitude discrepancy between the computed size of traps and 

the measured size of reservoirs (original oil in place—OOIP), as illustrated by Figure 45 and 

Figure 46. The discrepancy can be explained by an erroneous parameter estimation of trap size, 

by an inadequate extrapolation of the distribution at the top of the Frio to the whole Tertiary 

and Cretaceous sections, or by an incomplete filling of the trap containing the reservoir. 

However, it is more likely that reservoir size is not controlled by spill-point limited 

hydrocarbon trapping but by failure of membrane sealing across either the seal caprock or the 

fault, or maybe both. Another possibility is the presence of subtle spill points noticeable only 

through large-scale detailed mapping. It should be noted that, in contrast to oil and gas 

accumulations where across-fault leakage may cause the loss of the hydrocarbon resource, 

across-fault CO2 leakage will be attenuated through capillary trapping in the formation across 

the fault. In addition, upward along-fault leakage of hydrocarbons may generate useful 

exploration clues, whereas the same process for CO2 storage must be avoided.  

In order to understand the odds of leakage occurring on these reservoir-bounding faults, 

five Frio wells from across the study area (Table 9) were logged and sand/shale thickness was 

extracted. It is imprudent to make generalizations from only five wells, but Figure 47 suggests 

that it may take a throw of 200 m, in some cases, for the shale fraction (equated here to the SGR) 

to reach the value of 40%, determined previously as the threshold at which a fault is in all 

likelihood sealing. As can also be seen on the plot, 50 or 100 m of throw is sufficient to reach 

40% in many cases. The fault throw distribution (Figure 38) shows that a significant fraction 

(~40%) of the measured throws is less than 50 m. This observation could explain why the oil 

reservoirs do not realize maximum trap capacity. Zieglar (1992) also suggested that most oil 

reservoirs are not filled to the spill point.  

However, it is important to note that a smaller trap capacity at a longer time period 

(millions of years) does not necessarily mean that the trap cannot hold CO2 at full capacity for a 
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much shorter timeframe but is still sufficient to accomplish the goals of carbon storage (a few 

thousand years).  
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Figure 44. Oil in place as a proxy for reservoir pore volume: (a) in Texas; (b) in RRC districts 2, 

3, and 4; and (c) still in districts 2, 3 and 4, but with a focus on the smaller reservoirs.  
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Figure 45. Comparison of normalized distributions of OOIP and estimated trap size 
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Figure 46. CDFs of OOIP and estimated trap size 
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Figure 47. Shale fraction in selected wells 
Table 9. Parameters of selected wells 

Well Information County 
Completion 

Date 
Depth to top 
of Frio (m) 

Frio 
Thickness (m) 

Floyd L. Karsten Sun Gulf Humble 
tract 2 Well #4 South Dayton Liberty 2/19/1953 1390 530

Mid-Century Oil and Gas Co. 
Florence Howard A-1 Wildcat Matagorda 2/23/1963 2485 935

Monsanto Chemical Co. Doman #1 
Wildcat Matagorda 8/29/1960 2332 547

Gulf Coast Leasehold, Inc. Lutcher 
Moore 1, Wildcat Orange 7/9/1953 2153 770

Phillips Petroleum Company Houston 
M #2, Chocolate Bayou Brazoria 6/2/1956 2768 853
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III.4 Heterogeneity and Depositional System Architecture 
Capillary trapping does not require a seal to be effective. It depends on (1) the volume of 

the saline formation contacted by the CO2 plume, (2) the heterogeneity of the formation, and  

(3) its rock petrophysics and capillary properties. The importance of formation heterogeneity 

has been noted multiple times, for example in Hovorka et al. (2004a), Doughty and Pruess 

(2005), and Ambrose et al. (2006). Petroleum engineers have been concerned by the impact on 

oil recovery of heterogeneity and barriers to flow and particularly by shale stringers (e.g., 

Mattax and Dalton, 1990, p. 37). Current industrial CO2 injection for disposal (Sleipner in the 

North Sea and In Salah in Algeria) uses horizontal wells, which may have been chosen for 

engineering reasons, but they also maximize sweep efficiency. Sleipner field data show that 

lower-permeability stringers have a large impact on the spreading of the CO2 plume and 

increase aquifer contacted volume. The 300+-meter-thick marine Utsira sands of Miocene age at 

the Sleipner site consist of a lowstand turbidite fan complex of stacked sands, with small, thin 

shales (Chadwick et al., 2004). It follows that the basin fill has been interpreted as a relatively 

homogeneous graben fill of fine sand, with very thin but laterally extensive intercalations of a 

shaly nature, and overlain by several massive shales. The baffling effect of shaly stringers 

retards possible leakage but perhaps, more importantly, they increase the path to possible 

leakage point(s), increasing the capillary trapping effect and decreasing the likelihood of 

leakage. It follows that optimal permeability and heterogeneity exist. The high permeability of a 

clean sand will favor injectivity but also shortcut most of the formation if too homogeneous. 

This fact has also been recognized in the oil industry, which has introduced the use of polymer 

flooding to limit preferential flow. On the other hand, the Gulf Coast area displays a high level 

of heterogeneity (Figure 11), conditions being particularly favorable for containing leakage from 

the main storage area, and it is promising as an overall attenuation process. However, an 

excessive heterogeneity will translate into numerous hard-to-reach insulated sand pockets. The 

question of the migration mode, between the end-members of a widely diffuse spreading and of 

a localized fingering/channeling, remains open, although all indicators point to a limited role 

for fingering (e.g., Kumar et al., 2004; Bryant et al., 2006).  

III.4.1 Geometry  
Numerous studies have focused on an understanding of formation geology and 

depositional systems because they control formation heterogeneity and subsequent flow. When 

studying clastic sedimentary deposits, geologists often draw sand-percent maps whose contour 
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line trends direct sedimentologic interpretation. For example, fingers stemming from an axis 

suggest a deltaic environment, and elongated contour lines parallel to an ancient shoreline 

suggest a barrier or strandplain type of environment. Understanding and mapping of 

depositional systems are important because of their influence on sediment grain size and 

sand/shale body dimensions. There have been many studies of aquifer heterogeneity and of its 

importance on flow and transport (e.g., Galloway and Hobday, 1996; Koltermann and Gorelick, 

1996; Eaton, 2006). There have been many approaches to reproducing the fundamental 

heterogeneity of the subsurface in models (Fogg et al., 1983; Fogg, 1986, 1989; Koltermann and 

Gorelick, 1996). Petroleum literature is also awash with reservoir monographs detailing the 

importance of an accurate knowledge of heterogeneity. The industry as a whole has moved 

from simple geostatistical models that, in general, do not take into account underlying geology, 

except maybe by attributing some anisotropy, to full-fledged geocellular models (software 

packages such as RMS, Gocad, or Petrel) that integrate borehole information with current 

knowledge of depositional systems (e.g., McKenna and Smith, 2004). Another, more 

economical, approach is to use transition probability statistics (Carle and Fogg, 1996; Elfeki and 

Dekking, 2001; Hovorka et al., 2003, p. 12; Doughty and Pruess, 2005). Geophysical logs are 

extensively used to obtain such information. For instance, channels appear as blocky, high-

resistivity zones with no significant shale break. High-resistivity zones of several thin sands 

separated by muds can be interpreted as transitional facies from channel to interchannel areas.  

Geology is extremely relevant to leakage potential. Gulf Coast depositional systems 

result from the interplay of sea-level variations, sediment supply, tectonics, and other factors. 

See Appendix A for relevant geological facts. In simple terms, a long depositional history 

results in alternating layers of sandy and shaly sediments. The Gulf Coast sediment package 

may contain as much as 70% clay, mudstone, and similar rocks, which increase gulfward. This 

observation is consistent with the estimation that 60% of all sedimentary rocks are mudrocks 

(Potter et al., 1980) and >75% for clastic-filled basins (Jones and Wang, 1981). The sediments are 

brought by rivers to the coast and farther out where they accumulate, according to the energy 

level of the depositional system and to their grain size. If we examine the nature of the 

accumulation at one point in time, the depositional systems will be fluvial (sand/silt) and 

interfluvial (silt/shale and minor sand), deltaic and associated systems along the coast, and then 

farther away from the coast, mainly mud. Vertically, at a first rough approximation, because the 
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accumulation is prograding, we would encounter first, at depth, oceanic muds, then deltaic and 

associated systems, and finally terrestrial (fluvial and associated) systems. The picture is then 

complicated by sea-level variations, in which during high sea level, mud facies can directly 

cover fluvial depositional systems (e.g., Anahuac Shale) by the action of growth faults. A variety 

of scales related to the size of geologic features can be considered in developing flow properties: 

basin (100’s of kilometers), depositional systems (10’s of kilometers), local channels (kilometers), 

etc. Depositional environments, however, are the scale of interest in this study. For all practical 

purposes in this work and more generally for a regional approach, sediments can be divided 

into two types: sand and shale (e.g., Sminchak et al., 1996; Andrade et al., 2000; King et al., 

2002).  

Some previous studies have looked into Gulf Coast sediment heterogeneity. The Fogg et 

al. (1983, p. 18) numerical modeling of formations with similar architecture sheds some light on 

the topic. They suggested, through numerical modeling, that sand bodies within formations 

with less than 20 percent sand are not connected. This observation was made on the fluvial 

sands of the Wilcox Group. They also concluded the regional Kv/Kh ratio to be on the order of 

10-4 (Fogg et al., 1983, p. 35), much smaller than the currently accepted ratio of 0.5 to 0.1 for 

sandstone aquifers. Similarly, ground water numerical models of the Carrizo-Wilcox, Queen 

City, and Sparta Formations have concluded that regional vertical conductivity is orders of 

magnitude smaller than regional horizontal permeability (Dutton et al., 2003; Kelley et al., 2004). 

This  suggests that multiple mud and silt layers have a large impact on the flow system.  

III.4.2 Dimensions and Connectedness 
There is an extremely rich literature on depositional systems in the Texas Gulf Coast 

because of the abundance of oil and gas targets. Continuity of the fast pathway is the most 

important control on flow, in particular sand-body interconnectedness (Fogg, 1986; Koltermann 

and Gorelick, 1996). A study, reported by Galloway and Hobday (1996, p. 349), set the threshold 

for connectivity at 40% sand content. Sand bodies can arrange themselves geometrically in a 

variety of ways with little overlap or consequent overlap (i.e., a new sand body is eroding or 

remobilizing part of an older one). Weber and van Geuns (1990) and Mijnssen (1991) 

differentiated three categories: layer cake, with extensive sand sheets; jigsaw puzzle, with 

connected sand bodies of different flow properties and possible low-permeability baffles at the 

transition, and labyrinth, where sand body continuity is more tortuous if it exists. They also 
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suggested minimum well spacing that would allow satisfactory characterization of the 

reservoir: 305 to 366 m (1,000–1,200 ft), 183 to 244 m (600–800 ft), and 61 to 91 m (200–300 ft), 

respectively. In addition, unique features such as incised valley fills (e.g., Yoakum Channel of 

middle Wilcox age in the Gulf Coast) perturb the local stratigraphic composition and could be 

fast pathways to the surface and should be carefully mapped.  

Two studies are of direct interest to this report. Fogg (1989) did a stochastic analysis of 

aquifer interconnectedness of the Wilcox Group along the Gulf Coast. He described Wilcox 

thick, blocky sand lying primarily along the meanderbelts of mixed- to suspended-load fluvial 

systems with a conductivity of 1 to 10 m/d (~1–10 D); conductivity of interchannel sediments is 

one order of magnitude less. Sands are generally less than 30 m (100 ft) thick (p. 11); 

paleochannels are ~300 m (1,000) ft wide (p. 31), consistent with mixed-load fluvial, as 

suggested by the range of the width/depth ratio of 10:40 usually reported for mixed-load rivers 

(1,000/<100 yields >10). Actual lateral extent of accumulation in the meanderbelt is wider 

because it consists of several channels combined (Fogg, 1989, p. 32). Galloway et al. (1982) did a 

regional statistical analysis of the Frio Formation. Collecting data from hundreds (~860) of 

geophysical logs, they extracted statistics on sandstone and shale-bed thickness and 

interbedding. Five types of depositional systems were examined: fluvial, delta, barrier, 

strandplain, and shelf. Both sandstone and shale-bed thickness was determined to be lognormal 

(Table 10 for statistics). Fogg (1989, p. 27ff) also found that sand thickness follows a lognormal 

distribution by studying a section of an earlier sedimentary wedge, the Wilcox Group, which 

had been deposited in mainly a fluvial environment (p. 13).  

Continuity of sandstones was also assessed by Morton et al. (1983). Continuity and 

geometry vary considerably, depending on the depositional system. Fluvial sands are more 

likely to be continuous in the dip direction, whereas delta-front sands are continuous in all 

directions. Strandplain and barrier sands are more likely to be continuous in the strike direction. 

Maps of modern Gulf Coast deposits show simple examples (e.g., Fisher et al., 1972). 

Application of current flow properties (porosity, permeability) to ancient sandstones cannot be 

made because compaction has not taken place yet. Similarly, relative volumes between 

sandstones and shales are likely to be altered by the burying of the sediments. Spatial 

relationships, however, will stay approximately the same. 
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Table 10. Frio sand body statistics 

 
Number of 
Samples 

Bed 
Thickness 
at -1 σ (ft) 

Median Bed 
Thickness 

(ft) 

Bed 
Thickness at 

+1 σ (ft) 

Average 
Bed 

Thickness 
(ft) 

σ(ln(Thickness 
-ft)) 

SANDSTONE       
Strandplain 1,335 8 17 35 29 0.74
Fluvial 2,311 10 18 33 28 0.60
Fluvial** 540 12 23 44 27 0.63
Delta 2,253 14 25 42 36 0.55
Barrier 1,263 19 37 72 55 0.67
Shelf 396 7 18 47 33 0.95
SHALE       
Strandplain 1,414 46 84 150 118 0.59
Fluvial 2,351 32 56 96 77 0.55
Delta 2,261 26 47 87 66 0.60
Barrier 1,267 17 37 78 59 0.76
Shelf 358 70 150 320 300 0.76

Source: Galloway et al. (1982), Table 1, except ** from Fogg (1989) 

III.4.3 Petrophysics 
Understanding CO2 leakage requires knowledge of porosity, permeability (including 

relative permeability), and capillary properties (particularly entry pressure). Another important 

characteristic is residual saturation of both water and CO2. Several modeling studies have 

examined and ranked parameters impacting leakage. TOUGH2 simulations in preparation for 

the Frio experiment (Hovorka et al., 2003; Hovorka et al., 2004a) targeted water and CO2 

residual saturations. Bossie-Codreanu and Le Gallo (2004) found that the most important 

parameters are horizontal to vertical permeability ratio, seal permeability, and residual 

saturation. Permeability ratio varies from sample to regional scale. The previous section 

addressed regional scale.  

III.4.3.1 Porosity and Permeability 
Numerous publications have described porosity and its changes as a function of depth 

in Tertiary Gulf Coast sediments (e.g., Loucks et al., 1984). In general, porosity and permeability 

decrease with depth because of compaction and cementation but can rebound through 

dissolution of grains and cement (Loucks et al., 1977). Average sandstone porosity varies from 

30% or higher close to the surface, to 10% at depths of 6,100 m (20,000 ft), with large variations 

at any depth, depending on the depositional system. Permeability (k in mD) is also positively 
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correlated to both porosity (φ with φ<1) and depth, although there is again a large range at any 

depth (e.g., average trend from Figure 9 in Loucks et al., 1984, is logkh = 15.4φ -2). Hovorka et al. 

(2003, p. 106) presented a relationship developed for a delta-front sandstone (logkh = 6+ 

7.86logφ). Several empirical formulae for the ratio of vertical to horizontal permeability have 

also been developed (e.g., in Hovorka et al., 2003, p. 106, and Holtz, 2003, kv/kh = 22.68φ-5.36, 

but were bounded between 0.1 and 1). Holtz and McRae (1995) studied porosity, permeability, 

and other parameters of the Frio Formation in the southern Gulf Coast Basin analysis area. They 

used a data set largely overlapping that was used in this study. They concluded that 

permeability and porosity are strongly correlated with depositional facies. They also developed 

statistical distribution functions for permeability and porosity.  

III.4.3.2 Capillary Properties 
Knowledge of permeability and porosity allows for a general understanding of the 

behavior of CO2 in the subsurface. Knowledge of capillary properties, however, is key to an 

accurate quantitative modeling of its behavior, particularly when accessing capillary trapping 

mechanism (e.g., Akervoll et al., 2006). However, if BEG and the oil and gas industry in general 

have plenty of data on porosity and permeability, capillary pressure is harder to gather in the 

generally older fields of the Gulf Coast. The onshore Gulf Coast is a mature exploration and 

production area with a general lack of good capillary data (offshore would be different). 

Extrapolations can nevertheless be done. Capillary pressure is more a function of depth than of 

the age of the formation, which has been observed in reservoirs north of the San Marcos Arch 

(between Corpus Christi and Houston) to Louisiana on one side and in those reservoirs south of 

the San Marcos Arch on the other side (many more rock fragments and feldspars make the 

diagenesis different, and reservoirs are in general tighter south of the San Marcos Arch).  

In nature, residual saturations occur because of hysteresis, that is, the present saturation 

state is a function of previous saturation history. Thus, capillary trapping modeling requires 

hysteresis to be modeled, which is generally characterized by two bounding curves describing 

drainage and imbibition behavior. For example, a drainage curve depicts the behavior of the 

system when nonwetting fluid saturation increases, e.g., (wetting) water draining from a 

laboratory column while (nonwetting) air saturation increases or injected (nonwetting) CO2 

pushes away (wetting) resident brine. Similarly, imbibition occurs at the tail of the injected slug, 

when (wetting) resident brine repossesses the volume vacated by the moving (nonwetting) CO2, 
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process —in essence it is similar to a slug of (wetting) water (for example, precipitation event) 

displacing (nonwetting) air. At the same fluid pressure, drainage and imbibition saturations are 

different due to the variability of pore space width. During the drainage and imbibition process, 

some of the wetting and nonwetting fluids, respectively, gets disconnected from their flowing 

phase and cannot be removed. The nonremovable saturation is called residual saturation, which 

is more a function of pore size to throat size ratio rather than just pore size. High ratios trap 

more nonwetting fluid at residual saturation However, no single number describes residual 

saturation. It is a function of the maximum saturation that was reached by that phase during 

partial drainage or imbibition. If in the laboratory, full drainage and imbibition are open to 

experimentation; in nature, the system is often in some intermediate state. Saturation hysteresis 

also impacts permeability, which undergoes similar path-dependent behavior (e.g., Juanes et al., 

2005).  

Maximum gas (or nonwetting) residual saturation (Sgrm) results from the imbibition of a 

rock that was initially fully drained of its water (wetting fluid), that is, which is at water 

residual or irreducible saturation (Swirr). Many empirical correlations between porosity, 

permeability, entry pressure, nonwetting and water residual saturations have been developed 

locally: as seen above, porosity and permeability are positively correlated; porosity on the one 

side and residual saturation and entry pressure on the other side are negatively correlated. In 

general Sgrm increases as porosity decreases, suggesting that there is an optimal porosity, in 

which the amount of fluid trapped at residual saturation is highest (Holtz, 2005, p. 34). There is 

also competition between decreasing porosity and decreasing trapped CO2 and increasing CO2 

density with depth under local conditions. In the Gulf Coast, the optimum is broad (from 2,740 

to 3,960 m [9,000 to 13,000 ft]).  

Empirical residual gas saturation Sgr as a function of porosity was given by Holtz (2006), 

who used published data 127.0)ln(3108.0 −−= φgrS  (Figure 48). Frio Formation data are 

consistent with the expression. The average CO2 residual saturation in the 20 to 40% porosity 

range is then 15 to 25% (Holtz, 2002). Another empirical expression is given in Holtz 

(2002), φ9696.054473.0 −=grS . The two empirical expressions differ by less than 10% for 

porosity values higher than 0.16. Using the Holtz (2005) expression, amount of gas trapped φgr is 

given by ( )127.0)ln(3108.0 +−= φφφgr . This function has a maximum of φgr=0.075 at φ=0.24. 
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Irreducible water saturation is given by Holtz (2002), ( )( ) 6349.1/Logx6709.5 −= φkSwirr  where 

606.97107 φ×=k .  

Average irreducible water content in the 20 to 40% range of porosity is approximately 

0.03, irreducible water saturation decreasing from Swirr=0.33 at φ=0.2 to Swirr=0.13 at φ=0.4. These 

values translates into a CO2 saturation >70% in structural traps. An important conclusion of 

capillary properties gathered from Frio material is that low water residual saturation and high 

gas residual saturation compare with that of the more classical model. IPCC (2005, p. 5–13) 

noted that residual CO2 saturation typically averages smaller values, from 30 to 60%. Doughty 

and Pruess (2005) showed the importance of this observation for the modeling of the Frio 

experiment. Saturation has also been estimated as a function of other parameters: saturation 

decreases approximately as the logarithm of the distance to the well during injection. Saripalli 

and McGrail (2002) provided the following relationship: , 1.5634)-0.148ln( += rSg  which 

reasonably matches the Buckley-Leverett solution after 27 years of injection in a simple system. 

Land (1968) proposed that residual saturation Sgt is a function of the initial saturation Sgof the 

nonwetting phase and is given by: 

gi

gi
gt CS

S
S

+
=

1
 with 

max,max,

11

ggt SS
C −=  

where C is the Land trapping parameter computed from maximum gas saturation Sg,max and 

maximum trapped saturation Sgt,max associated with the bounding imbibition curve.  

Averages can be computed from the large body of data accumulated during 

hydrocarbon production in Texas. This statement is especially true for permeability and less for 

capillary properties (Table 11). Because Table 11 was developed with data from oil fields, 

corrections are needed before it can be applied to CO2 as a nonwetting fluid. In addition, 

recovery efficiency is a function of rock and reservoir properties (permeability, heterogeneity) 

and drive mechanism (water, gas cap expansion, solution gas, and gravity drainage drives), but 

it can be qualitatively used to compare trapped volumes estimated by other means.  
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Figure 48. Frio-specific (a) maximum gas and (b)water residual saturation 

III.4.4 Application to the Gulf Coast 
In this section, we tentatively examine open traps and quantify capillary trapping. 

Results are based on Gulf Coast data presented in Section III.3.1 and on the scaling analysis 

detailed in Appendices D and E. Scaling analysis captures semiquantitatively the formation 

volume contacted by a plume as a function of geometric and flow parameters. The analysis can 

be applied to spreading from either a leakage point or an injection well. These two cases differ 

mainly in their flow rates. An important parameter is the aspect ratio a of the advancing plume 

(plume length/plume width(s)). We assume a case with a dip θx of a few degrees only in the x 

direction. This case can be thought of as an injection well in the downdip section of a fetch area. 

CO2 will travel to the structural trap by leaving behind a trail at residual saturation whose total 

mass is being estimated next.  
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Table 11. Average flow parameters of oil reservoirs in the Gulf Coast 
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Fluvial (24-49) 
36    

Fluvial/deltaic (24-69) 
40 33.9 27.4 423 

Deltaic 21-80) 
68 17.4 25.5 231 

Barrier/strandplain (38-69) 
50 25.2 27.6 435 

Source: 1: Tyler et al. (1984, Table 2); 2: Tyler et al. (1984, Table 4)—average of plays 1, 2, 3, 5 for 
deltaic; 6, 8, 10 for barrier/strandplain; 9, 11 for fluvial/deltaic; 3: Holtz et al. (2001, 
Table 1)—average of rows 22, 24, 30 for deltaic; 26, 28, 29 for barrier/strandplain; row 
27 for fluvial/deltaic 

Note: individual data are weighted by OOIP because oil-rich areas are more likely to also 
contain favorable traps. 
Combining Equations 42 to 45 of Appendix D with results of Table 22 (Appendix E) 

yields, with the assumption that the dip is small (but nonzero): 

x
z
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z
rxz KK

x
za θθ /8.0cot

4037.0
3230.0

0

0 ≈≈=  

GxGyz NN
y
z

a 32.0cos
0039.1
3230.0

0

0 ≈≈= θ  

where z
rK  is the vertical to horizontal permeability ratio (Equation 10a of Appendix D) and NG 

is the gravity number (Equation 11 of Appendix D but with the caveats of Appendix E). 

Assuming dips in both horizontal direction and horizontal permeability isotropy, Equations 53 

and 54 of Appendix D become: 

x
z
rxz K

x
za θ/7.0

0

0 ≈=  and y
z
ryz K

y
za θ/7.0

0

0 ≈=  

Permeability ratios are relatively well known at the core level (Holtz, 2003) and represent an 

upper bound to the permeability ratio (vertical/horizontal) at the reservoir scale because 
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fractures are not commonly described in Texas Gulf Coast reservoirs. Assuming a dip of 4o and 

a permeability ratio of 0.2,  

2
or 00

0 ≈==
yx

zaa yzxz .  

Residual saturation in the Gulf Coast formations as a function of the porosity is also known 

(Holtz, 2005). It should be noted that the scaling analysis was done assuming no capillary 

forces, but it turns out that the contacted volume is similar with or without capillary forces 

included in the model, as discussed in Appendix E. If one assumes that residual saturation 

decreases exponentially from the central axis of the leakage zone of radius R, average saturation 

in the contacted area is: 

 2

0

)( RrdrrS
R

r π∫ .  

Application of this formula translates into an average residual saturation of 10% if maximum 

residual saturation is 20%. Assuming a contacted volume of cylindrical shape with an aspect 

ratio one order of magnitude smaller (to match a more reasonable permeability ratio for a large 

formation volume) and a porosity of 30%, 1 Mt of CO2 can be stored in a plume height of 280 m 

(920 ft). 

III.5 Seals 
It is worth noting that oil and gas reservoirs are often referred as to “with a perfect seal,” 

notwithstanding that most reservoirs do leak, especially gas. In addition, the multiple 

perforations introduced by wells breach the seal and could hinder the permanence of storage. 

The possible presence of unique geological features, perhaps compromising seal integrity, must 

be noted (incised valleys; chimneys; other seal discontinuity, for example, erosional in nature; 

permeability window; faults). This section is focused on the microscopic properties that make a 

seal effective. We already treated leaking fault/fracture (e.g., Corcoran and Doré, 2002; Jimenez 

and Chalaturnyk, 2002).  

Seals are characterized by their capillary and permeability properties, as well as by their 

ability to resist rupture under increased pressure. Seals can lose their barrier action through two 

main mechanisms: capillary leakage and hydraulic fracturing. The consensus is that diffusion 

through the seal is not an issue (e.g., Gale, 2004; Ketzer et al., 2005). Some researchers have also 

put forward the possibility of chemical attack of the CO2 on the seal material. Hydraulic 



99 

fracturing results from overinjection/overpressure when formation pressure is high enough to 

overcome tensile strength and confining stress of the formation and occurs mainly at the bottom 

of the seal. Some have noted that it can be repeatedly healed (numerical modeling by Rutqvist 

and Tsang, 2002). Capillary leakage can be easily examined through core experiments after 

correction as needed for wettability and brine/CO2-rich phase interfacial tension.  

Gr
Pz c

ρΔ
=max  with 

r
Pc

θσ cos2
=  

where r is the minimum pore radius joining connected pores (estimated with mercury injection 

porosimetry), zmax is the maximum column height, Gr is the hydraulic gradient, and θ is the 

contact angle of the nonwetting fluid against rock and water. Capillary pressure is a function of 

the pore size but also of the interfacial tension between water and gas (at reservoir conditions 

water—supercritical CO2 ~20 mN/m; water—methane gas ~50-60 mN/m) and of the 

wettability. Zieglar (1992) presented statistics for the hydrocarbon columns in California and 

Rocky Mountain areas. Seals (mainly shales) can withstand hundreds to thousands of feet of 

hydrocarbon column. Column height computed or observed for oil and natural gas can be 

converted to that of supercritical CO2. Interfacial tension of the CO2/water and CH4/water 

systems generally decreases with increasing pressure, temperature with values for the latter 

system being typically higher. The effectiveness of a seal is related directly to some measure of 

the pore size (“r”). Silt-rich shales will have a lower resistance to membrane failure because the 

pores are larger on average. Knowledge of depositional system and sequence stratigraphy will 

help the researcher in locating and understanding the extent of those seals.  

Combining buoyancy and capillary forces shows that the column height for seal failure 

through capillary leakage is a function of the ratio of interfacial tension (IFT) and density 

difference ρσ Δ/ , all other parameters being the same (e.g., Watts, 1987). The larger the ratio, 

the higher the column the seal can sustain. In general, CO2 requires better seals because of the 

combination of buoyancy and IFT forces. Seal thickness has no role in initiating capillary 

leakage and is not relevant until flow has started—in which case, the low permeability of most 

seals combined with a large thickness will act as an additional barrier. This remark is more 

relevant to CO2 storage, whose timeframe is much smaller than oil and gas migration 

(thousands vs. millions of years). In that case, seal thickness can have a significant impact of 

CO2 leakage retardation.  
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III.6 Leakage Analogs 
Several reports and papers (e.g., Benson et al., 2002) have focused on the lessons learned 

through industrial (UIC Class I and Class II wells, natural gas storage in either (1) aquifers and 

oil and gas reservoirs or (2) salt caverns) but little on the lessons that can be learned from 

hydrocarbon primary and secondary migrations.  

III.6.1 Industrial Analogs 
Industrial analogs make the case that short-term carbon storage is generally safe: natural 

gas storage, EOR projects (West Texas fields, Weyburn), Class I liquid waste deep well injection, 

and injection of acid gas (especially Alberta Basin in Canada), as well as ongoing sequestration 

projects (e.g., Sleipner in the North Sea). Other studies have described natural analogs. Several 

geologic objects have been proposed as natural analogs to CO2 storage, such as large natural 

CO2 accumulation (e.g., Bravo Dome, McElmo Dome, Sheep Mountain), although it is not 

simple to infer engineered site leakage rates from natural leakage rates because the latter occur 

at random and in formations that may not be chosen for carbon storage (e.g., Mammoth 

Mountain, California). Natural gas analogs are not necessarily direct, good analogs because of 

differences in capillary properties. Hydrocarbon accumulations are another natural analog that 

may shed light on leakage. Hydrocarbon seals have been often described as “perfect” because 

they have held buoyant accumulations for millions of years. However, the seals are now 

punctured by wells, and study of natural leakage rates in the Gulf Coast from oil and gas 

deposits may tell us otherwise.  

No leakage has been observed in major carbon storage operations (Table 12), but it must 

be noted that the time frame is very short. At SACROC, in the Permian Basin, anecdotal 

evidence suggests that, if leakage is present, it is small. Only about one-third of the injected CO2 

is recovered. The remainder is assumed sequestered. Productive formations above and below 

do not show the impact of CO2. However, a small leak would not be noticed especially in a 

sparsely populated area.  

III.6.2 Natural Analogs 
Numerous publications have already addressed leakage from natural CO2 

accumulations. However, little has been published in the carbon storage literature on leakage 

from oil and gas reservoirs or more generally in the migration from source rock to traps and 

from (leaky) traps to the surface. It is generally recognized that all hydrocarbon basins have 

some expression at the surface, although not necessarily directly above the accumulations 
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(Abrams, 2005). Appendix B provides an overview of the current understanding of hydrocarbon 

leakage in sedimentary basins. Not surprisingly, migration pathways have been described in a 

way similar to those of potential CO2 storage sites: along strata driven by buoyancy and 

hydrodynamic forces, along faults and fractures owing to the sometimes higher conductivity, 

and across seals overcoming capillary forces (Abrams, 2005).  

Table 12. List of selected operations/areas where leakage can be assessed 

Project Injection (Mt CO2/yr)1 Purpose 
Information on 

Leakage 

West Texas Area ~30 EOR Anecdotal evidence of 
leakage, not widespread

Sleipner, North Sea 1 (23 cumulative 
expected) 

Disposal in saline 
aquifer No leakage reported 

Weyburn, Canada 1-2 (21 cumulative 
expected) EOR No leakage reported 

Rangely, CO 1 (~22 stored) EOR 
Possible leakage 

reported at less than 
0.01% of volume stored2

In Salah, Algeria    

Alberta Basin, Canada 
0.45 composite across 
all sites (~2–3 total to 

end of 2003) 

Disposal of acid gas in 
saline aquifers No leakage reported 

Frio Brine Project, TX 1.6×10-3 Total Pilot in saline aquifer No leakage reported 
West Pear Queen, NM    
Note: 1Data from IPCC, 2005, Chapter 5; 2Klusman, 2003a and b 

Oil seeps can be a good analog because they tell us how universal leakage is and give us 

some idea of the rates (Cathles, 2004). An important point to keep in mind is that oil and gas 

reservoirs have been emplaced and have leaked through geologic times (millions to tens to 

hundreds of millions of years) but the time scale envisioned for carbon storage is orders of 

magnitude smaller (thousand of years). It follows that processes important for hydrocarbon 

leakage may not be relevant for carbon storage. Migration of geologic fluids such as oil and gas 

presents an interesting analog to CO2 storage. CO2 is less buoyant than natural gas but more 

than oil, and many sedimentary basins favorable for storage are also rich in hydrocarbons (Gulf 

Coast, Alberta Basin). Both primary, when oil matures and leaves the source rock, and 

secondary, when oil collects into traps, migrations are of interest. During secondary migration, 

hydrocarbons flow continuously, thanks to buoyancy and hydrodynamic forces overcoming 

capillary forces. Several questions relevant to CO2 storage can be addressed: why is there no 

trail of residual saturation (because it is dissolved into water, eaten by bugs, etc.)? How long did 

it take for the hydrocarbon to collect into traps? (Residual saturation is a function of initial 
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saturation). Secondary migration can be vertical but also lateral for tens to hundreds of miles in 

structurally simple basins (Galloway and Hobday, 1996, p. 398).  

Reservoirs of some oil provinces are hundreds of millions years old (e.g., Permian Basin 

of West Texas) and oil and/or gas has been trapped for as long. However, reservoirs do leak, as 

illustrated by tar pits in California and other well-known oil seeps. It has been estimated that 

only 5% of the oil and gas generated from source rocks is trapped (McDowell, 1975). McDowell, 

(1975) estimated that the produced oil is a few percent of oil generated in most basins, maybe 

up to 10 percent in few basins. Moshier and Waples (1985) reached similar conclusions. This 

leakage has been used by oil companies as an exploration tool, and numerous papers are 

devoted to the topic. Understanding of this leakage is relevant to the problem at hand because, 

in the Gulf Coast, CO2 will be stored in similar environments and leaks might follow the same 

paths. There are significant gas leaks in the offshore Gulf of Mexico (Cathles, 2004), thought to 

be mainly through faults (Whelan et al., 2005), although gas chimneys, where the seal has been 

broken, have also been described. By hydrocarbon-rich basin standards, Frio Formation is not 

rich in organic matter (<0.5%), but there is a tremendous amount of it that turned out to be 

diluted by the massive sediment influx of Frio times. This suggests that the hydrocarbon 

expulsion of low-quality source rocks has been quite effective (Galloway et al., 1982, p. 38). 

There is, however, a large range in the proportion of hydrocarbon trapped during secondary 

migration. Oil migration is often attributed to fault/fracture pathways, either preexisting or 

created by the overpressure existing in most mature basins. It could also simply move updip. 

By studying two cores in the Frio Formation of Brazoria County at a depth of 3 to 5 km, 

Capuano (1993) suggested that significant flow can occur through microfractured shales. This 

suggestion would help explain deep-subsurface geochemical processes (Milliken and Land, 

1994).  

IV. Quantification of Risks 
Risks of an event have been defined as the product (or some convolution) of the 

probability of the event (hazard) and some measure of its adverse consequences, be they 

financial, environmental, or otherwise. Quantifying risk helps decision-makers or, as in the 

present case, regulators. Using the product operator to define risk breaks down for very low 

probability or very high consequences. Using the product as a measure of risk may lead to some 

undesirable consequences. It could put a high-probability event on the same footing as a low-
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consequence “cost” and a low-probability event on the same footing as a high “cost” (Rechard, 

1999). An arguably low-probability-with-high-consequences event would be a catastrophic 

pneumatic eruption event or massive seal fracturation. The first step in consequence evaluation 

is to use some average (or expected) input or, perhaps, a best estimate or upper bound. 

However, this configuration rarely yields the average (or expected) consequence because the 

processes involved are complex. Only in the general case of a linear function is the expected 

consequence obtained from the treatment of the expected input. This observation underlines the 

necessity of doing a full-fledged uncertainty analysis, possibly a Monte-Carlo analysis, as a 

second step and of avoiding being too conservative (that is, choosing input so that the output 

consequence might be “worse” than it should be). Introducing too much conservatism could 

unnecessarily overestimate risks and possibly undermine public confidence (Rechard, 1999). 

One of the difficulties of risk assessment is adequate understanding of statistical dependence 

and how parameters are correlated—in particular, possible balancing effects (when one 

parameter leads to a failure, a negatively correlated one mitigates the negative outcomes in 

most cases) or common-mode failures (e.g., Ang and Tang, 1990), when two positively 

correlated parameters would lead to failure. Porosity and permeability, for example. Although 

one of these two parameters cannot be derived from the other by just knowing its value, they 

are clearly correlated within one rock type (sandstones with higher porosity are also likely to 

have higher permeability). In other examples, fault zones are associated with formations with 

higher dip angles or well density negatively correlated with formation permeability but 

positively correlated with number of productive formations. Engineered systems lend 

themselves more easily to probability analyses than do natural systems. Natural systems are 

more complex, generating hidden correlations through feedbacks not obvious to determine and, 

in general, larger uncertainties. Carbon storage includes a mix of natural and engineered 

systems.  

Probability comes into play because of the inherent uncertainty of the data. Uncertainty 

is classically divided into two broad categories (e.g., Paté-Cornell, 1996). One arises from 

heterogeneity and variability (also called “stochastic uncertainty” or randomness) and is subject 

to observation. An example of it is permeability, which, provided enough samples, can be 

described accurately enough. Another example is the failure rate of injection wells or the yearly 

amount of rain at a given location. The other form derives from lack of information and 
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ignorance (“epistemic uncertainty”), such as the likelihood of a seismic event of high magnitude 

in the Gulf Coast. Most experts will recognize that the probability is low but would be hard-

pressed to provide a number. No data can substantiate a value other than the next. Epistemic 

error can lead to dangerous systematic errors, whereas random errors may cancel each other 

out somewhat. A typical way to handle this issue is to call a panel of experts and to process 

their answers. Bayesian theory can link these two categories by improving on a mere educated 

guess as information grows. Another way to deal with the difference between the two kinds of 

uncertainty is to realize, for example, that permeability is variable with a probability 

distribution. However, the distribution parameters are not well known and are thus themselves 

uncertain (second type of uncertainty). Another example of uncertain data of the second kind is 

chemical properties, such as properties of the CO2-brine system with impurities: they don’t vary 

through time or space but can be uncertain. Spatial or time variability of natural parameters 

cannot be changed, but uncertainty can.   

Risk-assessment probabilistic approaches require accurate probability distribution. 

Otherwise conservative upper bounds should be used or sensitivity analyses to determine the 

impact of gathering new data. The purpose of the hazard and consequence assessment is to 

quantify the risk associated with different parameters by estimating the probability of a 

particular outcome on the basis of bounding estimates or probability distributions of different 

input parameters times the consequence of that output. Several probability distributions can be 

used to describe the range of values of a parameter (e.g., Mishra, 2002). The uniform (or log-

uniform) distribution is bounded, and any value between the bounds has the same probability. 

It is often chosen when little is known about a parameter. The triangular distribution, also 

bounded, is used when the researcher has some sense of what the mode of distribution should 

be but it is still very subjective. Other distributions—bounded (e.g., beta), semibounded (e.g., 

lognormal, Weibull) or unbounded (e.g., normal), continuous (all of the above), or discrete (e.g., 

binomial, Poisson)—are used when more is known about the parameter distribution. Overall, 

choice of distribution does not matter much, given that the coefficient of variation is not too 

large (<30%) (Mishra, 2002) and that the interest is not in extreme values. The 95th confidence 

interval is very sensitive to uncertainty distribution. Often parameters of these more 

sophisticated distributions are themselves uncertain, and the common usage is to have them 

follow a uniform or triangular distribution. For example, assume that porosity follows a normal 
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distribution. The mean can be defined as itself following a triangular distribution with a mode 

of, say, 0.25 and minimum and maximum of, say, 0.20 and 0.27, and the standard deviation 

following a uniform distribution in the 0.03 to 0.06 range. There is, however, no theoretical 

development to suggest that this is the most appropriate route for dealing with uncertainty. 

Numerical quantification of risk can be arranged in three categories: historical, nearly 

historical, and new (Wilson and Crouch, 2001, Chapter 2). Historical risks occur at a frequency 

high enough to develop statistics and infer probability distributions for accurate predictions if 

records are available (e.g., hurricane frequency in the Gulf of Mexico), perhaps including time 

or spatial trends if appropriate. If there is not enough historical data to develop accurate 

statistics, an upper bound can often be formulated (e.g., deaths from nuclear accidents in the 

U.S.). New risks include events that have not been observed yet, either because they are rare or 

because they are truly new. Probability can be inferred through expert elicitation, professional 

judgment, and the like (the so-called “Delphi” studies). 

A variety of codes are used to simulate CO2 flow and transport in the subsurface, either 

from academic organizations—including TOUGH2 developed by LBNL and STOMP-CO2 

developed by PNNL—or commercial entities, variations of ECLIPSE (developed by 

Schlumberger) or GEM (developed by Computer Modeling Group). Some of the available codes 

have been compared (e.g., Pruess et al., 2004). In any case, any model should follow a validation 

process that would include showing that the technical basis for the model is adequate for its 

intended use and demonstrating that the model is sufficiently accurate for its intended use. This 

validation applies, in particular, to the treatment of multiphase flow, where an accurate 

approach to hysteresis is necessary to model the trapping mechanism that is most efficient in 

the short term (capillary trapping). Class I no-migration petitions have historically been done 

with relatively simple single-phase flow and transport codes (e.g., SWIFT, Reeves and Cranwell, 

1981, and subsequent versions). However, any modeling of a CO2 injection must include a 

multiple-phase flow simulator, with a good module describing the CO2 equation of state as a 

function of temperature, pressure, and other components. The level of sophistication for 

representing subsurface geology in petroleum reservoir simulators far exceeds that generally 

used in environmental studies, although methods are starting to cross over, particularly to the 

benefit of environmental studies.   
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IV.1 Probability Estimation 
IV.1.1 Wells 

Abandoned wells can leak because the abandonment procedure has not been followed 

carefully, because actions, although rightly performed, did not lead to expected results, or 

because procedures are not geared toward long-term protection. However, in general, 

comprehensive data sets documenting well leakage across industries using wells are lacking, as 

has been recognized in several recent, specialized conferences regrouping experts on this matter 

(2005 IEA GHG Well Bore Integrity Workshop in Houston, TX; 2005 EPA Workshop On 

Modeling and Reservoir Simulation for Geologic Carbon Storage in Houston, TX; 2006 IEA 

GHG Well Bore Integrity Workshop in Princeton, NJ). According to discussions with 

professionals, little information is available in the public domain related to well failure, which is 

likely due to a lack of data availability or data not being systematically compiled rather than 

commercial interest protection. However, there is plenty of anecdotal evidence, some of which 

is described below, suggesting that leakage does happen. On the other hand, one cannot assume 

that all wells will leak.  

IV.1.1.1 Literature Survey 
Accessible numbers on well leakage cover a large range, obscuring the conclusions that 

can be drawn from observations. From 1996 through 2003, there have been 7 documented 

instances of contamination of underground sources of ground water from an inventory of 

50,000 permitted, mostly Class II, UIC wells (Richard Ginn, UIC Director at RRC, 2004, oral 

communication). Class I well performance is periodically examined. Class I represents a very 

small subset of all wells, but they are closely monitored and could suggest a lower bound for 

the occurrence of problems. A General Accounting Office report (GAO, 1987) recorded 

approximately 10 documented contaminations out of ~100 hazardous waste Class I injection 

wells. All reported failings were related to injection well construction or operation. Another 

report, produced at the same time by the UIC, mentions one case of USDW contamination that 

could be attributed to unplugged wells. Apparently no hazardous Class I well leak has occurred 

since 1988 (Benson et al., 2002, p.76), when more stringent regulations were adopted. Florida 

has the bulk of the nonhazardous waste Class I wells (>100). Texas hosts a sizable number (~50), 

but they are constructed to hazardous waste Class I standards. Not coincidently, only Florida 

reports cases of USDW contamination (e.g., McNeill, 2000) by nonhazardous Class I wells with 

relaxed standards relative to hazardous Class I wells. In Florida, 3 wells have had confirmed 
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USDW contamination out of 93 nonhazardous Class I wells (Beard, 2003). It should be noted, 

however, that, in most cases, there is no monitoring outside of the injection well itself.   

South and Daemen (1986, p. 24) cited a 1974 PNNL report, stating that the probability of 

failure of seals in a typical oil well was 1×10-4 per year. Borehole sealing was a worry for the 

Nuclear Regulatory Commission at the time that it was investigating nuclear waste storage at 

multiple potential sites. Several studies, including that of South and Daemen (1986), were 

undertaken at the time to understand the risk of well leakage, especially in using data from the 

oil and gas industry which, then and now, operated the bulk of the deep wells. Another 

reference cited in the same report and dating from 1971 mentioned that this probability is 

higher than 1×10-5 per year. South and Daemen (1986) also mentioned that most leaks occur 

along the well annulus. These numbers are interesting because they may include those older 

wells of concern and may also integrate practical knowledge that has been lost since then. Rish 

(2003) estimated that there is less than 1×10-5 probability that a hazardous waste Class I well 

would leak during the life of the facility. Clark (1999), cited in Benson (2002, p. 90), found 

through a detailed probabilistic analysis that probability of failure of any well component was 

lower than 2×10-6.   

Paine et al. (1999), when investigating, shallow ground water and surface water 

salinization problems in West Texas in Runnels County, concluded that a significant fraction of 

them came from leaking wells. A shallow formation (Coleman Junction Formation of 

Wolfcampian age at the base of the Permian Epoch in the Permian Basin) located ~250 m (~800 

ft) bgs is artesian, which could be considered mimicking a pressure increase due to CO2 

injection. Most of the wells are from 20–30’s through the 60’s. A total of 39 geophysical 

anomalies fit the profile of a leaking well and at least 718 wells are in the area. A rough 

approximation yields that 39 out of 718 known wells are leaking/have leaked in the past (~5%). 

The values are conservative because other wells may be leaking below the surface and were not 

caught by the shallow geophysical survey. With the assumption that well failure is uniformly 

distributed through time over a period of years, we can conclude that the yearly failure rate 

would be ~1×10-3. It should be noted that the formation water of the Coleman Junction 

Formation is considered corrosive. 

Warner et al. (2001) presented results of a study in which they selected 66 fields across 9 

Gulf Coast counties. Out of 3,249 pre-1967 abandoned wells known to exist, only 2,562 had 
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location information; that is, at least 21% of wells are known to exist, but their location is 

unknown. The whole pre-1967 set were then randomly sampled, and ~10% of the wells in each 

field were chosen for further study (that is, a total of 359 pre-1967 wells). None of them had 

plugging information in the electronic database, as was also observed in this work. A manual 

search in the RRC files provided information on 82% of those wells. There was no plugging 

information on 18% of the pre-1967 wells. On the other hand, study of post-66 abandoned wells 

shows that plugging information exists for almost all of them.  

Nichol and Kariyawasam (2000) attributed a mean time to failure to different well 

components using shut-in wells in the offshore Gulf of Mexico, although they were mainly 

concerned with a direct oil leak from the formation to the well head. Leaks through plug were 

given a mean time to failure (MTTF) of ~ 23,000 years (2×108 hours) for non-sour reservoirs (that 

is, with little H2S and related compounds) and half of that for sour reservoirs. Woodyard (1982) 

gave an MTTF of 144 years for production and surface casing.  

IV.1.1.2 Mitigating Factors 
A fair risk assessment will take into account not only adverse conditions, but also 

positive elements that might retard a leak. They include heaving shales, sink zones, mud gels, 

and others such as caving sands and the self-sealing of cement cracks. However, the mere 

presence of a natural barrier does not guarantee its effectiveness.  

IV.1.1.2.1 Heaving Shales and Sink Zones 
Shale sloughing (caving in) or squeezing (expanding), although a hazard and 

inconvenience when drilling boreholes, has possible positive effects after abandonment (after 

all, bentonite is in common use for sealing boreholes). It is common for uncased boreholes in the 

Gulf Coast area to undergo immediate borehole closure (Johnston and Knape, 1986, p. 13, 84, 92, 

97; Warner et al., 1997; Philip Papadeas and Dan Collins, Sandia Inc, personal communication, 

2005), especially in Miocene and Pliocene formations (Warner et al., 1997, p. 7). Warner et al. 

(1997, p. 8) gave a list of formations with shales containing montmorillonite and/or bentonite 

and that were prone to such processes: the Pliocene Willis Formation, Miocene Goliad 

Formation, Miocene Lagarto Formation, Miocene Oakville Formation, Oligocene Anahuac 

Formation, and Oligocene Vicksburg Formation). All but the last overlie the Frio Formation. 

Cased wells will be susceptible to the same processes after corrosion of the casing and tubing. 

Lithologies such as unconsolidated shale, consolidated bentonitic shale, salt, and anhydrite are 

prone to this phenomenon. Warner et al. (1997, p. 15) also specified that this phenomenon 
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occurred in a depth interval from a few hundred feet below ground surface to about 1,200 m 

(4,000 ft). Other areas of the state with an even higher well density, such as West Texas, do not 

generally show such problems because the material is older and consolidated (although Triassic 

red beds are also sometimes sloughing prone). Clark et al. (2003) described a test well at a depth 

of ~900 m (~3,000 ft), where the closure was effectively observed.  

Sink or thief zones are underpressured or normally pressured formations that can 

capture and divert flowing fluids before they reach the BUQW) (Warner et al., 1997, p. 16). In 

the Texas Gulf Coast, sand layers with higher permeability than the defective well bore are 

abundant and will play that role.  

IV.1.1.2.2 Drilling Mud 
Dry holes are quickly abandoned, leaving drilling mud inside the borehole because 

there is no economic incentive to recover it. Mud gel strength typically increases with time and 

temperature and until the gel structure is broken, the mud will stay unbroken and unaffected. 

Displacement pressure PD needed to overcome the gel resistance is given by PD=a×GS×h/D 

where a is a unit conversion factor, GS is the gel strength, h is the height of the mud column, 

and D is the hole diameter (Johnston and Knape, 1984, p. 10). In working operating conditions, 

mud gel strength is less than 1 lb/100 ft2, but once settled, it can increase to values as high as 

100 lb/100 ft2. Hovorka at al. (2003) used a value of 20 lb/100 ft2 in the Frio experiment 

application. Johnston and Knape (1984) suggested that a minimum value of 25 lb/100 ft2 be 

used for abandoned wells, although it is not clear what the mud quality of the earlier wells was. 

This value corresponds for ~1,500 m (5,000 ft) mud column in a 15-inch hole to an extra 

pressure of 765 kPa (111 psi) (in addition to the column weight) needed to move the column. 

This value is not very large but may be enough to limit the impact of pressure on the outer 

edges of the radius of influence in the case of brine displacement due to the pressure increase 

but probably not enough to impede CO2 leakage.  

IV.1.2 Faults and Heterogeneity 
Few papers have investigated fault leakage risk in a probabilistic sense. Jones and Hillis 

(2003) proposed a model in which the probability of having a substantial hydrocarbon column 

pH can be expressed by 

( )( ){ }( )cbapH −−−−= 1111  
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where a, b, and c are the probabilities of membrane and hydraulic sealing, juxtaposition sealing, 

and the fault being reactivated after charge, respectively. This formulation assumes that all 

three characteristics are independent, which might not be the case. They also put forward a 

measure of uncertainty through what they called a data web. Each axis of the web corresponds to 

a type of data, and a degree of uncertainty is associated with it. Data types include fault throw, 

sedimentary architecture, stratigraphic clay content, and fault zone architecture (how many slip 

planes are present?). The overall uncertainty is the average of these individual contributions. 

Heterogeneity description is important for understanding flow but also to estimate capillary 

trapping: will the CO2 move in a large front or through fingers. Once fingers are present, the 

fluid will keep flowing through the path, where the relative permeability is the highest, (that is, 

fingers) and have limited contact with the rest of the formation. A simple, very rough 

calculation shows that residual trapping of the leaking flux can potentially capture a significant 

amount of the leaking CO2. Assuming a porosity of 25% and a residual saturation of 20%, an 

average sweeping footprint radius of 750 m, an injection depth of 3,000 m, a favorable formation 

fraction volume of 0.25, and a supercritical CO2 density of 650 kg/m3, the volume of CO2 that 

can be trapped before reaching a depth of 1,000 m is ~30 Mt CO2.  

IV.2 Hazard Consequences 
This section focuses on a risk assessment methodology that extends from leakage from 

the reservoir to impacts in aquifers, soils, atmosphere, rivers, and lakes proposed by Saripalli et 

al. (2002). It is applied to the Mountaineer site in West Virginia. The impacts of CO2 leakage on 

human and ecosystem health are gauged by estimating fluxes and concentrations of CO2 in the 

aquifer, soil, atmosphere, and surface-water bodies from leakage rates from the reservoir seal 

using semianalytical models (Saripalli and McGrail, 2002; Saripalli et al., 2002). A major human 

and ecological risk is a sudden, acute release of stored CO2 through wells due to well-cap failure 

and through fracture and fault zones, which could cause a ground-hugging CO2 cloud to settle 

in the vicinity of the injection field. Although unlikely (Holloway, 1997), such an event could be 

the most hazardous scenario (Cox et al., 1996). In contrast, diffuse leaking CO2, although not 

immediately hazardous, has been shown to adversely impact vegetation (Farrar et al., 1995). 

The effect of diffuse, long-term CO2 leaking and partitioning into the atmosphere, soil, and 

ground water and surface-water bodies is likely to be an adverse perturbation of the carbon 
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balance rather than a toxic effect. It would also be viewed as a compromise of the primary 

objective of CO2 storage, which is a reduction of atmospheric carbon. 

IV.2.1 Description of an Integrated Assessment Model 
In this task, we demonstrate the use of a multiphase, multicomponent flow and 

transport simulator (STOMP-CO2), described in Appendix G, as well as simpler, semianalytical 

modeling approaches (Saripalli and McGrail, 2002), described in Appendix F, to provide key 

inputs (fate and reactive transport model results) needed for risk and consequence assessment 

and policy and permitting recommendations. To feasibly site and operate a geological CO2 

sequestration project, it is essential to have a clear understanding of the hazards, risks, and 

consequences associated with each phase of its life cycle, including siting/licensing, capital 

construction, operation, closure, and long-term integrity monitoring.  At a local or regional 

scale, impacts of a geological sequestration project on soil, water and air quality, mineral 

resources, agriculture, ecosystems and biota, geological impacts, archaeological impacts, 

economical impacts, and community perceptions (of equity, safety, and economic and 

environmental consequences) are important to such assessment. The risk and consequence 

assessment methodology presented here uses a typical deep-well injection field as the central 

source of hazard and leakage of CO2 to the various environmental media as the primary risk 

driving event. It can serve as a basis for permitting for projects involving the geological 

sequestration of CO2, by using ranges of permissible risks and consequences to each of the risk 

receptors at the different scales described earlier.  

A hazard is a situation or event that could occur during the project life cycle, which has 

the potential for injuring humans and animals, causing damage to the property, or 

environment, or an economic loss. Risk is a combination of the probability or frequency of 

occurrence of a hazard and the magnitude of the consequences. Because hazard is the source of 

risk, risk assessment typically involves the identification of hazards, their probability or 

frequency, and a measure of their consequence. The potential hazards associated with 

geological injection and sequestration of CO2 are listed in Table 13. A relevant example is the 

case of natural gas storage, in which a total of 22 potential root causes for such releases were 

identified and ranked in terms of relative risk by a panel of experts (Bennion et al., 1995; 

Harrison and Ellis, 1995). The greatest single identified risk was wellhead failure, resulting from 

a vehicular collision; however, risks over the lifetime of CO2 sequestration reservoir could be 
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considerably different. The present risk and consequence assessment is based on the 

assumption that leakage of sequestered CO2 is the primary source of risk. Hazards not related 

to the leakage of CO2, such as accidents during construction for example, are not included in 

this assessment. Realization of any of the hazards listed in Table 13 is either caused by or will 

lead to the leakage of the sequestered CO2, or both, which is defined as the undesirable 

migration of CO2 from the reservoir to potential-risk receptor media, including air, ground-

water, surface waters, soil, and buildings. Concentration of CO2 in various media is commonly 

used in environmental and toxicological literature as a measure of environmental impacts. 

Shown in Table 14 are ranges of CO2 concentrations in different environmental media, under 

normal environmental conditions.  

Over a period of 25 years, of 432 underground storage facilities in place, only 5 incidents 

were reported to be U.S. Department of Transportation (DOT) reportable incidents, with 

damages of more than $50,000, none of which was serious (Harrison and Ellis, 1995). We 

assumed 1 serious incident in 25 years over 500 sequestration facilities, which yields a PH = 

0.00002. Similarly, five moderately serious leakage incidents over the same domain yield a PH of 

0.0001. We assume that 1% of the caprock area spread over an area of review of 50-km radius is 

fractured and another 1% is highly permeable. A more accurate assessment of frequencies will 

be site-specific, given the characterization data. Once the frequency of occurrence of a hazard 

event is calculated, risk (R) can be calculated using H HR P C= . Risk is defined with reference to 

a receptor (Table 13), presented as a relative measure (R × 100,000) for each environmental 

medium, due to each hazard. Such calculations are useful in identifying high-risk hazards and 

investigating them in greater detail. For the example case, it can be seen that a fractured caprock 

poses the most risk to all environmental media, although its severity of consequence is much 

less than a well blowout or seismic hazard, which are far less likely. 

Fate and transport models can serve as an effective basis for developing permitting tools 

for a given site, in an integrated manner. We have used a reservoir-scale numerical model and 

extended it further, to develop an integrated assessment framework that can address the risk 

and consequence assessment, monitoring networks design, and permitting guidance needs. The 

modeling approach is ‘integrated’ in two senses: (1) modeling of the entire geosystem, which 

includes the host formation, overburden including the vadose zone, the shallow subsurface and 

the surface (air, soil and water) environments, which are the ultimate risk receptors, and (2) use 
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of the same underlying modeling framework to assess the fate and transport of injected CO2 

and tracers, risk and consequence assessment, and sensor-based monitoring network design. 

The method was used to simulate sequestration of CO2 in moderate quantities at a hypothetical 

injection site. 

Table 13. Consequence value for hazards 

Consequences  
Media* Severe [1] Moderate [0.5] Low [0.1] 

Air (280 ppm) Lethal, habitat loss 
(>10%) 

Injuries 
(> 5%) 

Discomfort 
(> 1%) 

Bldgs (280 ppm) 
 
Injury, evacuation (> 
5%) 

Irritation, discomfort 
(> 2%) 

Noticeable, no harm 
(> 1%) 

Ground water 
(10-4 M or 0.2%) 

Acidity, well 
corrosion, irrigation 
loss 
(> 6%) 

Mild acidity and 
corrosion 
(> 2%) 

Elevated, low acidity 
without significant impacts 
(> 0.2%) 

Surface water 
(10-5 M; 0.022%) 

 
Acidity, CO2 
explosion, fish kills  
(> 2%)  

Higher acidity, mild 
toxicity 
Effect on irrigation  
(> 1%) 

Elevated, low acidity with 
no significant impacts 
(> 0.022%) 

Soils 
(1-2%) 

 
Low pH, tree kills, 
animal deaths 
(> 8%) 

Moderate acidity, 
tree/ crop/soil cover 
loss 
(> 3%) 

Mild suppression in pH 
with no significant impacts 
(> 2%) 

Biota (10-5 M) O2 depletion, lethal 
(>4%) 

Injury of life functions 
(> 2%) 

Mild toxicity 
(> 0.5%) 

Note: (x) is concentrations of CO2; [x] is magnitude of consequence 
Note: *Normal concentration shown for each medium within ( ) 

CO2 pollution in ground water causes loss of wells, pumps, and pipes owing to 

corrosion and failure of pumps owing to gas lift. Acidic irrigation waters may be harmful to 

crops. High CO2 levels may impair respiration in fish (Ross et al., 2000). On the basis of similar 

reports, it is reasonable to specify a CO2 concentration range of 1 to 6.3% in water to be 

progressively stress inducing to biota. Elevation of CO2 concentrations in the soil gas owing to 

leakage from below is likely to lower soil pH and adversely impact the chemistry of nutrients, 

redox-sensitive elements (Fe, Mn, As, and Se), and trace metals (Cu, Zn, and Pb), as well as 

plant growth (Farrar et al., 1995). Reduction of soil pH by even one unit can lower crop yield. 

Trees in a 30-hectare zone at Mammoth Mountain (soil CO2 concentration >30%) were found to 

be dead irrespective of the age or species. In summary, elevation of soil CO2 concentrations 

above 5% has deleterious effects on plant health and yield, severe effects in the 5 to 30% range, 

and lethal above 30%. Consequence tables have been prepared for various media, which can be 
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linked to a computer model, to assess risk via consequence. Leakage and distribution modeling 

presented earlier can be used to estimate the ranges of CO2 concentrations within the medium 

and fluxes at the media interfaces, to locate appropriate consequence values. 

Table 14. Frequencies of (PH) of hazards, consequence, and risk 

Consequence [Risk = PH × Consequence × 100,000] 
Hazard 
event PH Air Bldg. GW SW Soil Biota 
1. 
1A. 
1B. 
1C. 
2. 
2A. 
2B. 
2C. 

 
0.00002 
0.0001 
0.001 
 
0.01 
0.01 
0.0001 

 
1 [2] 
0.5 [5] 
0.1 [10] 
 
0.3 [300]
0.1 [100]
0.8 [8] 

 
1 [2] 
0.5 [5] 
0.1 [10] 
 
0.3 [300]
0.1 [100]
0.8 [8] 

 
0.5 [1] 
0.2 [2] 
0.05 [5] 
 
0.3 [300]
0.2 [200]
0.8 [8] 

 
0.5 [1] 
0.2 [2] 
0.05 [5] 
 
0.3 [300]
0.1 [100]
0.8 [8] 

 
1 [2] 
0.5 [5] 
0.1 [10] 
 
0.3 [300] 
0.1 [100] 
0.8 [8] 

 
1 [2] 
0.5 [5] 
0.05 [5] 
 
0.2 [200]
0.05 [50]
0.8 [8] 

Note: GW = ground water; SW = surface water 
1. Well-head failure (1A. major wellhead failure, 1B. moderate, sustained leak, 1C. minor leaks 
of joints); 2. Caprock failure (2A. Fractured caprock, 2B. High permeability zones, 2C. Seismic 
induced failure) 

As detailed in Appendix F, the “Integrated Fate and Transport Modeling, Risk and 

Consequence Assessment” methodology presented consists of an assessment of (1) normal 

ranges of CO2 concentrations in the environmental media of interest, (2) consequences of 

exceeding these normal CO2 concentrations, (3) possible perturbations in CO2 concentrations in 

each of the environmental media owing to the occurrence of any of the hazards considered, and 

(4) risks, using the data from tasks 2 through 3 above as a basis, in concert with the probability 

or frequency of occurrence of a given hazard. 

IV.2.2 Application to the Mountaineer Site 
IV.2.2.1 Site Description 

Mountaineer field drilling and seismic characterization data available to-date (Gupta et 

al., 2005) were used as the primary input for this assessment. The stratigraphic detail and 

approximate hydraulic properties of the 37 lithology layers representing the site geology in the 

model are summarized in Table 15. The sandstone formation that shows higher porosity and 

permeability was selected as host formation in the test run. The interval of the Rose Run 

formation is between 7,726 and 7,842 ft. A detailed model consisting of 39 lithology layers and 

122 distinct hydraulic properties, which faithfully represent the Mountaineer field site data 

from the injection horizons all the way to the surface through the vadose zone, was developed. 

The van Genuchten model (1980) was used to describe saturation-capillary pressure relations, 
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and the Burdine (1954) pore-size distribution model was used to calculate gas and aqueous 

relative permeabilities. The van Genuchten parameters were roughly estimated using hydraulic 

conductivity and water content on the site. 

Simulations were conducted assuming two-dimensional radial symmetry about the 

injection well by injecting CO2 in an interval aligned to the vertical boundary of the Rose Run 

Formation. The simulation grid covered a vertical depth of 7,842 ft (194 grid nodes) and a 

horizontal radial distance of 26,400 ft (70 grid nodes). Vertical grid spacing varied from 0.5 ft to 

10 ft in the Rose Run Formation, and 0.5 ft to 100 ft up to the ground surface. Horizontal grid 

spacing varied from 1 ft near the injection well to 3,547 ft to the outer boundary. A downward 

pressure gradient of 0.49 psi/ft was used to initialize the pressure field for the simulation and 

was also assigned to the outer vertical boundary away from the injection well. Atmospheric 

pressure was enforced at the top boundary, and zero flux at the bottom boundary is assumed. 

Temperature is assumed to vary linearly from 15oC at the top to 60oC at the bottom. The 

injection of CO2 was calculated using a well model. 

Three different simulation cases were run to assess the leakage of CO2 into the caprock. 

Case 1 (base case) hydraulic conductivities were obtained from site characterization. Cases 2 

and 3 are modified from case 1 to cause increasingly leaky caprock zones. In case 2, three 

artificial vertical high-permeability zones above the host formation were created away from the 

injection well at locations 16.8 to 14.5 ft, 195.6 to 226 ft and 537.8 to 620.4 ft. Hydraulic 

conductivities were increased to 20 times the base case value. In case 3, hydraulic conductivities 

from the caprock to the ground surface were randomly increased to 10 times the base case value 

using a random bit generator. A total injection period of 10 years was used for cases 1 through 

3. Injection was at constant pressure, assuming a well pressure gradient of 0.7 psi/ft and an 

injection length of 14 ft from the bottom of the host formation. 

Table 15. Site characterization and hydraulic property data used in the integrated model 
Layer Lithology Depth (ft) Porosity Permeability (D)
1 Ground Surface/Alluvium 0-85 0.3 5.0E+00 
2 Undiff. Penn Bedrock 85-1156 0.1 2.0E-02 
3 Sharon Sandstone 1156-1235 0.125 3.0E-01 
4 Maxville Limestone 1235-1260 0.05 1.0E-04 
5 Cuyahoga Shale 1260-1724 0.02 1.0E-06 
6 Sunberry Shale 1724-1734 0.02 1.0E-06 
7 Berea Sandstone 1734-1754 0.13 3.0E-01 
8 Chargin Shale 1754-2670 0.02 1.0E-06 
9 Lwr Huron Shale 2670-3180 0.02 1.0E-06 
10 Java Shale 3180-3279 0.02 1.0E-06 
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Layer Lithology Depth (ft) Porosity Permeability (D)
11 Pipe Creek Shale 3279-3295 0.02 1.0E-06 
12 Angola Shale 3295-3454 0.02 1.0E-06 
13 Rhinestreet Shale 3454-3559 0.02 1.0E-06 
14 Hamilton Shale 3559-3578 0.02 1.0E-06 
15 Marcellus Shale 3578-3586 0.02 1.0E-06 
16 Onondaga Shale 3586-3740 0.02 1.0E-06 
17 Oriskany Sandstone 3740-3750 0.03 1.0E-05 
18 Helderberg Limestone 3750-3914 0.03 1.0E-05 
19 Salina Dolomite 3914-4269 0.03 1.0E-05 
20 Newburg Sandstone 4269-4279 0.03 1.0E-05 
21 Lockport Dolomite 4279-4572 0.03 1.0E-05 
22 Niagaran Hill Shale 4572-4778 0.03 1.0E-05 
23 Dayton/Casing Shell Limestone 4778-4785 0.03 1.0E-05 
24 Brassfield/Packer Shell Limestone 4785-4871 0.03 1.0E-05 
25 Tuscarora/Clinton Sandstone 4871-5011 0.03 1.0E-05 
26 Medina Sandstone 5011-5018 0.03 1.0E-04 
27 Queenston Shale 5018-5121 0.02 1.0E-06 
28 Martinsburg Shale 5121-6141 0.02 1.0E-06 
29 Point Pleasant Shale 6141-6295 0.02 2.0E-06 
30 Trenton Limestone 6346-6461 0.03 2.0E-06 
31 Black River Limestone 6461-6957 0.03 1.0E-06 
32 Gull River Limestone 6957-7015 0.03 1.0E-06 
33 Lower Chazy Limestone 7015-7073 0.03 2.0E-06 
34 Glenwood/Wells Creek Shale 7073-7151 0.03 1.0E-04 
35 Unconformity Sandstone 7151-7181 0.03 1.0E-05 
36 Beekmantown Dolomite 7181-7726 0.03 2.0E-06 
37 Rose Run Sandstone 7726-7842 0.08 1.0E-02 

Note: 1 ft = 0.3048 m 

IV.2.2.2 Simulation Results 
Sandstone zones at the 7,726 to 7,842 ft depth interval are the ‘host formation’ zone, and 

the Beekmantown Dolomite layers above this zone, approximately 545 ft thick, is considered the 

low-permeability caprock. For cases 1 through 3, total CO2 injected was 37,000 tons. Actual 

injection rates for the pilot test are not yet determined but could be higher than those simulated 

here. Assuming the density of supercritical CO2 to be 600 kg/m3 results in an injection rate of 

6167 m3/year, over a 10-year injection period. It should be noted that this test injection volume 

is significantly less than the injection volumes anticipated at field-scale implementation of 

sequestration projects, which may typically inject several thousand cubic meters of CO2 per day. 

It can be seen that supercritical CO2 extended to around 800 ft in the radial direction and 

penetrated 20 ft into the caprock after the injection stopped (Figure 49). After 80 years of 

equilibration, penetration depths into the caprock are about 20 ft, 180 ft, and 80 ft for cases 1, 2, 

and 3, respectively. Case 2 indicates that leakage through a rock containing high-permeability 

zones, such as abandoned wells and fractures, poses the highest risk.   
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CO2 saturation at 10 years (left) and 100 years (right) for case 1—base case 

 
CO2 saturation at 10 years (left) and 100 years (right) for case 2: artificially leaky 
permeability pathways (caprock permeability increased 20 times throughout overburden) 

 
CO2 saturation at 10 years (left) and 100 years (right) for case 3—artificially high 
permeability pathways (caprock permeability increased 20 times in random locations 

Figure 49. Simulation results: CO2 saturations 
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IV.2.2.3 Risk Assessment 
Simulation results from the three cases were used to assess elevation in CO2 

concentrations that was likely in each of the risk receptor compartments. Results indicate that 

change (elevation) in the ambient air or water phase concentrations in each of the risk receptors 

is not significant, even after 100 years of monitoring. This observation translates into very low 

risk values, as shown in Table 14  (risk shown within [ ] parenthesis for each receptor). Two 

important reasons for these low risk values should be noted. First, the Mountaineer site 

considered comprises a considerably thick overburden zone of low permeability and a caprock 

region of very low permeability. Artificially increasing the permeability of these layers by a 

factor of 20 (simulation cases 2 and 3) in random locations caused elevated penetration and 

leakage of CO2 into the overburden. However, it was not sufficient to cause elevated ultimate 

concentrations of CO2 in the risk receptor regions after 100 years and, hence, additional risks. 

Another important reason for the low reported risks is that the total injected volume of CO2 

over a 10-year period is significantly lower than the volumes typically injected at operating 

power plant sites. This is consistent with the Mountaineer pilot project demonstration at a small 

scale but does not represent a realistic industrial-scale project. Increasing the total volume of 

CO2 injected may lead to increased risk values. The present results should be construed only as 

relevant to the pilot-scale cases shown. The methods presented are useful for larger scale 

injection projects, which may be simulated in the future under this project. 

The integrated numerical fate and transport model presented here demonstrates risk 

and consequence assessment at field scale, design and implementation of technologies for 

monitoring and verification, and regulatory evaluation for permitting purposes. Results show 

that such an integrated modeling effort would be helpful in meeting project objectives during 

different stages, such as site characterization, engineering, permitting, monitoring, and closure. 

A reservoir-scale numerical model was extended further to develop an integrated assessment 

framework that can address risk and consequence assessment, monitoring networks design, 

and permitting guidance needs. The method was used to simulate sequestration of CO2 in 

moderate quantities at a hypothetical injection site. Results indicate that at relatively low 

injection volumes planned for pilot scale demonstration at this site, risks involved are minor to 

negligible, owing to a thick, low-permeability caprock and overburden zones. Such integrated 

modeling approaches, coupled with risk and consequence assessment modeling, are valuable to 

project implementation, permitting, and monitoring, as well as site closure. More generally, 
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residual saturation and permeability ratio emerge as the most relevant parameters. As 

concluded in Saripalli et al. (2002), moderate winds can also apparently disperse most of the 

CO2 flux reaching ground surface, which will not be a risk for a living organism.  

V. Permitting Guidelines 
As numerous technical analyses of carbon storage are going forward in the field, 

regulatory aspects must also be examined (e.g., Benson et al., 2002; Forbes, 2002; Reiner and 

Herzog, 2004; Wilson, 2004). There have been efforts by governmental or pseudo-governmental 

agencies or groups to clear up the permitting field: Intergovernmental Panel on Climate Change 

(IPCC, 2005), Interstate Oil and Gas Compact Commission (IOGCC) (Bliss, 2005), Groundwater 

Protection Council in past recent conferences, and the EPA, including joint conferences with 

GWPC. The recent Request for Proposal (RFP) put forward by the FutureGen initiative has also 

illustrated the complexity of permitting issues (http://www.futuregenalliance.org/). It is clear 

that carbon storage cannot go forward without a clear representation of what the permitting 

process should be. Additional issues, at least as important, will be only touched upon in this 

report: liability and ownership. Permitting, liability, land and mineral-rights ownerships are 

interdependent components of a comprehensive package that the Federal Government needs to 

assemble with strong input from the States as to who would be ultimately responsible for the 

implementation of carbon storage in their respective states.  

The IOGCC composed one of the most specific and practical reports on permitting of 

geological carbon storage. The IOGCC task force thinks that neither Class I nor Class V wells 

are the right regulatory framework for CO2 injection (Bliss, 2005, p. 4 and 52) and suggests that 

a subclass of Class II wells or a new class with similar features be used instead. IOGCC also 

strongly suggests letting the states manage the permitting and that a strong involvement from 

all stakeholders is needed from the start (Bliss, 2005, p. 53). However, IOGCC recommendations 

focus on well permitting and lack the global long-term considerations that will make a carbon 

storage program worthwhile and successful. Similarly, EPA is still scanning the permitting field 

with the options of sponsoring a new subset of Class I, Class II, or Class V, or a new Class VI 

altogether. In the short term, it is more than likely that EPA will support experimental Class V 

wells, as was done on the Frio experiment (Hovorka et al., 2003). Class V wells can be deep and 

are sometimes constructed to Class I standards. The deepest class V well, located in Paradox 

Valley, CO, injects ~0.25 Mt a year of saline water in the Precambrian Bedrock at a total depth of 



120 

~4,850 m (~15,900 ft) and is allowed to operate at pressures higher than fracture pressures 

(Bundy, 2003). The City of El Paso will inject at a depth of ~1,200 m (~4,000 ft) desalination 

concentrates with a TDS of ~6,000 mg/L into a 7,000 mg/L Paleozoic aquifer at a rate of ~3 

MGD (equivalent to ~4 Mt per year) (Hutchison, oral communication, 2006).  

In effect, permitting of a carbon storage site must address two intertwined aspects: 

permitting of the facility itself (similar to permitting a nuclear waste site or a gas storage 

cavern), including postclosure monitoring, and permitting of the wells. These two overlapping 

aspects of permitting reproduce the distinction between short-term (injection wells and 

operations) and long-term (injectate containment) already discussed in previous sections. The 

main reason to go forward with carbon storage is public interest and general welfare. The CO2-

EOR framework is already in place and performs well, as evidenced by the Permian Basin 

experience. More generally, steps for the individual well and operations permitting are likely to 

be similar to those of one of the current UIC classes. However, permitting of wells, although 

necessary, is not sufficient. The long-term big picture must be included in the permitting 

process from the start. The permitting process should focus on the facility, not on the wells, 

whose permitting will logically derive from the permitting of the facility. On the other hand, 

companies and private enterprises also take the financial risk of accepting CO2 for storage. 

Incentives not to make upfront expenses too high must be present in devising the permitting 

procedure. In addition, permitting requirements will have a significant impact on the feasibility 

of a project. This section will not develop a comprehensive list of administrative tasks to 

accomplish, but rather provide science-based guidance to what the general philosophy of the 

permitting process should be.  

A typical field-scale geologic sequestration operation will require more than one 

injection well. Such a multiwell and multisite injection pattern is necessary to accommodate the 

large volumes of injection (several tens of Mt CO2 injected at a single site). The regional impact 

of such multiple injection sites should be considered together, during the permitting process for 

geologic sequestration. A hierarchical modeling and analysis approach to permitting geologic 

sequestration sites is proposed. Permitting assessment at a regional scale seems to be a prudent 

way to develop permitting guidelines. This would translate to permitting applications guidance 

in the following way. Phase I: A state agency responsible for the permitting process of geologic 

sequestration carries out regional-scale assessments for suitable target regions, on the basis of 
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sophisticated modeling and extended input data sets. A national agency, such as EPA, could 

also be involved when UIC oversight responsibility has not been delegated to the state. Phase II: 

Counties, metropolitan areas and subregional agencies will carry out a subregional scale 

assessment using inputs and insights from Phase I as well as from Phase III. Phase III: 

Individual operators apply for permits (as is the case with deep injection wells), on the basis of 

inputs from Phase I and II, plus relatively simpler modeling of specific injection parameters. 

Phase III corresponds to the existing permitting processes implemented by state agencies for 

Class I hazardous waste injection wells. The regional agencies mentioned in Phase II are 

typically the current permitting authorities for injection wells. Such phasewise, hierarchical 

permitting process would be helpful in adequately addressing public and stakeholder concerns 

related to the impact and safety of geological sequestration operations, while fully utilizing 

existing permitting infrastructure and methodologies.  

V.1 Operational Solutions That Could Expedite Permitting 
One way to alleviate long-term leakage and create a proper site assessment is to 

recognize that leakage will happen and that interferences between different injection sites are 

likely. This will create liability and ownership issues that must be addressed (e.g., Wilson, 2003; 

de Figueiredo, 2005; de Figueiredo et al., 2005). In case of trespass, courts have generally ruled 

on the side of the secondary and tertiary recovery operator under the argument that a less 

valuable substance was replaced by a more valuable substance (Wilson, 2003). It is not clear 

whether this will hold in the case of CO2 storage. Although not strictly technical in nature, these 

issues could impede or delay a wide implementation of carbon capture and storage. The 

permitting must then be done so that it will alleviate those concerns as much as possible, as 

described in this subsection. 

V.1.1 Field Unitization: 
Unitization of mineral rights is often realized when economic incentives are present. It 

consists of an agreement between owners of multiple contiguous parcels or leases to efficiently 

produce mineral products, generally oil and gas. It is typically implemented in the second 

stages of production, when secondary or tertiary recovery is needed. Each owner receives a part 

of the profit, regardless of where in the unitized field the hydrocarbon is produced. 

Compulsory unitization can be forced by the competent authority. Van field in East Texas was 

the first field to be unitized in the 1930s in the Midcontinent area (Handbook of Texas online). In 
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West Texas, Scurry County producers formed the SACROC unit in the 1950s (still under CO2 

flood after more than 30 years). A few other Texas fields have been unitized (e.g., Conroe in 

1978, Yates in 1976, Spraberry-Dean in the 1960s) (Table 16), although the practice is not 

widespread in Texas. For example, the supergiant East Texas field (~200 square miles) is not 

unitized, although there is a common reinjection program, operated by the East Texas Salt 

Water Disposal Company (~100 injection wells). Size of unitized fields varies between a few 

square kilometers to a couple of hundred kilometers (Table 16). This dimension range is 

compatible with carbon storage, although it should be noted that unitization is done for a 

specific formation in which the EOR is taking place and not on the whole volume of the 

footprint of the unitization domain.  

V.1.2 As Deep as Possible 
Small, individual leak probability for a given well does not justify taking specific 

measures before injection on a given ordinary well; however, their shear number increases the 

leakage probability to unsustainable levels and forces the operator/regulator to undertake a 

global strategy. There are at least three reasons to favor deep injection. (1) If CO2 is injected 

deep, below present and past reservoirs, seals, most likely good in their pristine state, would 

not be punctured by numerous wells. (2) Many researchers have also used models to show that 

heterogeneity both at the formation level and at the site level decrease leakage because of the 

increased capillary and dissolution trappings. (3) In the Gulf Coast, it appears that the optimal 

depth to inject CO2 due to rock properties (porosity) and CO2 density varying in opposite 

direction is ~3,000 m (~10,000 ft) (Holtz, 2005). An additional reason is the inevitably limited 

amount of resources available for site characterization. Additional pieces of information are 

always welcome when studying a site. However, the true goal is not a perfect knowledge of the 

site but enough confidence in its performance that CO2 will most likely behave as expected. A 

deeper injection level may not be as well characterized as a shallower level because of the 

relative paucity of data owing to the lack of well penetrations. On the other hand, the 

confidence that the site will not leak into or through UDSW is increased.  

Injecting CO2 offshore to avoid older boreholes could be beneficial. This approach, 

however, will not provide the confidence given by the capillary trapping mechanism unless the 

injection is also performed deep below the seafloor. Impacts of leakage to the seafloor would 

also have to be reckoned with and understood. In addition, it is currently viable only in the 
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western Gulf of Mexico because of the offshore moratorium (“Outer Continental Shelf 

Moratorium”) elsewhere in the U.S.   

V.1.3 Smallest Footprint 
Ownership issues can be partly dealt with by devising an injection site with a surface 

footprint as small as possible. In the Gulf Coast, this would entail favoring stacked storage in 

multiple formations to limit the footprint and the need for land ownership and mineral rights. 

Such an injection site will also decrease the footprint of the CO2 “bubble(s)” for liability and 

area of review (orphan and abandoned wells, faults).  
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Table 16. Selected unitized fields, mainly in West Texas 

Unit Name 
SizeA 

(acre/km2) Comments SourceB 

SACROC Unit ~50,000/202 Permian Basin, Scurry County Hawkins et al. (1996), SPE35359; 
Langston et al. (1988), SPE17321 

Yates field Unit 26,400/107  Gilman et al. (1995), SPE28568; 
Tank (1997), SPE35244 

Goldsmith San Andres Unit (GSAU) 18,240/74 Formed 1952 
Permian Basin, Ector County Jazek et al. (1998) SPE48945 

Sharon Ridge Canyon Unit (SRCU) 13,712/55 Permian Basin Brinkman et al. (1999), SPE56882 

Sundown Slaughter Unit (SSU),  8,700/35 Permian Basin, Hockley County 
Folger (1996) SPE35410; 
Folger and Guillot (1996), SPE35189; 
Guillot (1995), SPE30742 

Ford Geraldine Unit (FGU),  ~8,500/34 Northern Reeves and northeastern 
Culberson Counties 

Lee and El-Saleh (1990), SPE20227; 
Pittaway and Rosato (1991), SPE20118 

Goldsmith and Ector Unit (Gandu) 8,520/34  Hollar (1996), SPE35237 

North Robertson Unit (NRU) 5,633/23 

Permian Basin, Gaines County. 
144 active producing wells, 109 active 
injection wells, and 6 water supply 
wells in 1996 

Davies et al. (1996), SPE35183 

Mallet Unit (Slaughter field),  4,780/19 Cochran and Hockley Counties Kuo et al. (1990), SPE20377 
South Welch Unit 3,360/14 Formed 1968 Keeling (1984), SPE12664 
West Seminole San Andres Unit,  2,782/11 Gaines County, formed 1962 Barrett et al. (1977), SPE6738 
Alvord South (Caddo Cong.) Unit 2,291/9 Wise County, formed 1966 Craig (1985), SPE14309 

Other unitized fields include Dollarhide Devonian Unit (Bellavance, 1996, SPE35190); North Dollarhide Unit (Kovarik et al.,1994, SPE27678 and Hill 
et al., 1994, SPE27676); Prentice Northeast Unit (PNEU) in the Permian Basin, Yoakum and Terry Counties (Rogers, 1989, SPE18822); Means San 
Andres Unit in the Permian Basin, Andrews County (Stiles, 1983, SPE11987); Anton Irish Clearfork Unit (AICF) (Ilseng et al., 1983, SPE11930); 
Fullerton Clearfork Unit (FCU) in the Permian Basin, Andrews County, with 529 active producers and 432 active injectors in 1994 (Bane et al., 1994, 
SPE27640); Seminole San Andres Unit (SSAU) in the Permian Basin, Gaines County, with 427 producing wells and 161 injection wells in 1988 
(Millard, 1988, SPE17290); and Hawkins Field Unit in the East Texas Basin. 

Notes: A: 1 acre = 0.004047 km2; B: those sources are not listed in the reference list but can be accessed in the SPE database 
(http://www.spe.org ) 
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V.2 Performance-Based Regulatory Framework 
There is a strong impetus in the scientific community to adopt a performance-based 

regulatory framework (e.g., Tsang et al., 2002; Wilson and Keith, 2003) and it also seems to be 

the societal trend (e.g., Coglianese et al., 2002). The use of a risk assessment approach should 

ensure that the stringency of permitting requirements is commensurate with the risks 

determined from the understanding of the system and from our knowledge obtained from 

detailed CO2 pilot sequestration projects. Because leakage is likely to happen, the question 

should not be construed as either no leakage or leakage, but framed as a probability of having 

leakage flux above some threshold level or having some measure of USDW loss of quality (e.g., 

all metals should stay below their MCL). A performance-based process puts the burden of 

demonstrating the suitability of the site on the applicant, but it also renders the regulator’s task 

more difficult because there are less objective and quantifiable factors to consider. Questions 

such as “Is the thickness of the primary seal above the main injection formation >30 m (100 ft) at 

all points?, which are typical of a prescriptive regulation-driven system, are not as relevant in a 

performance-based system. A performance-based permit allows the permit applicant to adapt 

the level of information needed/collected to what is required to predict with enough confidence 

the site behavior. It also allows prioritizing risks (wells, faults). The ultimate criteria for carbon 

storage is likely to reproduce the long-/short-term dichotomy already encountered several 

times.  

Site assessment must be done at the regional level first before moving into the specifics 

of one injection site for the reasons detailed above (CO2 moves updip and could leave the 

property; pressure effects are likely to be felt far away from the injection site, interferences may 

occur between multiple injection operations). The large volumes to be injected will necessarily 

translate into some leakage because it is not sustainable to apply the current level of detailed 

characterization of pilot sites to all future sites. This does not mean that CO2 cannot be safely 

sequestered underground, however. Even in case of leakage, imperfect geologic storage of the 

CO2, currently emitted in the atmosphere and partly stored in the ocean, would help in meeting 

the fundamental goal of carbon sequestration. This observation again suggests that CO2 

injection should be treated at the regional or at least subregional level, allowing leakage in a 

statistical sense, but whose exact locations and timing may be hard to pinpoint until they occur. 

Although not all in the public domain, the level of data available is high, owing to oil and gas 
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exploration, and that effort can be accomplished right away. States, with possible help from 

Federal agencies (USGS, EPA), would be responsible for developing these models. Individual 

operators would then apply, on the basis of regional model guidance, for permits that would 

focus on relatively simpler modeling of specific injection parameters. The state of Texas has 

already had a successful experience implementing such a system for a sound management of 

ground-water resources (TWDB, 2006). In this particular example, participation of stakeholders 

and of other local entities was actively sought and, in most cases, given. It could be used as a 

starting point to develop a similar management model for CO2 storage. State and Federal 

government should be proactive in starting regional studies with stakeholder (general public, 

local governments, operators, CO2 generators) input that would rank areas according to criteria 

agreed upon, possibly with the help of decision-support tools (e.g., Sprague and Carlson, 1982) 

specifically developed for this purpose. These “risked-based” or “risk-informed” approaches 

have been used in the administration. Operating in a budget-constrained world, EPA has a long 

history of ranking sites more or less successfully: DRASTIC (EPA, 1987) and Risk Based 

Corrective Action (e.g., ASTM, 2002) are two examples. A scoring system was recently used for 

the ranking of the FutureGen proposals (FutureGen Alliance, 2006). Similar approaches could 

be used for carbon storage sites. However, there is currently a strong need for standardized 

integrated screening tools because none exits yet. Formal FEP or a more informal approach but 

substantially equivalent could be a starting point. It should be noted that a FEP procedure can 

be understood in very broad sense and tentatively includes all events that could possibly occur 

at the site. Our understanding of the FEP procedure is more restrictive. It should focus on those 

events related to subsurface parameters and maybe also include operations.  

One of the best ways to deal with risks is the so-called defense in depth (DID), in which 

several lines of defense are established to prevent or mitigate accidents (Table 17). A flaw in, or 

failure of, one is covered by the other lines of defense that could initially be seen as redundant. 

Such an approach is used in fields as diverse as nuclear power plant safety, computer network 

protection, car safety, transportation systems, etc. They can apply to CO2 storage in the sense 

that CO2 will move from the injection zone upward and closer to the ground surface and 

drinking-water aquifers, similar to the multiple lines of defense of a nuclear power plant 

(cooling system, containment vessel, siting in sparsely or at least less populated areas). The 

main attribute of these layered lines of defense is their lack of correlation (problem is known as 
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“common cause failure” if this happens), such that the probability of a failure of the system 

(defined by radioactive material reaching population centers or CO2 impacting people or 

needed resources) is the product of the probability of the individual components of the system. 

The first line of defense is to site the storage site deep enough to avoid multiple well 

penetrations or faults directly communicating with the surface with an appropriate choice for 

the primary seal; in closed-trap mode, the seal will contain the CO2 in place whereas in open-

trap mode, it will force CO2 to move along its lower boundary.  

Table 17. Defense-in-depth concept 

 1st line of defense 2nd line of defense 3rd line of defense 

Nuclear plant Cooling system Containment vessel Plant sited away from large 
population centers 

High-level waste 
Sturdy containers 
with low corrosion 
rates 

Favorable geology and 
climatic conditions 
both now and in the 
foreseeable future 

Repository located away from 
large populated centers 

CO2 storage site 
Primary seal 
Away from faults 
Away from high well 
density areas 

Secondary seals 
Capillary trapping 

Storage site located away 
from large populated centers 

The multiple lines of defense should not be chosen as an afterthought but be truly 

integrated into the decision process. Lines of defense can also be seen as active (engineered) or 

passive (siting of the system, favorable geology), although reliance on engineered systems for 

the life of the storage site should not be expected. A supposedly perfect storage site located 

close to the surface does not have multiple lines of defense to absorb events that were not 

predicted. In general, there are barriers in establishing DID systems. The extra cost of redundant 

systems may not be seen as warranted, and performance of the first line of defense may suffer 

from additional ones.  

V.2.1 Is Performance-Based Approach a Legitimate Approach? 
There is limited experience in undertaking risk assessment for compliance (Rechard, 

1999), and some researchers doubt the applicability of such an approach to assess impacts on 

public health and safety (e.g., Ewing et al., 1999). The process differs in spirit from a 

sophisticated sensitivity analysis to obtain a fine understanding of a geosystem in which 

compliance is not pertinent. However, we have the successful experience of the WIPP site in 

New Mexico, where several successive “Performance Assessments” were completed with 

compliance as a goal. PA analysis of CO2 storage would differ from that of nuclear waste in 

several ways: (1) there will be multiple sites; (2) some failure, read leakage, is acceptable; (3) the 
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stored material itself can flow. Some storage sites will undoubtedly be better than others, but in 

many cases there will be many outcomes to draw experience from during the injection period. 

This suggests that it would be useful to establish initial studies in a Bayesian framework to take 

advantage of successive updates. One aspect that makes a risk analysis of CO2 storage much 

easier than a similar effort for nuclear or hazardous waste is that only flow is involved. There is 

no solute flow, per se, to deal with. In addition to the numerical errors typically larger in 

transport models than in flow models, only one level of uncertainty, that of flow, exists. It is 

true that models will include dissolution, but the performance criteria of the engineered system 

will not be designed so that CO2 aqueous concentration is below some threshold in all points 

above the base of the USDW. In other words, there is no MCL for CO2.  

Then there is the difficult question of choice of appropriate conceptual model. An 

incomplete or erroneous conceptual model will add more to the uncertainty of the predictions 

than an error in some of the parameter values (e.g., Bredehoeft, 2005). It is imperative to involve 

the regulatory bodies early in the course of the technical studies by the applicant. As in any 

modeling, the choice of the conceptual model(s) will determine the output.  

V.2.2 Problem of Monitoring 
A possibly key factor for carbon storage is not addressed in current legislations. 

Postabandonment monitoring is not required, and the permitting process relies entirely on 

proving that geology features are sufficient to contain the waste. Unlike a procedural 

permitting, in which enough conservatism is included in the rules, a performance-based 

permitting must include means to check that the site is performing as planned and to control 

gaps in our understanding of the system (that is, areas with the most uncertainty). This 

approach, thus, requires monitoring potential leaks. In addition, in a market-based carbon-

credit trading system, confirmation that most of the alleged injected CO2 is effectively stored in 

the subsurface becomes critical. All these tasks are sometimes called monitoring, mitigation and 

verification (MM&V). An important issue in permit applications is performance monitoring and 

validation. Validation consists of ensuring that performance predictions are accurate. 

Monitoring has two purposes: (1) to certify that the CO2 has been stored in the receiving 

formation and (2) to demonstrate storage permanence and detect any leakage that may be 

detrimental to human health and the environment. Point 1 will help in establishing proof of CO2 
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injection for receiving carbon credits in a future trading system. Point 2 will initiate corrective 

action as needed.  

Vigorous and original efforts have been made to monitor carbon storage sites. 

Monitoring goals can be sorted into two groups: operational and leakage. Operational 

monitoring goals include monitoring the injection well and facilities, verifying that the location 

of the CO2 bubble conforms to predictions, including containment within the injection level, and 

that it follows the plume movement. Monitoring leakage involves quantifying the small amount 

of CO2 that may leave the injection level by means described in previous sections. Leakage 

cannot be determined by subtracting measured downhole volumes from injected volume owing 

to the large uncertainty in obtaining the former, most likely much larger than the leakage rate. 

Time-lapse measurements are particularly interesting: Torp and Gale (2004) stated that  

<1-meter-thick CO2 accumulations can produce changes in the seismic signal. IPCC (2005, p. 5–

50) cited 2,500 to 10,000 tons as CO2 as the current resolution for a seismic survey. The NETL 

roadmap (NETL, 2005) suggests that the stored volume can be estimated within 2,500 tons using 

seismic lapse. Arts et al. (2004) at Sleipner also using time-lapse seismic suggested that 

accumulation of 4,000 m3 (2,800 tons) can be detected. Seismic modeling by Hoversten et al. 

(2006) suggest that a quantity as small as 1,000 tons could be detected through individual 

seismic surveys. 

More generally, numerous techniques and approaches have been proposed to monitor 

CO2 storage sites, both in the storage formation and at the ground surface or in the shallow 

subsurface. Several geophysical techniques can be used for imaging the subsurface. A 

noncomprehensive list includes high-resolution well-bore and crosswell geophysics, surface 

reflection seismic, electrical resistance tomography, gravity, and measurement of land surface 

deformation, either satellite or land-based. Direct CO2 leakage can be measured, after baselining 

before injection, by simple geochemical observations (increase in bicarbonate concentration, pH 

decrease, isotope ratios), vadose or soil gas fluxes (well monitoring, flux chambers) or 

atmospheric CO2 measurements (eddy flux towers; remote-sensing lidar technology at larger 

scale). CO2 fluxes due to leakage should be independent of seasonal variations. The downside of 

monitoring point fluxes is the extreme heterogeneity in soil gas concentration rendering any 

extrapolation from the point measurements difficult. The advantage of geochemical monitoring 

is that its effects are cumulative, allowing a time- and space- integrated picture of leakage. The 
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drawback is that the resource has already been impacted. Methods involving tracer injected 

with CO2 (noble gas, etc.), as is done with natural gas, is probably impractical, except in some 

special cases. A “self-tracer,” that is, isotopic variations, seems more reliable, cost-efficient, and 

not susceptible to being doctored (e.g., Cole et al., 2004). It is important to note that no method 

should be required to adapt to all sites or technological progress developed in response to 

increasing CO2 storage operations. Baseline monitoring must be performed before injection 

(seismic survey and other geophysical methods, ground-water quality, soil gas concentrations, 

and fluxes). 

There are many issues associated with monitoring:  

(1) Should it be done at the regional scale under the responsibility of regulatory bodies 

(most likely state) that would do it under purely technical criteria or at the local scale by the 

operators on their properties? The most likely answer is a combination of both, in particular 

because most operators do not have the longevity needed to perform monitoring for decades or 

longer periods. 

(2) Another problem with monitoring CO2 storage relates to the monitoring location. 

The footprint of an injection site can be large, and potential leakage monitoring should 

sensitively be located in expected leakage pathways (abandoned well fields, faults). Doing so, 

however, would not catch leakage from unexpected pathways.  

(3) The most vexing question is monitoring duration. Long-term monitoring will be 

challenging, and it should be assumed that, if done, it will be no longer than the injection stage 

(most corporations last less than 100 hundred years, and a state-sponsored monitoring program 

is not likely to gain overwhelming approval). As suggested by the term “geologic storage,” the 

solution is to rely as much as possible on geological features. Doing so reinforces the need for a 

performance-based approach able to better constrain geological uncertainty.  

V.2.3 Mitigation 
One of the legs of the MM&V trilogy, mitigation, has not been given much attention by 

researchers so far (again, the focus is on the postclosure period). Permitting should include 

provisions concerning the actions to be taken if leakage is much higher than predicted or if 

catastrophic leakage occurs (for example, vent the formation by producing from other injectors, 

pump water, etc.). However, if leaks are detected, it is important to develop contingency plans. 

They also must be part of any permitting application. Although there is always a possibility for 
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unexpected events, a performance-based approach helps in allocating resources and train staff 

in disruptive events, if any, most likely to take place (e.g., unknown abandoned wells). 

Mitigation or corrective remedial action depends on where the leakage has been identified 

(injection wells, abandoned wells, formations overlying injection horizon, fault, shallow ground 

water, surface water, surface depressions, house basements, etc.). An example of mitigation 

could consist of depressurizing the injection formation by pumping the water out and injecting 

it in the formation above. Doing so would overpressurize the formation above the seal and 

reverse the pressure gradient. However, short-term mitigation, as in the Herscher natural gas 

storage in Illinois, where leaking gas is pumped from shallow wells (Benson et al., 2002), is not 

viable for long-term geologic storage.  

V.2.4 General Permit 
An alternative to the full-fledged performance-based approach is to let the regulatory 

agencies do the general risk assessment and grant general permits for selected areas chosen in a 

ranking system as described above. Results could be available in an ArcGIS format and posted 

on the Web, where it could be accessed by all stakeholders. A general permit must be done 

independently of property and mineral rights ownership; on the other hand, a general risk 

assessment study should help in untangling and directing these complex issues. Permitting of 

individual wells in a general permit area is then granted, following a simple administrative 

review. A similar approach was proposed by Mace et al. (2005) to handle desalination 

concentrates whose disposal is in a similar regulatory limbo.  

V.3 Examples of More Specific Guidelines 
In this section, we explore more specific recommendations for developing a permitting 

protocol. 

V.3.1 What Should Be Accomplished by the Regulatory Body? 
Given the magnitude of the undertaking, the critical initial step, as described in a 

previous section, is for the relevant regulatory bodies to develop or have developed sets of 

paper or virtual (ArcGIS) maps that would depict variations of parameters important for 

permitting. Investment efforts in time and staff taken by the regulatory agencies need to be 

commensurate with the scale of the problem. Examples include topographic maps showing 

depressions where CO2 can accumulate at the ground surface, given wind and other climatic 

conditions (e.g., Bogen et al., 2006), or showing depth to the water table, useful for determining 
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whether dense CO2 gas could invade basements after outgassing from the water. For example, 

most soil and gas environmental monitoring for CO2 leakage so far has been in upland settings 

with thick unsaturated zones (Hovorka, 2006, personal communication). Accurate maps of the 

base of fresh water should also be produced (Figure 50 and Figure 51). Previous authors have 

stated that an average depth to the base of the fresh water is approximately 600 m (2,000 ft) 

(e.g., Warner et al, 2001, p. 9). However, it may divert considerably from the average when in 

conductive sand channels, where it could reach a depth of 915 m (3,000 ft). Structural maps in 

the spirit of the map presented in Figure 12 could be done at multiple depths. State agencies or 

their subcontractors could also easily produce maps of elevation/depth of the surface, joining 

all points at which CO2 would be in a supercritical state, by collating data from geothermal 

gradient maps (e.g., Woodruff et al., 1984) and hydrostatic pressure or pressure measurements 

from wells. For the Texas Gulf Coast, this surface is located in a depth range of 730-1,370 m 

(2,400–4,500 ft). Pressure-depletion maps would also help because pressure-depleted oil and gas 

fields could alter the pathway of CO2 plumes. In case of pressure recovery by strong water drive 

or other means, the information would also be valuable.  

In parallel, research and development in these same agencies or at the Federal level (e.g., 

DOE) could reduce sources of uncertainty in geologic storage. Some types of uncertainty are 

easier to resolve—for instance, the equation of state for CO2 behavior at different temperatures, 

pressures, salinity, or ionic composition could be resolved by multiple laboratory experiments. 

By far, the most important field of research is to gain an understanding in the rock-fluid 

interactions, in particular residual saturation. Detection of unknown abandoned wells is 

another area where advances could benefit the carbon storage community. Geomagnetic 

surveys are effective in detecting wells with steel casing, although exploration wells that were 

never cased or abandoned wells whose casing has been pulled could not be located through this 

method.  
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Source: TCEQ data 
Figure 50. Base of the usable quality water (<3,000 mg/L) in the Gulf Coast area 
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Figure 51. Representative cross section across the northern Texas Gulf Coast showing 
approximate location of the 3,000 mg/L contour line 

V.3.2 What Could Be Included in Permitting? 
As in any permitting involving risk, multiple agencies at the Federal and State levels 

must be involved, i.e., possibly the Army Corps of Engineers or Department of Fish and 

Wildlife, compliance with the National Environmental Policy Act (NEPA) if the Federal 

Government is directly involved, or the Endangered Species Act (ESA). The permitting process 

for experimental injection (~1,600 t of CO2) at the Frio site essentially included the 

environmental assessment (EA) of the Federal NEPA process (Knox et al., 2003) and the UIC 
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permitting performed at the State level by TCEQ (Hovorka et al., 2003). Some aspects, especially 

related to individual wells (e.g., maximum injection rate) will not change. The permit 

application should focus on the geology and geological features and strive to show that they 

will contain CO2 for long periods of time. It should point out not only the drawbacks of the 

chosen locations (estimation of leakage rates through space and time), but also positive site 

attributes (e.g., descending ground-water flow is preferable over regions where ground water is 

ascending through cross-formational flow to shallow depth). It should include all the processes 

relevant for the particular site. Processes that may not be important in a decadal timeframe (e.g., 

diffusion, changes in boundary conditions) become important. Every effort must be make to 

assess their range of possible values.  

The exact nature of injected fluid, including trace gases, can be important because it will 

impact fluid density (both brine and CO2-rich phase), capillary properties, and residual 

saturation. The composition of injected gas must be regulated within an admissible range. Flue 

gas contains ~10% CO2 (higher and lower percentage for coal-fired and natural-gas-fired plants, 

respectively). Compressing costs would translate into an economic incentive to concentrate CO2 

in the injection stream beyond 90%. However, gases in minor amounts (e.g., H2S, SO2, NOx) 

could add a layer of uncertainty to model prediction. Nonpure CO2 does not behave as CO2 and 

will impact density, viscosity, and chemical reactivity (e.g., Bouchard and Delaytermoz, 2004), 

although acid gas (CO2 and H2S) has been successfully injected in Canada (e.g., Bachu and 

Gunter, 2004). Modeling studies by Knauss et al. (2005) suggest that H2S is not an issue but that 

only minor amounts of SO2 can be tolerated if it is to be converted in situ into sulfate, as shown 

in their geochemical modeling of the Frio Formation in the Texas Gulf Coast. NOx has 

intermediate results (Knauss, 2004). The maximum authorized injection volume (capacity), as 

well as the maximum injection rate, should be set for each individual well. However, one can 

argue against the necessity of constraining the injection rate by the fracture pressure. 

Geochemical properties should also be characterized because of their impact on mineral 

trapping, well corrosion, and CO2 behavior (TDS).  

Thorough characterization of all formations above the injection level should be included. 

It is a necessary step to assess the impact of leakage because the permitting will rely mainly on 

predictive modeling and appropriate conceptual models. The conceptual model is likely to have 

more impact on final results than any algorithmic details.   
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V.3.3 What Should Not Be Included in Permitting? 
Operational aspects of the permitting should not be precisely set in the regulations. 

Siting and monitoring methods should be tailored to each site. One particular method for site 

characterization (e.g., seismic) or monitoring should not be required, but open to discussion 

between the operator and the regulatory agency. No particular trapping mode should be 

favored, as long as the site satisfies the criteria of permanence and limited leakage. Technical 

aspects, such as horizontal (to maximize capillary and dissolution trapping) vs. vertical, or 

injection interval (at the formation bottom to take advantage of the vertical baffling due to 

heterogeneities—e.g., Flett et al., 2004) should be left to the operator. Requiring plugging of 

abandoned wells with CO2-resistant cement may also be a disincentive. Adequacy of formation 

storage capacity with source output should not have to be established. On the other hand, 

adequacy between demonstrated storage capacity and applied for injected volumes should.  

V.4 Impact of CO2 Storage on Other Industries 
The necessarily large magnitude of any sequestration program raised the question of its 

impact on other subsurface-related activities or, more generally, the protection of the area 

mineral resources (oil, gas, lignite, uranium, sulfur, salt, geothermal energy, etc.). The effect on 

ground water has already been discussed. In addition, some ground-water sources deeper than 

the BUQW could be impacted earlier. These waters are more saline (>10,000 mg/L) but could 

conceivably be used as feed water for desalination facilities. Impact on future oil and gas 

activities may be a concern. Operators drill deeper and deeper exploration wells to access ultra-

deep viable resources (Figure 52), as already seen in Figure 16 and Figure 17. Most future 

drilling seems to be confined to the offshore area of the State of Texas; however, deep gas 

exploration and production may take place onshore along the Texas Gulf Coast at 4,570 m 

(~15,000 ft) or deeper. Oil and gas well construction requirements should include CO2-resistant 

cements in the future. Previously uneconomical resources can become attractive because of 

technological progress. For example, the Barnett shale play in North-Central Texas, southwest 

of the Dallas–Fort Worth Metroplex, is being actively explored because of developments in 

horizontal well and induced fracturation technologies. Similar development could take place 

along the Gulf Coast.  
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Note: Vertical dimension is 30,000 to 40,000 ft (9 to 12 km) 
Figure 52. Conceptual cartoon showing locations of deep gas plays 

There are other examples as well. Texas was a major uranium producer in the 1960s and 

1970s from deposits hosted by Gulf Coast sediments. It seems, after a 20-year gap, companies 

are coming back for more in situ leaching. In the 1980s, several studies successfully investigated 

geothermal opportunities in the Gulf Coast area.  

CONCLUSIONS 
In this report we have presented an array of issues related to carbon storage in saline 

aquifers and their implications for permitting. Permitting is important for industrial projects, 

but no current permitting procedure addresses all aspects of carbon storage. However, the 

scientific community, as well as involved parties (regulators, operators, the power industry, 

concerned citizen groups, etc.), realizes that permitting issues are far from being stabilized yet. 

This report introduces and expands on directions that the permitting process could/should 

take, given the technical constraints of carbon storage. Challenges brought forward by carbon 

storage are new in their scale and technical concerns. The volume of CO2 to be injected into the 

subsurface is necessarily large to attain the goal of reducing CO2 atmospheric concentrations. It 

follows that a governmental agency or some nonprofit group independent of the operators 

needs to oversee and/or coordinate all injections operations. The CO2 must stay underground 

for at least some period of time (still to be defined). The buoyancy of supercritical CO2 means 

that, contrary to most other injected fluids, it will tend to flow upward even after the initial 

pressure pulse has subsided because gravity forces continue acting. Carbon storage thus 

presents long-term risks not only for the stated goal but also for the health and safety of future 

(current) Shelf  Slope 

  Off-shelf deposits 
 On-shelf deposits 
 Mobile shale ridge
 Basin-floor fans 
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residents in the injection areas. It follows that those long-term risks need to be explicitly 

quantified, both in terms of hazard description and of their consequences. A performance/risk 

assessment methodology, rather than a prescriptive approach, is the most practical and 

recognized approach to achieve this objective. A performance-based approach allows for 

flexibility and innovation that will benefit the whole carbon storage concept in the long term. 

There is no consensus on how long postclosure monitoring, if any, should last. The whole 

concept of geological storage and the uncertainties of the regulatory structure of future societies 

naturally leads to a necessarily limited monitoring and a strong emphasis on self-reliant sites.  

We have proposed a hierarchical approach where, in a first step, the responsible 

agency/group will perform regional assessment studies and rank injection areas. This 

assessment can be construed as a general permit that would involve determining, in the 

regional sense, structural (closed structures), stratigraphic (heterogeneity), and petrophysical 

(flow parameters) controls on the long-term fate of geologically sequestered CO2. It will lessen 

the applicant’s burden because the general area of the chosen site will have been ranked more 

favorably. This first step will be followed by a second step, in which the individual operators 

will present their own application within the general framework established in the first step. 

This long-term aspect (100s to 1,000s of years) that must be present in carbon storage permitting 

is not currently captured in the legislation, even if the U.S. has a relatively well-developed 

regulatory framework to handle carbon storage, especially in the operational short term. 

Operational permitting is a minor issue and could be accomplished with little change to the 

current procedures. Evidently some sites will perform better than others, and it is possible that 

some leakage will occur somewhere, possibly at a high rate. However, in the societal sense, 

technical and economic risks of carbon storage should not be examined independently but 

contrasted to risks of doing nothing, in order to address higher atmospheric CO2 concentrations. 

An example, which is not necessarily a good option, could be considering whether society is 

ready to bear the cost of plugging all abandoned wells with CO2-resistant cement and possibly 

retrofitting many wells already plugged with Portland cement to avert a well-known potential 

leakage source. 

CO2 trapping modes include capillary and structural trappings, in effect, from the 

beginning of injection to long term, and solubility and mineral trappings that take effect more 

slowly. Leakage pathways, at least in the Texas Gulf Coast, consist mostly of oil and gas wells, 
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faults, and subsurface heterogeneity connected in faster pathways (e.g., upward connectivity of 

transmissive zones through, for example, loss of seal integrity, sand-against-sand fault 

compartments, or spill points where faults die off). USDWs are the most likely resources to be 

impacted by unintentional CO2 leakage. Generally an important factor to consider in the siting 

of a carbon storage facility should be to avoid well bores that represent the most direct conduit 

to the USDW and the ground surface. It follows that the injection levels should be as deep as 

economically feasible. In the Texas Gulf Coast, the best way to achieve this goal is to establish 

the primary injection level below the total depth of most wells. Similarly, most faults, 

particularly growth faults, do not reach the surface and do not present a problem. The major 

and efficient “defense-in-depth” process of capillary trapping (when small, disconnected 

masses of CO2 stay behind after the main plume has moved away) could considerably delay 

and retard any potential leakage. Capillary trapping does not require an obstacle to flow to be 

efficient. Leakage mechanisms are in essence identical to a “fill-and-spill” operational method, 

in which multiple individual traps are successively filled. It can thus be argued that no leakage 

of stored CO2 as such will occur until the plume has reached the base of the regional seal or 

even maybe the vicinity of the BUQW. Overall, capillary trapping is likely to be an efficient 

short-term mechanism to control CO2 leakage to USDW and beyond to the atmosphere. This 

capillary process must be well understood and quantified for us to be able to describe 

accurately enough the fate of any leaked CO2. It follows that a large effort must be undertaken 

to understand supercritical CO2 hysteresis, both in laboratory experiments and in the field. The 

same comment holds true for the different multiphase flow numerical simulators used by 

stakeholders that must handle state-of-the art hysteresis formulation. In addition, capillary 

trapping as a leakage control mechanism will be acceptable only if the contacted volume is large 

enough to absorb a significant mass of the leaking plume—that is, if the heterogeneity of the 

sedimentary pile is large enough. It follows that subsurface heterogeneity must also be well 

understood.  
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LIST OF ACRONYMS AND ABBREVIATIONS 
AOR   Area of review 
API   American Petroleum Institute 
ASTM   American Society for Testing and Materials 
 
BEG   Bureau of Economic Geology 
bgs   Below ground surface 
BUQW   Base of usable quality water 
 
CDF   Cumulative distribution function 
CSP   Clay shear potential 
 
DOE   Department of Energy 
DID   Defense in depth 
 
EOR   Enhanced oil recovery 
EPA   Environmental Protection Agency 
 
FEP   Features, events, and processes 
 
gpm   Gallon per minute 
Gt   Gigatons (109 tons) 
 
H&S   Health and safety 
 
IFT   Interfacial tension 
IOGCC  Interstate Oil and Gas Compact Commission 
IPCC   Intergovernmental Panel on Climate Change 
 
MCL   Maximum contaminant level 
MIT   Mechanical integrity testing 
MM&V  Monitoring, mitigation and verification 
MMbbl Millions of barrels (N.B: many industries use M for millions, but common 

use in the oil and gas industry is M for thousands and MM for millions) 
ms   Milliseconds 
Mt   Millions of tons, Megatons (106 tons) 
MTTF   Mean time to failure 
 
NGCAS  Next Generation Capture and Storage, project funded by European Union 
NRC   National Research Council 
NRC   Nuclear Regulatory Commission 
NWPA   Nuclear Waste Policy Act (1982) 
 
OOIP   Original oil in place 
 
PA   Performance assessment 
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PDF   Probability density function 
 
RA   Risk analysis 
RCRA   Resource Conservation and Recovery Act 
RFP   Request for proposal 
RRC   Railroad Commission of Texas 
 
SDWA   Safe Drinking Water Act 
SGR    Shale gouge ratio 
SPE   Society of Petroleum Engineers 
 
TAC   Texas Administrative Code 
TCEQ   Texas Commission on Environmental Quality 
TDS   Total dissolved solids 
TGC   Texas Gulf Coast 
TWDB   Texas Water Development Board 
 
UIC   Underground injection control 
USDW   Underground source of drinking water 
USGS   U.S. Geological Survey 
 
WIPP   Waste isolation pilot plant 
 
ZEI   Zone of endangering influence 



172 

APPENDIX A: Geology of Gulf Coast Basin 
The state of Texas can be divided into several geologically significant areas, mostly 

along boundaries of sedimentary basins. Two basins stand out by their size and their economic 

significance: the Gulf Coast Basin and the Permian Basin (Figure 53). Beginning in Triassic time 

(250 million years ago), Texas was subject to extension and volcanism, leading to Jurassic rifting 

of the continental margin and creation of the Gulf of Mexico and Atlantic Ocean. The small rift 

basins that initially formed were buried under abundant salt accumulation (Louann Salt). As 

the weight of sediments increased, the salt became unstable and started locally to move upward 

in diapirs, a phenomenon still active today. During the Cretaceous, sediments deposited from 

shallow inland seas formed broad continental shelves that covered most of Texas. In the 

Tertiary (starting 65 million years ago), as the Rocky Mountains to the west started rising, large 

river systems flowed toward the Gulf of Mexico, carrying an abundant sediment load, in the 

fashion of today’s Mississippi River. Sediments also contained local sources, including erosional 

detritus from the multiple Tertiary volcanic centers in West Texas and Mexico.  

Stratigraphy:  

Six major progradation events (Galloway et al., 2000), in which the sedimentation built 

out into the Gulf Coast Basin, including the Frio deltaic and strandplain sedimentation, most 

likely targeting the Gulf Coast area, have been described (Figure 3 and Figure 54 for a more 

accurate cross section). Each progradation event is also paired with a major sea-level rise that 

typically deposited regionally extensive marine clays that could act as regional seals to limit 

upward migration of CO2. Volumetrically important progradation wedges include the Wilcox 

and the Vicksburg/Frio. The Wilcox wedge is directly overlain by the Reklaw shale. Basinward, 

the Reklaw shale merges with marine clays associated with the smaller progradation wedges of 

the Queen-City, Sparta, Yegua, and Jackson Formations. Their updip equivalents include the 

Weches and Cook Mountain Formations. The Frio wedge is the target of choice in the analysis 

area (Figure 54). It is covered by another marine clay, the Anahuac shale (Figure 55). The next 

wedge, the Oakville/Fleming Formation, could also be an attractive target. It is overlain by the 

Amphistegina B shale. The last major progradation wedge of Plio-Pleistocene age is still active 

and is too shallow to be of prime interest for CO2 storage.  

The set of depositional systems is the same throughout the Tertiary period: fluvial, 

deltaic, barrier bar/strandplain, and slope/basin depositional systems (Figure 56). Little 
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variation occurred in the location of the main depocenters, resulting in individualized 

subbasins. The Tertiary Gulf Coast formations can be subdivided into three regions (Figure 57): 

the Houston Embayment, with a thick sediment accumulation (also true for salt accumulation, 

hence the diapirism); the San Marcos Arch, with a less abundant sediment influx; and the Rio 

Grande Embayment in South Texas. The nature of the depositional system has important 

consequences on our understanding of fluid flow in general and carbon storage in particular. 

Vertical continuity of sand in main depocenters is impacted by the wavering of channels. 

Channel sand bodies will vertically stack in a rapidly subsiding basin, as in the Gulf Coast, 

whereas in a more stable tectonic environment, distributary channels may wander more, 

resulting in vertically offset sand bodies. Lateral continuity can also be understood in terms of 

depositional system. Wave-dominated deltaic and strandplain systems present a high lateral 

continuity and could be thick, whereas fluvial and fluvial deltaic systems can present abrupt 

lateral facies changes. Wave-dominated deltaic and strandplain systems are also well sorted. In 

general, sand permeability is correlated with body thickness—that is, transmissivity increases 

more than linearly with thickness.  

Geographic extent of seals should be understood within the local history of the 

depositional systems, for example—in the context of second- (e.g., Anahuac shale), third-, 

fourth-, and fifth- (e.g., very local shale layer of limited extend in a fluvial channel) order 

flooding-event shales. 

Faulting:  

Growth faults, resulting from sediment loading on unstable substrates, periodically 

develop. Intermittent movement along these growth faults has accommodated accumulation of 

enormous masses of sediments. Growth faults are mostly syndepositional faults. Zones of 

growth faulting mark the basinward movement of the shelf edge. Fault-bounded reservoir 

compartments create many structural traps in the Tertiary stratigraphic section of the southern 

Gulf Coast Basin.  

Hydrocarbon Resources:  

Outlines of the oil and gas fields present are shown in Figure 4. Figure 58 provides a 

visual aid to the stratigraphic source of oil resources in the Gulf Coast. The Frio Formation is a 

major hydrocarbon source in the Gulf Coast.  
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Source: Galloway et al., 1986, Fig. 3  
Figure 55. Maximum inland extent of two extensive marine clays: the Anahuac shale  

and the Amphistegina B shale  

 
Source: Galloway et al. (1983) 
Figure 56. Cartoon of typical Gulf Coast depositional systems (except alluvial fan) 
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Figure 57. Frio barrier-strandplain and deltaic systems showing oil and gas reservoirs of the 

Frio barrier and strandplain trend 
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Figure 58. Stratigraphic column and relative oil production for the Gulf Coast  

and East Texas Basins 
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APPENDIX B: The Hydrocarbon Proxy for Potential Carbon Dioxide 
Leakage from Subsurface Reservoirs 

 

Carbon (primarily in the form of methane and carbon dioxide) is added to the 

atmosphere from many natural and anthropogenic sources. Primary natural sources include 

volcanism, mantle degassing, liberation from carbonate crustal rocks, and leakage from 

hydrocarbon reservoirs (Mörner and Etiope, 2002). Methane leakage from hydrocarbon 

reservoirs, in particular, is estimated at 8 to 65 Mt per year (Hovland et al., 1993; Hornafius et 

al., 1999) in marine environments and perhaps an equal amount in subaerial environments 

(Mörner and Etiope, 2002). Leakage of light hydrocarbons (chiefly methane through pentane) is 

an appealing analog for examining potential leakage of CO2 from subsurface sequestration sites 

owing to the similarities in molecular size and mass among CO2 and the light hydrocarbons. 

CO2 molecules have a mass of 44 atomic mass units (amu) and a diameter of 0.35 nm, whereas 

light hydrocarbons range from 16 to 72 amu in mass and are 0.4 nm and larger in diameter. We 

can thus gain insight into the possible migration mechanisms and flux rates of CO2 sequestered 

in geologic reservoirs by examining hydrocarbon migration in similar geologic settings. 

Evidence of Vertical Hydrocarbon Migration 

Direct and indirect geologic, geophysical, biological, and chemical evidence of 

hydrocarbon migration from reservoirs to the surface has been widely reported. Direct evidence 

includes the presence of macroseeps at the ground surface and on the sea floor, manifested as 

direct gas discharge of lighter hydrocarbons, accumulations of heavier hydrocarbons at or near 

the land surface or seabed, and the widespread occurence of marine gas hydrates (e.g. Abrams, 

1992, 1996a; Brooks et al., 1984, 1987; Cline and Holmes, 1977; Dando and Hovland, 1992; 

Dando et al., 1994; Hedberg, 1981; Kvenvolden, 1988; Roberts et al., 1989; Sloan, 1998a and b). 

Most instances of macroseepage are thought to occur along structural features such as faults 

and fractures. 

Indirect evidence includes diagenetic effects on near-surface materials and unique 

microbiological and botanical communities associated with near-surface "chimneys" above 

hydrocarbon reservoirs. Near-surface diagenetic changes can include precipitation  of magnetic 

and nonmagnetic iron sulfides and oxides, carbonates and carbonate cements, and paraffin dirt 

(e.g. Schumacher, 1996, 1999; Ellwood and Burkart, 1996; Machel and Burton, 1991a and b; Al-
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Shaieb et al., 1994; Donovan, 1974). Many of these effects require more diffuse vertical migration 

of hydrocarbons than typically occurs along structural features. 

Leakage Mechanisms, Rates, and Volumes 

Many of the direct indicators of hydrocarbon migration, such as gas discharges and 

heavier hydrocarbon accumulations at the land surface and seabed, have been attributed to 

preferential volume flow along structural features such as faults and fractures (Schumacher, 

1999; Horvitz, 1939, 1985; Jones and Drozd, 1983). More widespread presence of light 

hydrocarbons near the land surface as well as indirect indicators such as diagenetic alteration 

and biological responses are attributed to "microseepage," with the assumption that geologic 

traps are not perfect seals (Matthews, 1996; Schumacher, 1999). Further evidence for 

microseepage includes (1) increased concentration of light hydrocarbons and hydrocarbon-

oxidizing microbes above reservoirs, (2) increased light hydrocarbon ratios in soil gas over oil 

and gas reservoirs, (3) sharp lateral changes in concentrations and ratios at the edges of 

subsurface projections of reservoirs, (4) similarity of stable carbon isotopic ratios for methane 

and other light hydrocarbons in soil gases similar to those in underlying reservoirs, and (5) 

ephemeral appearance of soil gas and microbial anomalies in response to reservoir depletion 

and repressuring (Schumacher, 1999). 

Proposed vertical migration mechanisms include volume (Darcy) flow, molecular 

diffusion, separate-phase flow, dissolution in water and subsequent migration, and transport 

along kerogen pathways (Matthews, 1996; Krooss and Leythaeuser, 1996). Many of the 

proposed mechanisms for hydrocarbon migration are valid, but most are of secondary 

importance and are only recognizable in special situations (Matthews, 1996). The dominant 

vertical microseepage mechanism is interpreted to be buoyancy-driven gas flow within 

reservoir rocks and capillary imbibition from sources and seals in carrier rocks (Schumacher, 

1999; Matthews, 1996; Clayton et al., 1999; Clayton and Dando, 1996; Bjorkum et al., 1998). 

Migration pathways are strongly influenced by three-dimensional heterogeneity at all scales 

from individual pore systems to facies relationships (Matthews, 1996). 

Buoyancy forces, small molecular sizes, and imperfect seals can produce relatively rapid 

rates of vertical ascent for light hydrocarbons. Krooss and Leythaeuser (1996) interpret very low 

methane transport rates by molecular diffusion through seals, ranging from 0.16 to 89 

m3/km3/yr. Compressible volume flow through shale 50 to 450 m thick with a permeability of 1 
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nanodarcy is much higher, ranging from 100 to 1000 m3/km3/yr (Krooss and Leythaeuser, 

1996). Light hydrocarbons have been reported to move through thousands of meters of strata 

without observable faults or fractures in time periods of weeks to years (Schumacher, 1999); 

other reported ascent rates range from less than 1 m/day to 10s of m/day (Arp, 1992; Klusman 

and Saeed, 1996; Matthews, 1996). 

Larger scale leakage studies that combine macro- and microseepage volumes suggest 

that vertical hydrocarbon fluxes can be very large, even in producing fields. Cathles (2004) 

estimates that 131 billion tons of hydrocarbon have been vented from a 24,000 km2 area near 

South Marsh Island in offshore Louisiana, and 15 billion tons are currently migrating in that 

system. Over a salt diapir in the Ekofisk Field in the North Sea, gas seepage through 120 seeps 

at the seabed have a total flow rate of about 3000 m3/day/km2 (Hovland and Sommerville, 

1992). On Denmark's Kattegat Coast, fault-line leakage of methane from geologically recent 

sources has a mean flow rate of 1400 m3/day/km2 (Dando et al., 1994). 

Detection Methods 

The concept of vertical migration of hydrocarbons from subsurface reservoirs to the 

ground surface or seabed forms the basis of several types of near-surface hydrocarbon 

exploration methods. These methods either directly detect hydrocarbons through chemical 

analysis (most atmospheric, soil, and shallow sediment approaches) or detect the alterations 

geophysically in the chimney above the reservoir that may be caused by the migration (Groth 

and Groth, 1994). Macroseeps and soil and botanical characteristics associated with the presence 

of hydrocarbons can be examined using remote-sensing methods (e.g. Berger et al., 2002; 

Matthews et al., 1984; Copper et al., 1998; Williams et al., 1995; Rock, 1984). Geochemical 

analyses of gases from soil and shallow sediments are commonly the most reliable indicator of 

vertical hydrocarbon migration. These include carbon isotopic composition, relative 

concentrations of light hydrocarbons, and identification of trace elements associated with 

hydrocarbon generation and migration (e.g. Abrams, 1996b; Brooks et al., 1986; Duchscherer, 

1984; Horvitz, 1939, 1969, 1985; Klusman, 1993; Richers and Maxwell, 1991; Schiemer et al., 1985; 

Schumacher, 1999). 

Several geophysical methods might also be applied to identifying indirect evidence of 

past hydrocarbon seepage and leakage potential of overlying CO2 sequestration reservoirs. 

These include ground and airborne electrical methods that explore for enhanced conductivity 
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associated with reducing environments within the hydrocarbon chimney, induced polarization 

(IP) anomalies associated with sulfide precipitation, and shallow resistive horizons related to 

precipitation of carbonates in the oxidizing zone (e.g. Carlson and Zonge, 1996; Sternberg, 1991; 

Westphalen et al., 1995). Airborne radiometric surveys are intended to identify gamma lows 

over oil and gas fields caused by conversion of potassium-bearing clays to other potassium-

deficient clays during the hydrocarbon-induced, near-surface diagenetic process (Curry, 1984; 

Schumacher, 1996). Perhaps most common are high-resolution aeromagnetic surveys intended 

to identify near-surface changes in magnetic susceptibility associated with diagenetic processes 

within the hydrocarbon alteration chimney (e.g. Campbell and Ritzma, 1979; Donovan et al., 

1979; Donovan, 1988; Foote, 1996; Henry, 1989; LeSchack and van Alstine, 2002; Peirce et al., 

1998). 

Conclusion 

The prospects for CO2 storage of in geologic reservoirs can be enhanced by recognizing 

that light hydrocarbons can serve as a proxy for long-term migration behavior of CO2. Methods 

developed to explore for the near-surface manifestation of deeper hydrocarbon accumulations 

can be used to determine whether there is evidence for hydrocarbon leakage through proposed 

sequestering strata that overlie hydrocarbon reservoirs. Permitting procedures in these settings 

might include a typical suite of relatively low cost near-surface hydrocarbon exploration 

methods (geochemical and geophysical) to help assess long-term seal integrity above proposed 

sequestration reservoirs. 
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APPENDIX C: Fault Data Matrix 
Results of systematic fault length and density analysis are presented in Excel files and 

matrix form for each horizon before being processed for statistical study. Table 18 shows an 

example of how fault length measurements were organized. Length values accompanied with 

the symbol greater than (“>”) denote faults whose lengths were bigger than those of the 

coverage of the 3D volume. An example of the horizontal distribution of faults along horizon4 

in Gillock 3-D volumes is illustrated in Table 19  

Table 18. Fault length for horizon 4 in Gillock 3-D volume 

Fault Name Length (ft) 
F5 >7693
F7 4327
F8 4698
F9 6799
F10 5079
F11 2283
F12 >5939
F13 5807
F14 4487
F15 >4248

        Note: 1 ft = 0.3048 m 

Table 19. Measurements (ft) between faults for horizon 4 in Gillock 3-D volume 

Trace F8 F9 F10 F13 

F5 2762    

F8  1164   

F9   1461  

F10    2243 
            Note: 1 ft = 0.3048 m 
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APPENDIX D: Scaling Analysis of the Spread of CO2 through a 
Leak in a Homogeneous Geological Formation:        
(1) Theoretical Developments 

1 Introduction  
This study presents scaling estimates of extents of spread of CO2, which result from a 

leak through a point source. The estimates, which are in the form of analytical expressions, are 

obtained from the governing equations for two-phase flow in porous media. This work also 

identifies dimensionless numbers that significantly influence the flow of CO2 in geological 

formations and quantifies their influence on the extents of spread. The effect of domain 

inclination on the estimates is also investigated. Scaling analysis is performed for both two-

dimensional (2D) and three-dimensional (3D) flows. Fluid flows that demonstrate negligible 

variations in the cross-flow direction can be approximated as 2D flows. Two-phase flows in 

geological formations with narrow width are likely to result in 2D flows. In addition, flow 

through a long fault or fissure that spans the width of the formation would be predominantly 

2D.  

This work ignores the effect of capillary pressure on the spread of CO2. In addition, 

viscous and buoyancy-driven fingering phenomena, which can significantly influence the flow 

of CO2, are not considered here. This article is organized as follows. The following section 

presents the governing equations for the two-phase flow of CO2 and water in porous media. The 

next two sections present scaling analyses for 2D flows without and with inclinations. The 

following three sections present scaling analyses for 3D flows with no inclination, inclination in 

the flow direction only, and inclinations in both flow and cross-flow directions.  

2 Two-Phase Fractional Flow Model  
The two-phase flow of CO2 in water is described by saturations Sg and Sw, and the 

velocities vg ≡
 
(vx

g, vy
g, vz

g) and vw ≡ (vx
w, vy

w, vz
w). The application of mass conservation for the 

two phases provides the following equations:  
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Here, φ represents the porosity of the medium. The saturations of the two phases are such that 

Sg + Sw = 1. The velocities of the two phases are given by Darcy’s law:  
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The permeability K is a diagonal tensor, given by  
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In the above equations, µg and µw are the viscosities of the two phases; Kx, Ky and Kz are the 

permeability of the medium in x, y and z directions, respectively; ( )grgrg skk ≡  and ( )wrwrw skk ≡  

are the relative permeabilities; and Pg and Pw are the pressures in the two phases. The difference 

in pressure between the two phases is defined as the capillary pressure:  

( ) wggcc PPSPP −≡≡        (6) 

Water phase velocity vw can be eliminated by introducing total velocity v = vg + vw. Gas 

phase velocity vg can be expressed in terms of total velocity and gas saturation. For 3D flows 

through a domain whose inclination along x direction is θx and along y direction is θy, the 

components of gas phase velocity vg are given by  
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Relative permeabilities krg and krw, and capillary pressure Pc are known functions of gas 

saturation sg.  
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3 Dimensionless Numbers  
This section lists the dimensionless numbers that significantly influence the spread of 

CO2 in a homogeneous porous media. The gravity number NG is defined as the ratio of velocity 

of rise of CO2 due to buoyancy effects to the velocity of spread due to convection, i.e.  

convection  todue spread ofVelocity 
buoyancy  todue rise ofVelocity 

≡GN      

( )
cz

w
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rwG u

K
g

kN
0

1
μ

ρρ −
=      (10) 

The scaling relationship for convection velocity cu0  is derived for 2D and 3D flows in the 

following sections. Permeability ratios z
rK and y

rK  are defined as follows:  
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The viscosity ratio µr is defined as 
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μ
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4 Scaling analysis: 2D flows 

Let the rate of flow of CO2 from the leak be Q (m3/s) and duration of leak be tl(s). Let the 

width of the geological formation (and that of flow) be B (m). If the two-phase flow of CO2 in 

brine is dominated by convection, the gas-phase region would resemble a circle whose radius 

scales as  
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The convection velocity of CO2 phase is then given by  
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Let x0 and z0 denote the extent of spread of CO2 in x and z directions, respectively. The 

conservation of volume of CO2 requires that  

lQtBzx ~00φ        (15) 
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The gas-phase mass conservation equation (1) relates the scale factors for extents, velocity 

components, and time, i.e.: 
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Here, t0 represents the estimate of time taken for the two-phase flow system to reach a steady 

state.  

4.1 Domain without Inclination  
Gas-phase velocity vg can be obtained from equations 7 through 9 by setting θx = θy = 0. 

These equations provide the scale factors for gas-phase velocity components. They are given by  
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In deriving the scale factor g
xv 0, , the scale factor for total velocity is c

x uv 0~  . The set of equations 

15 through 18 constitute five equations in five unknowns, x0, y0, t0, g
xv 0,  and g

zv 0, . The estimates 
for the extent of spread of CO2 are given by  
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The aspect ratio of the spread of CO2 is given by  
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The estimate of time needed to reach steady state is 
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4.2 Domain with Inclination  
The domain is inclined along flow direction at an angle θx to the horizontal. The scale 

factors for velocity for this case are given by 
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Estimates for the extent of spread of CO2 can be obtained by solving the above equations in 

conjunction with equations 15 and 16. They are given by  
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The aspect ratio is given by  

( ) 1tan~ −
x

z
rKa θ       (27) 

The estimate for time is given by  
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5 Scaling Analysis: 3D Flows  
Let x0, y0 and z0 represent the estimates of the extent of spread of CO2 through a leak in 

the three directions. Let g
z

g
y

g
x vvv 0,0,0, ,,  represent the velocity estimates. The convection length 

and velocity scales are given by  
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The conservation of volume of spread of CO2 requires that  
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The mass conservation equation (1) relates the estimates of extents, velocity and time, i.e.  
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5.1 Domain without Inclination  
Owing to the symmetry of flow in x and y directions,  



187 
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g
x vv 0,0, ~      (32) 

Estimates for gas-phase velocity can be obtained from equations 7 through 9. They are  
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The above equations in conjunction with equations 30 and 31 can be solved for the extents of 

spread of CO2 and time:  
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The aspect ratio of spread of CO2 scales as z0  
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The estimate for the time needed for the system to reach steady state is given by  

lG
rg

rw
r tN

k
kt 3

2
3

1

0 1~ φμ
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+      (38) 

It should be noted that the two following derivations do not converge to this section’s 

results when the inclination approaches zero because of the assumption that the inclination is 

the most relevant parameter.  

5.2 Domain with Inclination along x-Direction Only  
The domain is inclined along flow direction at an angle θx to the horizontal. The scale 

factors for velocity for this case are given by  
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The above equations in conjunction with equations 30 and 31 can be solved for the extents of 

spread of CO2 and time:  
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The aspect ratio of spread of CO2 scales as  
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The estimate for the time needed for the system to reach steady state is given by  
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5.3 Domain with Inclinations in x- and y-Directions  
The domain is inclined along x-direction at an angle of θx and along y-direction at an 

angle of θy to the horizontal. The scale factors for gas-phase velocity are  
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The above equations in conjunction with equations 30 and 31 can be solved for the extents of 

spread of CO2 and time:  
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The aspect ratio of spread of CO2 scales as  
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The estimate for the time needed for the system to reach steady state is given by 
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6 Conclusions  
In the absence of domain inclination, the aspect ratio of the spread of CO2 scales as NG in 

both 2D (Equation 21) and 3D (Equation 37) flows. Thus, in the absence of inclination, the aspect 

ratio is significantly influenced only by the ratio of buoyancy to convection velocity scales and 

not by any other factor such as average porosity or permeability of the geological formation. 

The extents of spread, however, are influenced by porosity φ.  

In the case of domain with inclination in 2D flows (Section 4.2 of Appendix) and domain 

with inclinations in both x- and y-directions (Section 5.3 of Appemdix) in 3D flows, the aspect 

ratios are influenced by permeability ratios and not by gravity number. In the case of 3D flows 

with inclination in x-direction only (Section 5.2 of Appendix), the aspect ratio is influenced by 

the gravity number and permeability ratio. In all cases, the extent of spread of CO2 is influenced 

by the average porosity of the domain. However, it has no impact on the aspect ratio in any 

case. The time scale needed for the two-phase flow system to reach steady state is influenced by 

NG, φ and µr in all cases. It is influenced by permeability ratios in cases where the domain is 
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inclined. The viscosity ratio µr has an influence only on the time scale and not on extents of 

spread of CO2 in all cases.  
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APPENDIX E: Scaling Analysis of the Spread of CO2 through a Leak 
in a Homogeneous Geological Formation:        
(2) Applications 

 

Some useful dimensionless numbers were developed in Appendix D. In Appendix E, the 

scaling parameters are estimated and calibrated by running multiple simulations. They were 

run on GEM (by CMG, http://www.cmgroup.com ) with the standard CO2 properties. Other 

parameters are given in Table 20: Side boundary conditions are producer wells that allow water 

and/or CO2 to leave the system. The injection time of 100 days was chosen as representative of 

steady-state conditions. Aspect ratio and spread change very little for longer times.  

Table 20. Input parameters for the base case of the scaling runs 

Parameter Value 
# of grid cells 100
Size of each cell 0.6 m (2 ft)
Size of domain 81 m (200 ft)
Inclination 0
Depth of top of domain 2,250 m (5300 ft)
Permeability 100 md
Porosity 0.25
Solubility of CO2 in brine 0
Capillary pressure 0
Maximum residual gas saturation 0
Injection rate 1,000 scf/day
Injection time 100 days
Simulation time 30 years
 
Max residual gas saturation 0.286

The bulk of the work was done assuming no capillary effect. As an example, we present 

here the results from a set of 2D simulations. The relevant dimensionless numbers identified in 

Appendix D are 

-  Gravity number NG 

-  Permeability ratio Kr = Ky/Kx  

- Viscosity ratio μr = μg/μw . Viscosity is a function of temperature and pressure. Hence, 

μr cannot be varied in the numerical simulations. 
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The dimensionless gravity number, NG, is defined by Equation 10 in Appendix D as 

follows: 
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The term in square brackets does not change significantly in the simulations, nor in real 

situations. Hence, in the calculations of the coefficients of scaling expressions for x0, y0 and z0, 

NG is calculated using the revised formula  

czG u
KN

0

1
=   

where Kz is in mD and u c
0  is in ft/day. Clearly the revised form of NG is not dimensionless, but 

this approach is adopted in the literature. One advantage is that this approach yields O(1) 

values for all coefficients. With the original definition, values would go to very small values or 

to very large values. Another advantage is that it is now simpler for a user to calculate NG and 

obtain x0, y0 and z0. Because u c
0  is in ft/day in the calculation of NG, all lengths must be in feet, 

time in days, volume flow rate in ft3/day and permeability in mD. In the simulations, the 

gravity number NG is varied by varying flow rate, horizontal permeability, and cumulative 

volume.  

Simulations 1, 2 and 3 (Table 21 and Figure 59) show the effect of increasing flow rate or 

decreasing NG (with everything else held constant). Decrease in NG results in a decrease in the 

vertical rise of CO2 and an increase in the horizontal spread of CO2. Simulations 1, 4, and 5 

show the effect of decreasing horizontal permeability or decreasing NG. Decrease in NG once 

again shows the same tendency to limit the vertical rise and increase the horizontal spread of 

CO2. Simulations 2 and 4 have the same value for NG. The saturation profiles obtained from 

these two simulations are comparable, especially the spread in the two cases. Similar 

observations can be found from simulations 3 and 5, which also have the same NG value. 

Simulations 1, 6, and 7 show the effect of decreasing cumulative flow or decreasing NG. 

Decrease in cumulative flow results in a decrease in both the vertical rise as well as the 

horizontal spread of CO2. However, the decrease in the vertical rise is much more pronounced 

than that in the horizontal spread. In other words, the ratio of maximum horizontal spread to 

maximum vertical rise of CO2 increases with decrease in NG. This observation is consistent with 
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the earlier observations. Simulations 8, 9, and 10 show the effect of decreasing the permeability 

ratio (vertical permeability/horizontal permeability). As we would expect, decrease in 

permeability ratio decreases vertical rise and increases horizontal spread of CO2. Scaling 

coefficients are given in Table 22. 

Comparison of simulations 1 and 11 shows the limited impact of capillary pressure on 

the aspect ratio and spread of the CO2 bubble. It should be noted that, if the source stops 

leaking, the ultimate saturation distribution is very different in the cases with or without 

capillary pressure.  
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Table 21. Input parameters for selected 2D simulations 

Run# 
Hor. K 
(mD) 

Inj. Time 
(days) 

Flow Rate 
(Mm3/yr) 

Cum. Flow 
(m3) NG 

Perm. 
Ratio 
Y/X 

Total 
Time 
(yr) Comments 

Change flow rate with cumulative volume constant 
1 100 100 0.03 8,495 2.60E-05 1 30  
2 100 50 0.06 8,495 4.10E-04 1 30  
3 100 25 0.12 8,495 2.05E-04 1 30  

Change of permeability with flow rate and cumulative volume constant 
4 50 100 0.03 8,495 4.10E-04 1 30 Same NG value as run #2 
5 25 100 0.03 8,495 2.05E-04 1 30 Same NG value as run #3 

Change of cumulative volume alone 
6 100 50 0.03 4,248 5.17E-04 1 30  
7 100 25 0.03 2,124 3.25E-04 1 30  

Change of permeability ratio 
8 100 100 0.03 8,495 8.20E-04 0.5 60  
9 100 100 0.03 8,495 8.20E-04 0.25 120  

10 100 100 0.03 8,495 8.20E-04 0.1 300  
Addition of capillary pressure 

11 100 100 0.03 8,495 8.20E-04 1 30 Nonzero cap press, otherwise same as run #1 
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9 10 11 

CO2 Saturations  
Note: Numbers correspond to the run # given in Table 21 
Figure 59.  Steady-state saturation distribution for selected 2D simulations 
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Figure 60. 2D simulation results with (a) no inclination and (b) inclination  
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Figure 61. 3-D simulation results with (a) no inclination, (b) inclination along one axis, and (c) 

inclination along two axes  

Table 22. Scaling coefficients 

Equation Number Variable Name Value of Coefficient 
2D Flow: No Inclination 

19 x0 0.2220 
20 z0 0.3149 

2D Flow: With Inclination 
25 x0 0.2724 
26 z0 0.2304 

3D Flow: No Inclination 
35 x0 & y0 0.6643 
36 z0 0.4209 

3D Flow: Inclination along x-direction only 
42 x0 0.4037 
43 y0 1.0039 
44 z0 0.3230 

3D Flow: Inclinations along x- and y-directions 
50 x0 0.3954 
51 y0 0.4151 
52 z0 0.2901 
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APPENDIX F: Integrated Numerical Models and STOMP-CO2 
An integrated numerical fate and transport model, using PNNL’s STOMP-CO2 code 

(White and Oostrom, 2004) as the basis, has been developed and used for modeling key issues 

related to a field-scale carbon sequestration project, which includes injectivity, seepage and 

leakage of CO2, and risk and consequence assessment. Results from this work applied to 

monitoring sensor network design and permitting guidance are planned to be reported 

elsewhere. The hypothetical site used for this purpose was modeled after the typical injection 

field on the Mountaineer site, used as a test source of potential CO2 leakage, and leaking CO2 

concentrations and fluxes were used as the key measures of risk and consequence to humans, 

animals, biota, property, agriculture, and water resources. Methods presented earlier for 

quantifying the leakage rates via different pathways into various media and the resulting CO2 

concentrations, consequences, and risks were used in this study. To enable the STOMP-CO2 

code to simulate the necessary scenarios, new computational modules were developed for 

simulating the fate and transport of leaking CO2 through the vadose zone, abandoned and 

leaking wells, faults, and other higher permeability zones. Similarly atmospheric dispersion and 

aqueous dispersion modules for the CO2 and risk and consequence assessment modules were 

added. 

As explained earlier, modeling the flow and transport of CO2 through fractured 

caprocks is an important part of the integrated modeling in support of permitting. To address 

the issue of leakage via modeling fractured caprocks and host zones containing faults, we have 

developed a fractured medium flow and transport modeling capability associated with the 

STOMP numerical model. We will present the algorithms and code implementation in STOMP 

to enable its use as a fractured media flow and transport model with triply porous, fractured 

medium properties. We first present the development of a fractured media flow and transport 

model, using a dual continuum modeling approach implemented in an existing porous media 

model, i.e. the STOMP reservoir model developed at PNNL. The governing equations for fluid 

and mass transport through the matrix and fractures will be derived according to the dual-

continuum model of Gerke and van Genuchten. (1993). The equations are coupled by a transfer 

function that describes mass transfer between matrix blocks and the fracture. For the dual-

continuum approach to be valid, the fractures should behave as a continuum of fracture 

networks. In other words, adequate connectivity of fractures for flow is assumed. The 



200 

connectivity of fractures in rock can be simulated using percolation theory (e.g., de Marsily 

1985). Described below is the numerical formulation of the equivalent continuum and dual 

permeability models, which addresses the appropriateness of the fracture models through a 

series of simulations ranging from simple to complex. 

Dual Continuum Governing Equations 

The STOMP simulator has been designed to solve coupled conservations for component 

mass and energy that describe subsurface flow over multiple phases through variably saturated 

geologic media. The resulting flow fields are used to sequentially solve conservation equations 

for solute transport through the subsurface media. The STOMP simulator has capabilities of 

modeling subsurface flow and transport over three distinct phases: aqueous, gas, and NAPL. 

Each coupled flow equation combination, which does not comprise all of the possible governing 

equations, is referred to as an operational mode of STOMP (White and Oostrom, 2004). For 

example, a water-energy operational mode solves water mass and energy conservation 

equations. The present work focuses on aqueous flow and transport only, but it was developed 

on operational mode STOMP-WACS, a combination of water, air, CO2, and NaCl, to easily 

extend to two-phase flow in the future. 

The dual-porosity model implemented in STOMP follows Gerke and Van Genuchten 

(1993). Following STOMP’s notation (White and Oostrom, 2004) and using water as an example, 

the governing equations for flow in the fracture continuum and matrix continuum can be 

written as equations 1 and 2, respectively. The governing equations for solute transport in the 

fracture continuum and matrix continuum can be written as equations 3 and 4, respectively. 

Symbols in the equations are explained in the STOMP User Guide. 

Water Mass Conservation Equation in Matrix and Fractures: 
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Mass conservation equations for air and its components are nearly identical in form to water, 

and they are not repeated here. 

Solute Transport Equation in Matrix and Fractures 
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Governing conservation equations are discretized to algebraic form following the 

integrated-finite-difference method in STOMP (White and Oostrom, 2004). Each computational 

cell is subdivided into an overlapped fracture and matrix block portion. The fracture portion 

can communicate with all other fracture volumes in the numerical grid. Likewise, the matrix 

portion can communicate with all other matrix volumes in the numerical grid. In addition, the 

matrix portion is allowed to communicate only with the fracture portion in the same 

computational cell. The system’s nonlinear algebraic equations are nonlinear resulting from the 

constitutive functions. The Newton-Raphson technique is used to solve the coupled nonlinear 

system. We also developed separate algorithms to model effective properties of porous media 

containing discrete, multiple fractures in random orientations following Oda’s approach (Oda, 

1985). As a result, we can now take actual field fracture distribution data and simulate water 

flow through such fractured media in STOMP. 

Solute mass conservation is discretized by assuming a piecewise profile for the solute 

concentration between node points and integrating over the node volume. The transport terms 

of the solute mass conservation equation are resolved with either the power-law scheme of 

Patankar (1980) or with the third-order scheme using Total Variation Diminishing (TVD) 
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criteria (Datta Gupta et al., 1996). For accuracy, transport equations for fractures and matrix are 

solved together.  

The model was verified by assuming a zero mass transfer coefficient between the 

fractures and matrix blocks. Both regions gave the same result, given identical material 

properties and initial and boundary conditions. This capability needs to be extensively tested 

and validated using actual field data sets. 
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APPENDIX G: Leakage and Distribution Modeling 
The methodology presented here consists of an assessment of (1) normal ranges of CO2 

concentrations in the environmental media of interest, (2) consequences of exceeding these 

normal CO2 concentrations, (3) possible perturbations in CO2 concentrations in each of the 

environmental media due to the occurrence of any of the hazards considered, and (4) risks, 

using the data from tasks 1 through 3 as a basis, in concert with the probability or frequency of 

occurrence of a given hazard. 

G1 Integrated Fate and Transport Modeling, Risk and Consequence Assessment 
G1.1 Normal ranges of CO2 concentrations 

The receptor media of interest are ground water, air, surface water (lakes, streams, and 

rivers), buildings, biota, and soils. Because CO2 is colorless, odorless, relatively inactive, and 

nonflammable, it is difficult for humans or animals to sense its presence by sight, smell, or taste. 

The natural ranges of CO2 concentrations in various media, reported in the hydrologic, 

atmospheric, agricultural, and limnologic literature, were collected and used as a basis to define 

the norm or background, in the absence of any hazard. In Table 13 are the ranges of CO2 

concentrations in different environmental media, under normal environmental conditions. 

G1.2 Abnormal events involving the leakage of CO2 
The Lake Nyos disaster in West-Central Africa and the Mammoth Mountain forest kills 

in California are two representative examples of the highly unusual, above-normal events of 

CO2 release to soil-atmospheric and soil-water interfaces, respectively. Additional examples can 

be found in Benson (2005). The catastrophic release of CO2 gas from Lake Nyos in 1986 was 

attributed to the continuous CO2 efflux at the bottom of the lake, which caused deaths of more 

than 1,700 people and many animals in the area. The release was localized in the form of a 

fountain 120 m high, which formed a ground-hugging cloud that flowed down valleys and 

traveled as far as 25 km from the lake, at velocities fast enough to flatten vegetation, including a 

few trees (Farrar et al., 1995). Lake water pH was documented to vary from 7.6 at the surface to 

5.6 at a depth of 90 m, where the CO2 saturation was found to be maximum (150 mmol/L 

water). A potential danger of gas explosion is still high at the lake, and artificial degassing of the 

lakes is being performed to remedy the hazard. 

Mammoth Mountain, a dormant volcano in the eastern Sierra Nevada, California, has 

been passively degassing large quantities (45 to 133 t/day) of cold magmatic CO2 since 1990, 
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following a 6-month-long earthquake swarm. Maximum efflux of CO2 was as high as  

10,000 g/m2.day, whereas the background biogenic soil CO2 efflux ranged from 0 to 15 

g/m2.day (Farrar et al., 1995). Tree mortality observed at several locations on Mammoth 

Mountain was linked to the exposure of roots to toxic concentrations of CO2 gas, which was 

controlled by faults and/or fractures that serve as conduits of enhanced permeability for gas 

escaping from a magmatic CO2 reservoir at a depth of 2 to 4 km, depths comparable to a 

geological sequestration reservoir. CO2 concentrations lethal to animals (15–90% by volume) 

were found to be common in the shallow soil and snow pack within the tree-kill areas. Dead 

rodents and birds were found in such areas, and in May 1998 a cross-country skier at HSL died 

after falling into a depression in the snow containing 70% CO2, due to CO2 toxicity. The 

Mammoth Mountain CO2 efflux serves as an important example of the potential pathways, 

magnitude, duration, and consequences of leakage from a geological reservoir serving as a CO2 

storage sink. 

Both the Lake Nyos and Mammoth Mountain events reveal that the leakage of CO2 is a 

potentially significant contributor to a variety of hazards, which could compromise safety, 

environmental quality, and the objectives of sequestration (reduction of atmospheric CO2 

concentration). A severe, albeit unlikely, cause of major leakage is a sudden, acute release of 

stored CO2 due to well-cap failure. Modeling studies (Lindeberg, 1997; Saripalli and McGrail, 

2002) indicate that the ability of CO2 to leak is a strong function of the hydrogeologic 

characteristics of the caprock and the ultimate distribution of the free-phase CO2 bubble in the 

formation. 

G2 Leakage and Distribution Modeling 
Important pathways for leakage of CO2 include (1) vertical migration through fractures 

in the caprock, (2) buoyancy-driven flow through permeable zones of caprock, (3) leakage of 

CO2 through the well bore (blowout), (4) escape through the well casing to thief zones in the 

overburden and subsequent bubbling to the surface, and (5) diffusion as a dissolved phase 

through water saturated caprock. Physical processes that influence leakage, such as phase 

change, buoyant floating, advection, and dispersion, are strongly dependent upon CO2 phase 

pressure. Chemical processes that influence leakage, such as diffusion, dissolution, exsolution, 

and precipitation, are strong functions of CO2 concentration. Because these processes usually 

operate together, it is necessary to model their performance in a coupled manner. Analytical 
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methods model the physico-chemical behavior subject to simplifying assumptions, such as 

uniform host domain characteristics and uniform or uniformly varying pressure and 

concentration fields, etc., many of which are not strictly valid in geological formations because 

of their heterogeneous structure. However, analytical solutions have been found to provide 

excellent fundamental insights into system behavior, which often adequately model the 

measured behavior. Stochastic numerical models are capable of more accurately the 

heterogeneous flow and concentration fields and variability in the various processes of interest. 

In the following sections, semianalytical approaches (Saripalli and McGrail, 2002) are 

used to model the leakage of CO2 from a typical host formation and its distribution in the 

various environmental media surrounding the sequestration field. The objective of such 

modeling is to identify and preliminarily assess key phenomena that mediate the leakage of 

CO2 and the CO2 fluxes and concentrations in each of the environmental media, which serve as 

necessary inputs to consequence and risk assessment calculations. Accordingly, a fully 

screened, perforated injection well in a sequestration field injecting CO2 into a 160-m-thick 

sandstone formation bounded by impermeable layers at the top and bottom is considered to be 

the base case for this analysis, following our earlier work. The injection and formation 

parameters for the base case, represent a typical gas injection operation similar to the base case 

simulation of Lindeberg (1997). Figure 62 shows the distribution of injected CO2 saturation at 

10,000 days after the commencement of injection, representing the initial condition for the 

following analysis. 
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Figure 62. CO2 saturation distribution after 10,000 days of injection as predicted by Buckley-

Leverett theory (Eq. 4) and an empirical model fit (Eq. 8), using m = -0.148 and n = 
1.5634 (R2 = 0.983) 
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G2.1 Dissipation of Free-phase CO2 bubble 
The CO2 bubble growing during injection simultaneously dissolves in the formation 

waters and floats toward the top confining layers owing to buoyancy. In Figure 63 are results 

from a set of simulations in which CO2 was injected for a period of 10,000 days and then 

allowed to dissolve and float. The curves represent the immiscible CO2–water contact in 

formations of different porosities, after buoyant floating and equilibrium dissolution. The 

region above this contact is rich in free-phase CO2 and could serve as a source of leakage. It has 

a large area of contact with the flowing ground-water phase and is likely to progressively 

dissolve in ground water. Under moderate ground-water velocities (10 m/day), assuming that 

the dissolution of CO2 in water is rapid without significant rate limitations, the following 

analysis can be used to estimate the time taken to completely dissolve and dissipate the free-

phase CO2 bubble. To simplify the analysis, the free-phase bubble can be reasonably 

approximated to be an inverted cone of radius equal to the maximum radius of review of the 

bubble Rb, and height equal to hb,max, at the injection well. Instantaneous dissolution at a 

solubility (Cw) of 6% by volume in water within a cylindrical ground-water column of radius Rb 

and height hb,max, which contains the free-phase CO2 bubble is assumed. Ground water in this 

volume will dissolve a fraction of the free-phase CO2 and carry it away when its water volume 

‘turns over’ in one residence time (Tr), which is given by 2Rb/v, where v is flowing ground-

water velocity. Volume of water (Vs) in contact with the cone surface in an imaginary cylindrical 

volume of radius Rb and height hb,max is given as: 

2
,max

2
3s b bV R hπ=          (1) 

Volume of free-phase CO2 dissolved and carried away in time Tr is given as CwVs. Time required 

to completely dissolve away the free-phase bubble (Td) is then equal to 
2

,max

3
b b

d r
w s

R h
T T

C V
π

=          (2) 
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Figure 63. Distribution of free-phase CO2 bubble after 10,000 days of injection at two different 
injection rates 

For the example case, assuming a conical bubble of maximum bubble height of 40 m 

near the injection well, and maximum bubble radius of 17,000 m in contact with a ground water 

of velocity 10 m/day, residence time of the cylindrical water element (Tr) is 3,400 days. Thus, at 

a rate of dissolution of 4.27×105 m3 of CO2 in 9.3 years, it will require about 78 years to 

completely dissolve and dissipate the originally present free-phase CO2 bubble. It should be 

noted that bubble volume and height are not constant during this long period of dissolution, as 

assumed in this analysis, but progressively decrease owing to dissolution itself. A more 

accurate estimation of Td requires that we take into account such time-dependent changes in the 

bubble dimensions. However, the above analysis serves to emphasize the point that the free-

phase volume and pressure, which critically govern the leakage rates and the resulting risks, 

dissipate with time, thus causing a corresponding lowering of leakage and risk. 

G2.2 Migration through Fractures in the Caprock 
Migration of CO2 through fractured caprocks and through leaky, abandoned wells 

represents the two significant sources of risk at sequestration sites. Recent research (e.g., Celia et 

al, 2006) that focused on leaky abandoned wells demonstrates methods to model the latter 

source. As a part of the present project, we also have developed a numerical modeling module 

for simulating the transport of CO2 through leaky caprocks, which is presented in later sections 

of this report. For free-phase CO2 to enter a pore or fracture of size 2d, the capillary pressure (Pc) 
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needs to be ≥ 2σ/d, where σ is the CO2-brine interfacial tension. The vertical buoyant pressure 

exerted on the top confining layer by the CO2 bubble floating at the top is 

b bP ghρ= Δ           (3) 

where Δρ is the density difference between the brine and CO2 and hb is the thickness of the CO2 

bubble floating near the top confined layer. For CO2 to enter the caprock through the fracture, Pb 

must exceed Pc, thus satisfying the following condition: 

2
bh

gd
σ

ρ
≥

Δ
          (4) 

Rate of flow of free-phase CO2 through a vertical fracture of aperture 2d, length lf and width w is 

given as 
3

12
c

f
gwd dHq

dz
ρ

μ
Δ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
         (5) 

where Hc is the CO2 head causing flow along the vertical direction (z). In the case of a 

continuous fracture connecting the confined formation to the ground surface, the gradient term 

in Eq. 5 is equal to hc/(hc+lf). 

Assuming a density difference of 400 kg/m3 between brine and supercritical CO2 and a 

bubble thickness hb m, the buoyant pressure exerted on the caprock will be 3924hb Pa. Assuming 

a CO2-brine interfacial tension of 35 mN/m, an entry pressure of 0.07/d Pa is required for the 

CO2 to break into the water-saturated caprock. Thus, for CO2 to enter the caprock through a 

fracture of aperture size of 2 microns, minimum floating-bubble thickness (hb) should be 17.8 m. 

Because the floating bubble thickness is 20 m or larger near the injection well for the base case 

simulation, if fractures or crevices of width of at least 2 microns are available in the caprock’s 

structure, a CO2 bubble thickness of 17.8 m would be sufficient to cause leakage. The leakage 

rates (m3 per year), expressed as a percentage of the total volume of CO2 injected during the 

10,000-day injection of the base case, are calculated using Eq. 5 for a fracture 10 m wide and 

half-aperture ranging from 1 to 3,000 microns. The fracture is assumed to be in contact with the 

free-phase CO2 bubble, 20 m thick on one end and passing through an overburden 300 m thick 

to the atmosphere. In this case, it is estimated that a continuous fracture with an aperture size of 

2000 microns is sufficient to cause leakage on the order of 0.1% of the total volume stored per 

year. 
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G2.3 Buoyant Flow through a Permeable Caprock 
In the case of a caprock with zones of significant permeability, the free phase CO2 in 

contact with the permeable zone will migrate upward owing to buoyant floating. Such 

migration is governed by Darcy’s law, and the resulting CO2 flux (qb) is given as 

c
b

dHk gq
dZ

ρ
μ

Δ ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

         (6) 

with notation similar to that used in Eq. 5. Assuming that a strong, positively buoyant gradient 

for upward migration of CO2 is present within a radial distance of 100 m around the injection 

well, where such gradient is the strongest, leakage rates (m3 CO2 leaked per year) were 

calculated as a function of the permeability of the radial leaking zone, ranging from 1 md to 6 D. 

Results indicate that significant leakage rates are possible when the permeability of the 

overburden is greater than 1 D, which corresponds to fine sands. In such rare cases, about 0.05% 

of the total volume of CO2 stored can be lost via leakage through a permeable caprock. 

G2.4 Leakage through the Well Bore and Casing 
Failure of the well cap could lead to an acute release of a large volume of CO2 gas into 

the atmosphere, depending on the flowing pressure gradient in the well, which in turn depends 

on the CO2 phase pressure distribution in the reservoir that is in contact with the well casing. 

Katz and Lee (1990) derived the following equation for modeling the rate of flow out of gas 

wells: 
2
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where Ps (psia) is the flowing CO2-phae pressure in contact with the well face, Pw (psia) is the 

flowing wellhead pressure, Q (Mcf/day) is the leakage flow rate of CO2, d (in.) the inside 

diameter of the well bore, Ta (oR) is the average reservoir temperature, f is the Moody friction 

factor, Za is the average compressibility factor at mean temperature and pressure, G is gas 

gravity, and h (ft) is the depth of the well. Escape of CO2 owing to a minor well leak can also be 

modeled using Eq. 7, approximating the leak to be of a small, circular cross section. The Moody 

friction factor f is given for small and large leaks as 

n

mf
d

=            (8) 
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where m =0.0175 and n = 0.224 for small leaks (d < 4.277 in), and m = 0.01603 and n = 0.164 for 

large leaks (d > 4.277 in). 

Using the CO2 phase pressure data corresponding to the example case, we estimate that 

a complete blowout of a 12-inch-diameter well in the first few years after completion of injection 

will cause a leakage of 8.36×106 m3 of CO2/day to the atmosphere. In case of a partial leak of  

1-inch diameter, the leakage rate will be ~16,760 m3 of CO2/day. Because the leakage rate 

increases exponentially with leak size, it is important to contain the size of the leak in the case of 

an acute release, to minimize impacts. 

G2.5 Atmospheric Dispersion Modeling 
CO2 leaking into the atmosphere is likely to spread and disperse into the atmosphere. If 

the release of CO2 is close to the ground, the released CO2 is known to form a ground-hugging 

cloud and settle near the ground surface and, hence, should be modeled as a dense gas 

dispersion phenomenon. Recent findings (Mohan et al., 1995; Hanna and Chang, 2001) reveal 

that released dense gas initially tends to settle near the point of release toward the ground 

surface owing to gravity effects. However, after a critical time Tc, which depends on the 

prevailing wind velocity and the density difference between the gas and air phases, the released 

dense gas may be sufficiently disperse to obey Gaussian dispersion models. Mohan et al. (1995) 

provided the following criteria for transition of a negatively buoyant dense gas plume to 

become passive, assuming that the initial gas plume is approximately cylindrical in shape. 

These are, respectively, conditions on the growth of the radius of the plume, height of the 

plume, and the density difference between gases. In the case of gas-plume radius (R), the 

velocity due to mechanical turbulence U* has to be equal to or greater than the rate of radial 

spread of the plume dR/dt, as below: 
1

2

a

ghCU ρ
ρ

⎡ ⎤Δ
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⎣ ⎦
         (9) 

where C is a surface drag constant that depends on the weather category, U is the average wind 

speed, U* is equal to CU , h is the initial height of the cylindrical gas plume, ρa is air density, and 

Δρ is the density difference between the released CO2 and air. The condition for dispersal is that 

air entrainment velocity Ue should be equal to longitudinal turbulence velocity Ul, taken as 3U*. 

Air entrainment velocity is 
' 1

* l iU U Rα −=           (10) 
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where α’ is an entrainment constant, ls is the turbulence length scale ( 0.485.88sl h= ), and the 

Richardson number Ri is given by 

2
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glR
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ρ
ρ

Δ
=           (11) 

Both of the above conditions should be satisfied before the released CO2 plume will transition 

from being negatively buoyant to passive. 

Inspection of Eq. 9 reveals that cylindrical plume height h is a critical parameter in 

determining whether a given volume of CO2 will transition from initial ‘ground-hugging’ status 

to a passive state, more amenable to turbulent dispersion. For typical stack gases, plume height 

or rise is given by Holland’s formula: 

0.0268 ( )1.5s s a

s

v d Pd T Th
TU

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
        (12) 

where vs is the stack velocity (m/s), d is the stack diameter (m), P is atmospheric pressure, and 

Ts and Ta refer to the temperature of the stack and air phases, respectively. A significant 

difference between sequestered CO2 leaking out of a well and typical stack gases is that the well 

temperature (Ts) for CO2 is considerably lower than Ta. As such, initial height of the CO2 plume 

(h) is likely to be small because the temperature gradient (Eq. 12) necessary for the development 

of a tall CO2 plume is absent. Further, CO2 being a dense gas, the negative buoyancy also will 

act to cause the CO2 cloud to settle closer to the ground, in a ground-hugging fashion. 

Experiments and observations involving the release of CO2 near ground surface corroborate this 

view. 

The Kit Fox field experiment (Hanna and Chang, 2001) offers valuable insights into how 

a ground-level release of CO2 is likely to spread in the air environment. The field data set 

consists of 52 trials in which short-duration CO2 gas releases (44 to 176×103 m3/day) were made 

at ground level over a rough surface during neutral to stable conditions, comparable to an 

accidental release volume from geological sequestration operations. On the basis of downwind 

CO2 concentration data, plume height was found to range between 3 and 6.5 m, in a distance of 

100 m around the source, and larger at higher wind speeds. 

Eq. 9 through 12 can be used to estimate the average wind speed necessary to cause the 

transition of a CO2 cloud of given height from the negatively buoyant state to a passive state. 

For example, an average cloud height of 3 m requires a wind velocity of 80 miles/hour before 

such transition can occur. Such high wind speeds are unlikely at typical sequestration sites. In 
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summary, it appears that, if large volumes of CO2 are released closer to the ground surface in an 

accidental release during sequestration, the dense CO2 plume will be only a few meters tall and 

will spread laterally around the release source. Such a cloud will remain negatively buoyant 

(ground-hugging) for a long time before it can transition to a passive state and disperse in the 

atmosphere owing to turbulent air entrainment. In the case of a complete well blowout and CO2 

release over a day under the test case scenario, where the CO2 leakage rate out of the well is 

estimated to be about 8.36×106 m3/day, the released volume is likely to spread over a land area 

of 2.8 square kilometers (assuming a cloud height of 3 m). The consequences in this area will be 

lethal because the concentration of CO2 in air will be much larger than the lethal level of 20%. 

Assuming a subsequent dispersion of the CO2 cloud, an aerial extent five times larger (11.6 km2) 

will be similarly affected before the consequences will transition to sublethal levels. In 

summary, leakage of even moderate amounts of CO2 is likely to have dire consequences and 

should be monitored and avoided. 

G2.6 Aqueous Dispersion Modeling 
Dissolution of CO2 in ground-water results in the formation of aqueous species H2CO3, 

HCO3- and CO32- and can cause changes in the acidity of ground water. PCO2 measurements in 

soils were shown to be up to 500 times larger than the atmospheric level of 10-3.5 bar. 

Consequences of increasing PCO2 in natural waters can be assessed using pH as the master 

variable. Such increases in PCO2 cause a corresponding reduction in pH of the ground water, by 

0.7 pH units for every log unit of PCO2 increase (Palmer and Cherry, 1984). Sposito (1989) 

provided the following equation for the estimation of changes in pH of water as a function of 

PCO2 and the bicarbonate ion concentration [HCO3-]. 

]log[]log[8.7 23 PCOHCOpH −+= −       (13) 

An accurate calculation of the changes in pH requires calculation of changes in the 

bicarbonate ion concentration, which depends on the type of minerals in contact with ground 

water and the geochemical reactions influencing the system, such as mineral precipitation and 

dissolution. The leaking CO2 into the overlying aquifers is likely to cause an increase in the 

PCO2 of the ground water and in the unsaturated soil-air phase. In case of pure CO2 replacing 

the soil-air phase of an initial PCO2 of 10-2 bar, the resulting PCO2 would be 1 bar. Depending 

on the [HCO3-] concentration, this increase in PCO2 could cause a reduction in pH by several 

logarithmic units. Assuming a typical concentration of 0.003 mol/L for the aquifer media, the 
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effect of increasing PCO2 due to the leakage of CO2 on the pH of aqueous phase is plotted in 

Figure 64. It can be seen that the leakage of CO2 can lead to a significant reduction in pH value. 

At a given site of sequestration, the actual geochemical response of the aquifer can be modeled 

using geochemical equilibrium codes (e.g., EQ3/6) and reactive transport codes. 
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Figure 64. Variation in aqueous pH as a function of CO2 partial pressure 

G2.7 Mixing in Rivers and Lakes 
The leaking CO2 may find its way to surface water bodies, such as lakes, streams, and 

rivers, if the volume of the leak is sufficient to rise through the subsurface overburden, after a 

part of it is lost to dissolution in ground water. Alternatively, significant influx of CO2 to the 

surface waters is also possible through normal ground-water inflow channels, when such 

inflows are saturated with CO2 owing to prior contact in the aquifer (Freeze and Cherry, 1979). 

The Lake Nyos disaster discussed earlier is an example of such influx. Two important 

consequences of such mixing of CO2 from a subsurface source into the surface waters are: (1) a 

buoyant expulsion and release of CO2 gas to the atmosphere and (2) a mixing and transport of 

the CO2 in the surface waters by dissolution, advection, and dispersion. Advection dominates 

the transport of dissolved CO2 in streams and rivers under turbulent flow conditions, whereas 

dispersion and diffusion are predominant in lakes. The mixing equation (Rutherford, 1994) used 

to describe the mixing and transport processes in surface waters is 

x y z x y z
C C C C C C Cu u u e e e
t x y z x x y y z z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
    (14) 
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where C is the concentration of dissolved phase CO2 in water; x, ,y and z are, respectively, the 

river flow axis and vertical and transverse axes of its cross section, ui; ei represents, respectively, 

velocity of flow and eddy diffusivity along i direction; and t is time. Considering the dissolved 

fraction of the CO2 coming in contact with the surface water to be a steady point source, and 

assuming that the river has an unbounded, rectangular channel section, with flow primarily 

along x direction (uy = uz = 0), in the case of constant diffusivities, Eq. 14 simplifies to 
2 2

2 2x y z
C C Cu e e
x y z

∂ ∂ ∂
= +

∂ ∂ ∂
         (15) 

with the following solution: 

2 2( ) ( )exp exp4 4
( , , )

4 4

x o x o

y z

y z

u y y u z z
e x e x

C x y z m
e x e xπ π

⎛ ⎞− ⎛ ⎞−− −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=       

Aqueous concentration contours can be developed as a function of CO2 leakage rate using  

Eq. 16 to assess the consequences to water quality and biota. Figure 65 shows CO2 concentration 

profiles in a river around a steady point source of dissolved CO2. 
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Figure 65. Distribution of CO2 released into a river 

If the volumetric flow rate of the gaseous leak into a lake is qr, the total volume of CO2 

influx into the lake or river, Vr, in a given time, t, is equal to tqr. Out of this, a volume Vd is 

dissolved into a cylindrical zone of water around the point source, which is equal to 2Cwπr2d, 

where d is the depth of the lake and r is the radius of the zone of dissolution, which can be 

estimated using Eq. 16 above. The volume released to the atmosphere can then be calculated as 
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the difference Vr – Vd. However, low volumetric rates of a typical leak may not be sufficient to 

saturate the capacity of large volumes of water in lakes and rivers for CO2 dissolution and lead 

to a direct atmospheric effusion. In stead, the CO2 leaking from the subsurface into water bodies 

may be more likely to accumulate first as a dissolved phase, as the Lake Nyos experience 

suggests. It should also be noted here that the leaking CO2 will first partition significantly into 

the ground water and soil-air phases of the overburden (formation), which lie between surface 

water bodies receiving the leakage and host formation layers used for sequestration. Such 

partitioning of CO2 into the overburden is discussed below. 

G2.8 Distribution in Soil and Overburden 
Even under normal conditions, soil CO2 concentrations are much larger in the soil gas 

than in the atmosphere. PCO2 measurements in soils were shown to be up to 500 times larger 

than the atmospheric level of 10-3.5 bar.  A fraction of the CO2 leaking through the caprock will 

partition into the ground water and soil within the saturated (aquifer) and unsaturated zones of 

the overburden. Further, the soil-air volume available in the unsaturated zone of the 

overburden has to be saturated with the gaseous CO2, before the excess CO2 finds its way to the 

soil surface. If the leakage flux is larger than the volume of CO2 required to saturate these sinks, 

the remaining CO2 volume will be emitted to the atmosphere as a gaseous efflux. The 

geochemical conditions necessary for a significant loss of dissolved CO2 to mineral trapping by 

precipitation are not typically prevalent in the overburden formations. As such, in this model, 

loss of dissolved CO2 to mineral trapping is not considered. The water volume available in the 

overburden (saturated and vadose zones) above a leaking caprock atop a unit planar area of 

leak is taken as 

,w OB s w uV H Hθ= +           (16) 

where Hs and Hu are, respectively, thickness of the saturated and unsaturated zones. Similarly, 

the total air volume available in the unsaturated zones above the leaking caprock, 

corresponding to a unit planar area of leak is taken as 

, (1 )g OB w uV Hθ= −          (17) 

The residual gaseous CO2 flux through the soil surface, qr, accounting for dissolution in the 

overburden and replacement of vadose zone air with CO2 is 

, ,r l w w w OB g g OBq q u C V u V= − −         (18) 
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where uw and ug are the horizontal components of the ground-water velocity and soil-air 

velocity, respectively. If the leaking CO2 flux is not sufficient to saturate the entire air phase 

volume of the unsaturated overburden, then the soil-air CO2 concentration, Ca, at a time t after 

the initiation of the leak, can be calculated as below: 

,

r
a

g DB

q tC
V

=           (19) 

The soil-air CO2 concentration will steadily increase with a continuous leak of CO2 until a 

critical time t*, at which time the soil air will be completely replaced by CO2. 

G3 Consequence Assessment 
Consequences of leakage of CO2 into various receptor media are considered in this 

section and summarized in a tabular form that relates the CO2 concentration to the 

corresponding consequence. Density of air at atmospheric pressure and sea level is 1.275 kg/m3, 

whereas the density of CO2 gas under similar conditions is 1.96. As such, if large volumes of 

CO2 are released closer to the ground surface, in the absence of significant wind velocities, the 

released CO2 is likely to form a ground-hugging cloud closer to the source location. CO2 gas at 

high concentrations is acrid owing to the formation of carbonic acid in the nasal passage. Air 

containing over 10% by volume CO2 is toxic. 

G3.1 Risks Caused by CO2 in Water 
Two major consequences of CO2 pollution in water are (1) corrosion of equipment and 

wells in contact with the water and (2) changes in the hydrologic properties of the aquifer 

media. Changing pH due to high concentrations of CO2 in ground water was shown to cause 

pollution of the aquifer and abandonment of numerous wells due to water corrosiveness, which 

attacks pumping equipment, casing of wells, and pipes. Rapid corrosion of metal parts, 

precipitation of carbonates, loss of pumping volume (reduced yield), and breakage of pressure 

pipes from cavitation caused by excess gas pressure were reported to be the predominant 

consequences of CO2 pollution in aquifers (Ceron and Pulido-Bosch, 1995). The Frio experiment, 

performed by Susan Hovorka (BEG) in the Houston vicinity near a salt dome (formation water 

with a salinity of 100 g/L TDS), provides some insight. It was observed, after CO2 injection, that 

pH dropped from 6.5 to 5.7; alkalinity increased from 100 to 3,000 mg/L; Fe was mobilized (30 

to 1,200 mg/L), as well as Mn, and Ca concentration increased (Kharaka et al., 2006). This 

observation suggested not only pH buffering by calcite dissolution, but also Fe increase by 

dissolution of iron oxides and a parallel increase in metal concentration (Zn, Pb, Mo) desorbed 
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from iron oxides (Kharaka et al., 2006). In addition, when large quantities of CO2 are dissolved 

in water, some wells and pumps are seriously damaged by gas lift. The content of the dissolved 

gas increases with pressure and, as a consequence, during the rise of the water with CO2 from 

deep zones, part of the dissolved gas can be liberated in a liquid phase, transforming it into an 

emulsion of liquid and gas with a very low density that favors ascent of the water. Because the 

aqueous carbonate reactions are reversible, pumping of carbonated waters can be significantly 

affected by this phenomenon, producing a precipitation of carbonates near the surface. CO2 

pollution in the Alto Guadalentin detrital aquifer (Ceron and Pulido-Bosch, 1995), which 

contained HCO3- of between 1,000 and 1990 mg/L, and PCO2 of between 0.041 and 1.497 bars, 

caused the abandonment of numerous wells owing to water corrosiveness, which attacks 

pumping equipment. Using CO2-laden waters for irrigation shows no adverse effects on some 

crops, although others are quite sensitive. A deposit of iron carbonate develops in the soils, 

impeding aeration in the root zone, and salts precipitated in the soil give rise to compounds 

such as sodium bicarbonate that are toxic to plants. In Spain, heavy economic costs were 

attributed to CO2 pollution of the aquifer, which caused yield reduction (frequently 30%), 

equipment breakdowns (generally every 3 months and resulting in the abandonment of many 

wells), and increased pumping costs (volumes extracted contain a minimum of 30% gas). 

G3.2 Effects on Biota 
Physiological effects on fish may be considered to be representative of the biological 

consequences of releasing large quantities of CO2 into water bodies. High CO2 levels may cause 

some inhibition of respiration in fish, but direct symptoms of suffocation are unlikely. Acidosis, 

both environmental, owing to a low pH in water, and respiratory, owing to an accumulation of 

CO2 in fish, can be considered a direct effect of high CO2 in the water. Furthermore, CO2 

accumulation above water can cause asphyxiation by preventing atmospheric oxygen from 

entering the water. Ross et al. (2000) investigated fish health risks associated with episodes of 

high carbon dioxide levels in treated waters, by subjecting three species of fish to-24 hour 

exposures to elevated dissolved CO2 at three levels, ranging from 1.0 % (low) to 6.3 % (high), 

under laboratory conditions. Blood physiological variables, as well as behavior, including 

feeding responses, were measured before, during, and after exposure. Many of the 11 observed 

behavioral variables, related to swimming, feeding, social, and illness factors were found to be 

affected by elevations of dissolved CO2, although physiological responses differed by species. 
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Ross et al (2000) concluded that elevated levels of CO2 can cause significant stress in at least 

some species of fish. It should be noted that the high dissolved concentration of CO2 in their 

study (6.3%) is the same as the maximum aqueous solubility of CO2 in fresh water. On the basis 

of Ross et al. (2000) and similar earlier reports, it is reasonable to specify a CO2 concentration 

range of 1 to 6.3% in water to be progressively stress inducing to biota.  

G3.3 Effects on Soil and Agriculture 
Effects of elevated CO2 concentrations due to global climate change, under increasing 

scrutiny in recent years, indicate that there may be some beneficial effects to crops, such as an 

increase in crop yield for at least some crops, owing to an increase in CO2 concentration. Such 

investigations focus on the effects of moderate elevations in CO2 concentrations on plant 

physiology. In contrast, elevation of CO2 concentrations in the soil-gas phase and the 

unsaturated zone owing to a direct leakage of CO2 from below is likely to have different 

consequences. The presence of CO2 in large concentrations in soil air and soil water has a 

significant influence on soil geochemical and biological processes. Lowering of soil pH because 

of the generation of carbonic acid has a dominant effect on the chemistry of nutrients and 

redox-sensitive elements, such as Fe, Mn, As, and Se, and an indirect effect on trace metals, such 

as Cu, Zn and Pb, as well as an adverse effect on plant growth (Simunek and Suarez, 1993). 

Reduction of soil pH by even one pH unit has a significant influence on the crop yield. On the 

basis of extensive soil-gas measurements over a 30-hectare tree kill at Mammoth Mountain, 

trees were found dead irrespective of age or species in zones where soil CO2 concentration was 

higher than 30% (Farrar et al., 1995). 

Soil scientists typically use a nominal CO2 concentration of 1% in the soil-gas phase, 

which is several times larger than atmospheric CO2 concentration. On the basis of a predictive 

simulation model for modeling the transport and production of CO2 in soil (SOILCO2) and 

measurements of soil gas from agricultural fields at several locations in the USA, the % CO2 

concentration in soil gas phase was reported (Simunek and Suarez, 1993) to be in the range of 1 

to 8%, varying as a function of the Julian day, owing to differences in temperature and soil 

conditions. When soil CO2 concentration exceeds this range, deposit of iron carbonate develops 

in soils, impeding aeration in the root zone, and salts precipitated in the soil give rise to 

compounds, such as sodium bicarbonate, which are toxic to plants  On the basis of these 

observations, it is reasonable to conclude that elevation of soil-gaseous CO2 concentrations 
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above 5% is likely to have moderate deleterious effects on plant health and yield, whereas such 

consequences will be severe in the 5 to 30% range and lethal above 30%. On the basis of the 

foregoing analysis, consequence tables have been prepared in the form of a numerical index (0, 

0.5, and 1, for low, moderate, and high consequences, respectively) in order to summarize 

consequences of increasing CO2 concentrations in various environmental media. 
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