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Abstract

This work is the first to describe how to go about designing a reversible QDCA system.
The design space is substantial, and there are many questions that a designer needs
to answer before beginning to design. This document begins to explicate the tradeoffs
and assumptions that need to be made and offers a range of approaches as starting
points and examples. This design guide is an effective tool for aiding designers in
creating the best quality QDCA implementation for a system.
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Preface

The purpose of this document is as follows: Assume you are tasked to implement a
system, but can choose any design style. You decide to try QDCA to see if it offers
advantages over other options. This design guide then becomes effective for creating
the best quality QDCA implementation. To figure out if a QDCA implementation is
actually better, trial designs of QDCA and alternatives would need to be compared.

There are two independent decisions to be made at the top level: implementation
technology and a logic schema that includes reversibility. A third consideration on
fault tolerance follows.

Implementation Technology

A handful of QDCA technologies have been proposed, and there are variants within
each. For example, there are molecular implementations, “quantum fortress”, elec-
trostatically gated quantum dots, metal island, etc. Each of these differ in cell size,
operating temperature, manufacturability, and fault tolerance.

Within each of the technology options above, there will be sub-options. For example:

1. How many physical clocks are allowed; clock drivers integrated on chip

2. Clock zones limited to columnar regions, arbitrary patterning on top of chip, or
clock patterning top and bottom

3. High or low ratio of dissipation versus bit erasure energy

4. Physical support for crossovers yes/no.

Logic (Reversibility) Schema

Generally, it will be a good idea to have reversibility at the lower levels. Most logic
occurs at the lower levels (the “inner loop”) so making the lower levels reversible
translates most directly to power savings. However, the effort of making logic re-
versible cascades to higher levels where the benefit is less (i. e. the “outer loop”). A
generally reasonable strategy is to draw a line at some logic level, with reversibility
employed below the line and not above it.
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Trreversible

Eeversible composite
(Collapsed Bennett)

Landauer EBennett
component component

Figure 1. Exemplary Hierarchical Composition of Logic
Schema

The reversible logic part of the design will need to comply with some sort of reversibil-
ity schema. The Bennett and Landauer clocking schema were proposed in the early
papers, but over time it seems that these are just two instances of schema out of a
larger space (see figure). QDCA cells obey a fairly simple set of rules about when
they will work reversibly, work irreversibly, and don’t work at all. Given the tech-
nology and sub-options as discussed above, it is feasible to define a low-level clocking
structure (of which Landauer and Bennett are instances). It is then possible to hi-
erarchically combine low-level modules into higher-level ones more reminiscent of a
classical microprocessor. “Collapsed Bennett” design is an example of a higher-level
schema.

Fault Tolerance

It is expected that manufacturing of QDCA systems will need to cope with the oc-
currence of a high level of defects at manufacturing.

With molecular implementations, QDCA cells each made of two dipoles or dots will
be deposited on a patterned substrate. At this level however, new types of defect
are likely to occur. Missing or additional cells are inevitable for molecular implemen-
tation, because the process of cell deposition is very sensitive a small variation in
process parameters may result in a defect.

In order to provide a model for test, the functional effect of these defects will need to
be characterized, moreover to increase the production yield some techniques of fault
tolerance will need to be provided to the system. Some of the defects that will be
enountered are discussed in terms of design rules in chapter two.

Although a detailed analysis of the possible fault tolxxerant techniques is not in the
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scope of this report, the the adoption of these techniques will introduce a consequent
redundancy in terms of space or time that will need to be considered in the design.
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Chapter 1

Introduction to QDCA

The Problem

The goal of computer designers and manufacturers is to produce smaller, faster com-
puters. In 1965, Gordon Moore described the success of the industry in this matter
noting that between 1959 and 1965, the number of components on a die grew expo-
nentially [26]. This trend has continued with the number of transistors on a die nearly
doubling every 18-24 months. This success has been achieved primarily by shrinking
the size of the transistor, aided by the increasing size of the die. For instance, Intel’s
4004 released in 1971 was made of 2300, 10 micron transistors on a 12 mm? die [41].
In contrast, today’s chips contain tens or hundreds of millions of transistors near 0.07
microns on dies on the order of several hundred square millimeters.

However, the current strategy of shrinking the transistors and maintaining the same
design paradigm will soon be insufficient to meet physical, economic, and architec-
tural barriers. The smallest transistors in production today operate despite quantum
effects. In the near future, the operation of transistors will be dominated by the
quantum world. The current device, the CMOS transistor, will need to be replaced
by one that embraces these quantum effects and takes advantage of the physics that
governs at the nano-scale. Fabrication costs, short lifetime of chip generations, rising
capital costs, and demand for computing power from consumers all create economic
challenges for the semiconductor industry [39]. Finally, as the gap between processor
and memory speeds continues to grow, the von Neumann bottleneck will create a
greater and greater architectural barrier to continued performance increases.

These barriers point to the need for a new kind of fundamental device and architec-
ture, such as quantum-dot cellular automata (QDCA). The device characteristics of
QDCA, which will be introduced below, are quite different from CMOS character-
istics. This changes the cost landscape which in turn changes the look of efficient
designs. The design frameworks presented in this document take advantage of the
characteristics of QDCA, in particular the natural marriage of QDCA and reversible
computing.
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Table 1.1. Truth Table of AND Operation

Irreversible AND Reversible AND
A B|AandB A B|A B AandB
0 O 0 0 0[0 O 0
0 1 0 0O 1]0 1 0
1 0 0 1 011 O 0
1 1 1 1 111 1 1

Brief Introduction to Reversible Computing

Reversible computing builds on a well-established thermodynamics history starting
with Maxwell’s Demon, Maxwell’s 1867 thought experiment that showed that destroy-
ing, or erasing, information results in heat dissipation, specifically at least kt * (n(2)
where k is Boltzman’s constant and 7" is the temperature of the system.

In traditional computing based on CMOS technology, the energy dissipated by the
device and clock independent of the function being performed dominated any en-
ergy dissipation due to irreversibility. However, non-traditional technologies such
as QDCA offer a new opportunity to experimentally verify the connection between
physical devices and information.

The key insight of reversible computing is that information does not need to be
destroyed during computation. There is a fundamental connection between logical
reversibility and physical reversibility, and if a logically reversible system is imple-
mented by physically reversible devices, there need not be any power dissipation due
to information erasure.

To be reversible, a function needs to be one-to-one. Any function can be made to be
one-to-one by saving the inputs. For instance, it is clear from examining the truth
table of the AND operation (table 1) that AND is naturally irreversible since there are
three zeros in the output making it impossible to determine what the inputs were from
just the output. However, by copying the inputs to the output the function becomes
one-to-one. In this way, any irreversible function can be made to be reversible at
the expense of carrying additional information, or garbage data, forward through the
computation.

To take full advantage of reversible computing, the physical implementation of the
logic must be physically reversible. Traditional CMOS is not physically reversible
since V4 is constantly being dumped to ground. In contrast, QDCA has the potential
for very low power operation to the point that energy dissipated due to information
destruction will be a significant if not dominant factor of the overall heat dissipation
of the system. For perhaps the first time, QDCA systems may allow the connection
between information destruction and heat generation to be seen and used in a real
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system.

A Computer Architect’s Introduction to Quantum-
dot Cellular Automata

QDCA is a novel alternative to the transistors, silicon, and CMOS paradigm. Rather
than using charge movement, current, to propagate signals and perform operations,
QDCA uses devices as charge holders, using Coulombic repulsion of electrons as the
primary computing force. A QDCA cell consists of four quantum dots arranged in a
square with two excess electrons that can occupy the dots. Because the electrons are
repelled by each other, they naturally reside in opposite corners. As a result, the cell
has two stable states. The first is an electron in the bottom left corner and the top
right corner. A cell with this configuration has a polarization of +1 and represents
logical “1”. The second stable state is an electron in the top left corner and the bottom
right corner, a polarization of -1 representing a logical 0 (figure 1.1). The electrons
can tunnel between the quantum dots allowing them to change configurations.

o 1@ O O elle®
O e ® Olle ®

Quantum Dots Electrons +
-0 @ O @||0®
o O @ Oll® O

@ (b)

Figure 1.1. QDCA Cell (a) Polarization and corresponding
logic values, (b) Signal propagation in QDCA. The cell on
the left is polarized, the cell on the right is unpolarized. The
cell on the right transitions to assume the polarization of the
driving left cell.

Traditionally in QDCA, computation is performed by controlling the tunneling with
a four phase “clock” signal (figure 1.3). There are other clocking strategies that will
be discussed later in this work in chapter three. Unlike CMOS circuits, the QDCA
clock is a fundamentally different phenomenon than the data. The clocking wires
generate an electric field that controls the tunnelling of electrons between dots on the
QDCA layer (figure 1.2). The clocking field will be generated by fine wires near the
QDCA layer. These wires will need to be connected by thicker wires to the signal
generators.
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Clocking Wires
( QCA Layer I/

[ Ground Plane

Figure 1.2. Fine wires near the QDCA layer create the
clocking fields. Thicker wires distribute the clocking signals
to the fine wires.

The clock raises and lowers the barriers between the dots, alternately prohibiting and
allowing the electrons to tunnel between dots. The raising and lowering behavior of
the clock signal is described by four phases called switch, hold, release, and relax.
In the switch phase, the barriers begin low, allowing tunneling, and are raised to
prohibit tunneling. In this phase, the cell transitions from having no value to having
a definite value. The hold phase follows switch in which the barriers are maintained
high, preserving the value assumed during switch. In the release phase, the barriers
are falling, allowing the cell to go from a well-defined state to an undefined state in
which the cell has no natural polarization. Finally, the relax phase maintains low
barriers and no polarization.

Clocking
Field
Strength

Clock Zone | gpitch | Hold | Relesse | Relax
Phase

Figure 1.3. Propagation of clock signal in a single cell
through time.

If QDCA cells are lined up side by side and clocked appropriately, they act as a wire,
propagating a signal down its length (figure 1.4a). Cells laid out in this side by side
manner are called 90 degree cells. The alternative is 45 degree cells which are laid
out corner to corner (figure 1.4b). In a 45 degree wire, the signal is inverted at each
cell. If the first cell holds a “1”, the second cell will hold a “0”, followed by a “1” in
the third cell, and so on.

QDCA cells exist on a single plane. Theoretically, the two types of wires are able
to crossover each other in this single plane without effecting the values being trans-
mitted (figure 1.5). This makes complex circuits possible. This strategy will require
very precise fabrication techniques. In addition to this physical crossover strategy,
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Figure 1.4. Shaded boxes indicate clocking zones. a) 90
degree cells forming a “wire”. b) 45 degree cells forming a
wire.
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temporal and logical crossover strategies have also been proposed.
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Figure 1.5. Wire crossover.

The basic logic gate in QDCA is the three input majority gate (figure 1.6a). Three
input cells are arranged on the edges of a center “device cell.” The output of the
gate is on the fourth edge of the device cell. The input cells and the device cell share
the same clock zone. Because of this and simple coulombic repulsion, the device cell
assumes the value of the majority of the inputs. When this device cell is frozen in the
hold phase, it drives the output cell which then proceeds as a normal QDCA wire.
It is notable that the majority gate is a natural, native device in QDCA. It requires
nothing more than the QDCA cells and clocking already introduced. This majority
gate can be converted to either an AND gate or an OR gate by fixing one of the
inputs to be permanently “0” (figure 1.6¢) or “1” (figure 1.6d) respectively.

An inverter is needed for logical completeness, and is formed by taking advantage of
the 45 degree interaction (figure 1.6b).

Notice that the majority gate is not natively reversible. However, as discussed above,
it can be made to be reversible by saving its inputs. This can be done either by the
QDCA circuit or by the clocking strategy. This choice will be further discussed in
chapter four.
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Figure 1.6. a) Three-input Majority Gate, b) Inverter, c)
AND gate d) OR gate

In addition to these basic gates, the design landscape also includes three other im-
portant features. The first is the inherent latching in wires. In essence, the wires are
shift registers. This adds a new dimension to designing QDCA circuits rather than
CMOS circuits, allowing a designer to pipeline at a very fine level. Connected to this
inherent latching and pipelining, the second feature of QDCA is the close connection
between layout and timing [35]. There is an upper and lower bound on the size of
clocking zones. Distances and time, then, are very tightly coupled. Finally, bits in
QDCA designs are always in motion. The clock and the cells are made of different
technologies. Perhaps in the future it may be feasible to have the circuit influence
the operation of the clock, but for the design strategies presented in this work, it is
assumed that once the clock starts running, it continues to operate independently of
the information in the circuit. This, too, changes the design decisions made. These
aspects of design will also be discussed somewhat further in chapter five

Prior QDCA Architecture Work

Computer engineering QDCA research first focused on device basic logical devices
and an adder as an example of a QDCA circuit [44]. Niemier’s work was the first look
at the effect QDCA has on architecture and system design. His initial work focused
on the hand designing of a simple but complete processor in QDCA much as the
first Intel 8086 processor was designed [28][17]. In the course of this work, Niemier
identified several key elements of circuit design in QDCA including the connection
between layout and timing [35], the potential of processing-in-wire and fine-grained
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pipelining [32] [31] [34] [30], and initial floorplanning for logic [28]. In addition, since
the first molecular QDCA circuits that will be fabricated will need to be regular
structures, the design of implementable FPGAs was explored [36] [33]. Another key
work explored the layout parameters and layout rules that will govern the layout of
QDCA circuits [29)].

Memory systems have also been explored. Frost designed a very dense, finely pipelined
memory to work in conjunction with Neimier’s processor [13][11]. A novel execution
model, the bouncing threads execution model, was explored in conjunction with the
H-memory model [14]. Memory cells have been explored by Ottavi [38], Walus [45],
and earlier by Fountain and Berzon [4].

Research is also being pursued to build fault models for QDCA circuits in order to
build fault tolerant circuits and to build CAD tools to facilitate testing and design
of circuits [10]. In addition, the first algorithm that addresses the circuit partitioning
problem in QDCA has been developed [1].

The Real Device

QDCA is very real. QDCA cells have been fabricated and their operation experi-
mentally verified [3] [37]. These QDCA cells were constructed with metal dots on
a micron scale and operate at 70 mK. As the size of the cell grows smaller, the op-
erational temperature will rise [23]. A molecular implementation, then, would allow
room temperature operation as well as offering significant potential density gains in
circuits. Lieberman, et al have investigated several two dot-molecules such as the
Creutz-Taube ion and mixed-valence ruthenium dimers. In addition, they have ex-
plored options for attaching these molecules to etched self-assembled monolayers [25].
Other groups at Notre Dame are investigating four-dot molecules[24] and alternate
fabrication strategies such as DNA tiling.

In addition to the QDCA cells, a functioning QDCA circuit requires a clock signal
and input/output capabilities. Lent, et al have designed an implementable clocking
scheme in which buried metal wires are used to create the clocking field [15]. Bern-
stein, et al are investigating mechanisms for detecting the output of QDCA circuits.
The output of the metal-dot systems were detected using single electron transistor
electrometers [3] [25].

Current estimates place fabrication of simple molecular circuits being possible within
three to five years. More complex circuits and large scale fabrication will require
more time, but are expected to be possible before the end of the roadmap is reached
and nanoscale devices are required to meet density, speed, power and performance
demands.
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Original Contributions

This work is the first attempt to describe how to go about designing a reversible
QDCA system. The design space is substantial, and there are many questions that a
designer needs to answer before beginning to design. This document begins to make
the tradeoffs and assumptions that need to be made explicit and offer a range of
approaches as starting points and examples.

Organization

This design guide is organized in a roughly bottom up fashion. Chapter 2 discusses
some physical properties of the device that designers should be aware of. Chapter
3 discusses ways in which the clocking field can be organized. CHpater 4 discusses
the circuit implementation of the clocking signal. Chapter 5 explores circuit design
QDCA, and Chapter 6 discusses some architectural approaches to designing QDCA
systems.
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Chapter 2

Physical Properties

There is a subtantial body of literature describing the QDCA device. There are a
few low-level properties in particular that designers should be cognizant of. These
properties include kink energy, gain, and what parameters should be considered for
Conway-Mead type design rules for QDCA. In addition, in considering the design of
reversible systems, it may be worthwhile to examine adiabaticity in the context of
the clocking wires.

Kink Energy

The kink energy of a system composed of two QDCA cells is defined as by the Coulom-
bic energy of the two cells in opposite polarization (as shown in Figure2.1) with respect
to the energy of the cells being in the same polarization status.

The Coulombic energy between two quantum dots is:
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Figure 2.2. Kink Energy: (a) Ground State (b) Excited
state

The energy between two neighboring cells indexed (1) and (2) is therefore:
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]
Where the contributions internal to each single cells have been neglected as they

amount to the same value in any cell.

Therefore the Kink energy among the two cells is the difference between the energies
of the configurations (a) and (b) shown in figure 2.2.

The energy of configuration (a) is the ground state energy and can be written as:

Fo=—@( 141y ! b
a_47reoerq 2s  2s \/(35)2+32 V52 + 52

The energy of configuration (b) is the energy of the first excited state and can be
written as:

1 L,(1 1 2
Ey = 1 |t -t 7/
TEQEys 3s s (25)% + 52

The Kink energy is E, = F,— F, and it is therefore a function of the dielectric constant
between the dots, the size of the cell and the charge on each dot Ej = f(e,,s,q).
Assuming ¢ = 1 and €, = 1 (vacuum) the F}, is plotted in Figure 2 as a function of s

Gain

Gain is critical for any electronic device to guarantee signal restoration. The theory
of ower gain in clocked QDCA was explored by Timler and Lent [43], and gain was
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experimentally demonstrated by Kummamuru, et.al. [19]. The details of the calcu-
lations and experiment will be left for the reader to explore. It is very significant
that QDCA demonstrates gain, though, because many emerging devices lack gain
and therefore have a very limited range of circuit design techniques and architec-
tures. QDCA, though, does demonstrate gain and has a wide variety of circuit and
architectural opportunities.

Parameters for Conway-Mead Type Design Rules

One of the challenges when working with any emerging device is that there is not a
set of well unuderstood abstractions, or interfaces between device physicists, circuit
designers, and computer architects. For instance, Conway and Mead’s work in defin-
ing design rules for MOS in terms of a fundamental unit A truly revolutionized the
design of circuits and computers.

For emerging devices, it is an ongoing challenge to try to define design rules that
capture everything the circuit designer needs to know about the underlying structure
to guarantee a circuit that works as expected without muddying the waters with too
much information about the details of the device physics. Niemier took the first steps
toward design rules for molecular QDCA by identifying possible sources of error in
QDCA circuit fabrication and proposing the beginnings of design rules for QDCA
[29]. The discussion that follows is a summary of his work.

For Mead and Conway, the sources of error avoided by the design rules are related
to the resolution of the process fabricating the circuit. The Mead-Conway rules use
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the unit length A to minimize the impact of fabrication errors such as over etching,
misalignment of mask levels, distortion of the silican wafer due to high temperature
processing, and over or under exposure of resist. The Mead-Conway rules abstract
away from these sources of error to communicate to the circuit designer the infor-
mation needed to design circuits that will most likely function as expected. The
abstraction covers information such as the minimum width of a wire to guarantee
current flow, the minimum wire spacing to separate information, and the overlap
between layers to assure good contact.

Similarly, the possible errors result from improper electrostatic interactions that ef-
fect of which scale with differently with distance d. These include charge-charge in-
teractions (1/d), charge-dipole interactions (1/d?), dipole-dipole interactions (1/d?),
charge induced dipole interactions (1/d?*), dipole induced dipole interactions (1/d%),
dispersion effects (1/d%), and van der Waals effects (1/d'?). These errors occur due
to cells not attaching to the substrate, improper distance between cells, misalignment
of cells, improper cell rotation, and cells of differing heights. Analogous to the Mead-
Conway rules, the QDCA rules abstract these errors to five broad categories. The
rules seek to define spacing to guarantee information transfer, spacing to guarantee
information isolation, spacing and rotation rules to guarantee proper gate operation,
spacing and rotation rules for physical crossovers, and a set of rules to guarantee the
clocking field behavior.

Specifically, Niemier’s design rules are:

e Cell Spacing

1A: Maximum allowed spacing between cells that will transmit data. Cells
that are too far apart will not have the required coulombic interaction to reliably
assume the same configuration.

1B: Minimum distance cells can be apart and still transmit data. Depending
on the particular implementation, cells may need to be a minimum distance
apart to transmit data. For instance, if cells are too close, electrons may tunnel
between cells rather than within a cell.

o Wire

2A: Wire lengths with no disorder. Even in a perfectly fabricated wire,
there will be a limit on the length of a wire in a zone controlled by a single
clocking signal. This will depend on the kink energy which will depend on the
particular QDCA implementation.

2B: Wire lengths and disordered wires. The kink energy decreases with
disorder. Different types of disorder with be possible with different implemen-
tations and substrates.

2C: Distance between two parallel wires. To avoid the analogous error to
crosstalk, wires will need to be a minimum distance apart.
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2D: Incomplete wires. This can be thought of as a special case of rule 1A,
the maximum spacing between cells.

Crossovers

3: Crossover (governed by 1A and 2B). The physical crossing of 45 degree
wires and 90 degree wires will be goverened partly by rules 1A and 2B, but the
set of rotations allowed and required will be more specific than the general 1A
and 2B cases.

Majority Gate

4: Majority gate (governed by 1A and 2B). Similar to the crossover case
above, the majority gate can be thought of as a special case of rules 1A and
2B. However, there is the added complication of the interaction of the device
cell with the inputs.

Rippers

5: Ripper (governed by 1A, 1B, and 2B). A value can be “ripped” off a 45
degree wire bt a 90 degree cell (the opposite interaction of the crossover). This,
too, is a special case of rules 1A, 1B, and 2B.

Clock Related

6A: Move charge in clocking wires adiabatically. In addition to standard
VLSI rules, to maintain low power operation, the clocking signals should be
generated adiabatically. This will influence the types of circuits that generate
and distribute the clocking signals.

6B: Voltage needed across QDCA layer to properly clock it. The QDCA
implementation will define the voltage that needs to be felt across the QDCA
layer. The thickness and makeup of the substrate will then dictate what sort of
voltage the clocking wires need to generate.

6C: Clocking wire placement error. The clocking wires need to be fabricated
in a normal process that will have fabrication errors as discussed by Mead and
Conway. These need to be taken into account when designing the entire QDCA
system.

6D*: Clock signal phase error. This rule was identified by Ottavi. There
may be error in the generation of the clocking signal so the relative phases of
the clocking signals would be off. This effect needs to be accounted for as well.

Misc. Other Rules

M1: Switching and discharge times of the clock. The clock may have very
different switching times than the QDCA cells. This may result in the degra-
dation or disruption of data on the QDCA layer.

M2: The y-component of a generated electric field. This is somewhat related
to rule 6B, but it also encompasses the shape of the electric field being generated
and the appropriate distance of the wire from the QDCA layer.
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Table 2.1. Niemier’s Molecular QDCA Design Rules

’ Label ‘ Rule ‘

1A maximum allowed spacing between cells to
transmit data

1B minimum allowed spacing between cells to
transmit data

2A wire lengths with no disorder

2B wire lengths with disordered wires

2C distance between two parallel wires

2D incomplete wires

3 crossover (governed by 1A and 2B)

4 majority gate (governed by 1A and 2B)

5 rippers (governed by 1A, 1B, and 2B)

6A move charge in clocking wires adiabatically

6B voltage needed across QDCA layer to prop-
erly clock it

6C clocking wire placement error

M1 switching and discharge times of the clock

M2 y-component of a generated electric field

M3 power dissipation

M4 multiple clock systems

M3: Power dissipation. It is unclear what design rules would be required or
helpful to handle power dissipation issues. However, this will be an important
consideration for any QDCA system.

M4: Multiple clocks in a system. Different regions of the QDCA circuit
may be clocked by completely different clocking circuits. These regions will still
need to be able to communicate with eachother.

Niemier’s work was the first attempt to define design rules for any emerging nanotech-
nology. His work began to define what kinds of rules are needed for QDCA. There is
still more work to be done to define the rules and develop some sort of QDCA equiv-
alent to A\. This discussion should communicate a sense for what sorts of challenges
are important at the fabrication level and how they will effect the circuit and system
level.
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Adiabaticity: A Case Study

The clocking system will be explored in depth in chapters three and four. However,
it may be useful to consider the details of adiabaticity using the clocking system as
the example.

Consider an ideal sinusoidal voltage source
v = V sin(wt), (2.1)

where V' is the voltage amplitude and w = 27 f is the angular frequency.

Let us now consider, in a simple lumped-element model, the effect when this source is
connected to a load with a capacitance of C' through a path with series resistance of
R. Let 7,v,q be the instantaneous current towards the load through the resistor, the
instantaneous voltage across the capacitor, and the instantaneous charge stored on
the capacitor, respectively. These are all functions of t. We’ll assume that v(0) = 0
(the capacitor is initially discharged).

Now, let’s build up our model of the circuit dynamics. From the definition of capac-
itance, we have

C = dq/dv, (2.2)

while from the definition of current and the fact that charge builds up on a capacitor,
we have that the instantaneous current is

i =dg/dt. (2.3)
Meanwhile, Ohm’s Law gives us that the instantaneous current is also
i=(vs—v)/R. (2.4)

Combining eqgs. 2.2-2.4 and solving for dv/dt, we obtain the differential equation:

% = (vs —v)/RC, (2.5)

or, writing out vs explicitly,

% — (Vsinwt — v)/RC. (2.6)
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The solution to eq. 2.6 (derived in the appendix) is

V ) 1
v(t) = S sinfwt — tan™" (RCw)], (2.7)

where notice that the signal at the load has been taken down in amplitude by the
damping factor d = /(RCw)?+1 > 1 and lags in phase by § = tan™'(RCw).
Both terms depend on the critical dimensionless parameter &« = RCw = t./t, where
te = RC is the time constant (the e-folding time for the exponential decay) for
charging the load C' through resistance R, while t, = t.,./27 is the time for the
source signal to rotate 1 radian, where t.,. = 1/f = 27 /w is the clock cycle period.
We might call a the “quickness” of the clock oscillation, judged relative to the circuit’s
natural transition time of t..

Now, plugging (2.7) back into (2.5), the voltage drop across the resistor is

Vo 1

Vg — UV = ———cos|wt — tan™  q, 2.8
va?+1 | ] (28)
so by (2.4) the current is
%
i= Y cos[wt — tan™' a. (2.9)

va?+1
Using p = iv, the instantaneous power dissipated in the resistor is then

_ CV2RCOW?

1 cos?[wt — tan™" af. (2.10)
a

Over one complete cycle of length t.,. = 27/w, the energy dissipated is thus

27w
Fuye = / pdt, (2.11)
t=0
2 2 2w w
= w/ cos?[wt — tan™" o] dt (2.12)
(8% +]. t=0
CVZRCW* [*" do
= Q—W/ cos? ) — (2.13)
a’+1 0=0 w
= o2 T_cov? (2.14)

a?+1 :a—l—a—l

where in (2.13) we have temporarily substituted § = wt and removed the phase lag,
which is irrelevant to the full-cycle integration.
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The most important thing to note about eq. 2.14 is its behavior for small quickness
a — 0, that is for slow charging, when the radial time ¢, = t.,./27 > RC. Just as
with the classical case of adiabatic charging with a linear ramp, note that here too, as
the signal rise time increases and the clock frequency decreases, the energy dissipated
per cycle decreases roughly proportionately, since /(o + 1) — a as a — 0.

Note also that for very large quickness av — oo, it is also the case that E.. — 0,
since a/(a®+1) — 1/a as a — oo. However, in this case, the low dissipation can be
attributed to the fact that the load voltage does not have time to change very much
in a cycle, due to the substantial size of the damping factor d = v/«&? + 1, which
approaches a as o — 00.

The maximum dissipation per cycle is Feye = %C’V2 which occurs when o = 1, that is
when w = 1/RC. This is the case of “least adiabatic” charging, but in fact dissipates
only 7/8 & 40% as much energy as the 4CV? that would be dissipated by a square
wave taking the load through the identical range of voltages [V, +V].

In general, we can characterize the degree of adiabaticity of a given process as the ratio
between the energy transferred i, and the energy dissipated Egiss. For the charging
and discharging of a load between —V and +V, the total amount of electrostatic
energy moved onto and off of the load is Ey, = C(2V)* = 2C'V?, whereas with
a sinusoidal driver we saw that the actual dissipation in a cycle was only Egis =
CV?%ra/(a? + 1). Therefore, the degree of adiabaticity A of the complete sinusoidal
charge/discharge process is

2(a?+1)
T

A= = %(omta_l), (2.15)

which has a minimum of 4/7 = 1.27 when o = 1. Or, putting things another way, we
can define the energy efficiency n =1 — 1/A = (Eyy — Eaiss)/ Etx = Eree Which is the
ratio between the amount of energy recovered F,.. = Ei — Fqaiss and the amount of
energy transferred. Phrased this way, the efficiency of the sinusoidal charge/discharge
cycle is

7

=1—- — 2.16

" 2(a + a—l) ( )
whose minimum is

n=1-mx/4~21.46% (2.17)

when o = 1, whereas the efficiency approaches 100% as o — 0, with the distance
from 100% in that limit being proportional to « since the expression (2.16) for n
approaches 1 — ma/2. Note, in contrast, that the energy efficiency of a standard
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abrupt (square wave) charge/discharge process always approaches 0% whenever the
load voltage range approaches full-swing, since the energy delivered from the constant-
voltage source after the rising edge is CV?, and exactly this much energy is dissipated
upon charging and then discharging the load (half of it or %C’ V2 after each clock edge).
Whereas for the adiabatic driver, the case & — 0,d — 1 where the load voltage range
approaches full swing (and also with phase lag 6 approaching zero) is also the same
limit in which the energy efficiency of the charge transfer approaches 100%.

We can thus see that in all cases, sinusoidal charging dissipates less energy per com-
plete charge-discharge cycle than sharp-edged square-wave charging, dissipating at
most about 21% of the energy transferred, and at best nearly 0% when the clock
period t.y. is large compared to 27 RC, since in this limit, as & = RC/teye — 0, the
fraction of the capacitor charging energy that is actually dissipated on each cycle
approaches ma /2, that is, it goes down in proportion to the quickness of the clock
transitions, as would be expected for an asymptotically adiabatic process.

Solution of Differential Equation

This section shows how to solve the differential equation (2.6) from first principles,
without delving into formulations in terms of complex impedances which may be
non-intuitive for some readers.

We know from our general background knowledge that a circuit composed of linear
elements (resistors, capacitors, and inductors) and driven by constant-frequency si-
nusoidal sources will always attain what is known as an AC steady state. Thus, the
solution to (2.6) must also be a sinusoid of constant amplitude, frequency, and phase
shift; furthermore, it must have the same average (DC) level as the source, since the
resistor cannot support a constant DC voltage drop.

Thus, we know that the solution to (2.6) must be of the form
v(t) = Vi sin(wy, + 01) (2.18)

where Vf, is the amplitude of the voltage swing (from —V, to +V7,) of the signal on
the load node, wy, is the angular frequency of this signal which we will see must be
the same as the driving frequency w, and 6y, is the relative phase of the load.

Starting from (2.18), we can take its derivative

dv

pri Viwr, cos(wt + 01) (2.19)

which we can then plug into the left side of (2.6), along with (2.18) itself in place of
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v on the right, to get:

Vsinwt — V, sin(wy, + 01)
RC

Viwr, cos(wrt + 01,) = . (2.20)

We now have an ordinary (no longer differential) equation which we need merely
solve in order to find the unknown parameters Vi, wr, and 6y, as functions of the
known parameters V', w, and RC. Since the equation must hold true for all values of
t € (—o0,+00), there is hope to determine all three unknown parameters using just
this single equation.

In what follows, we often substitute ¢t. = RC for conciseness. Multiplying both sides
of (2.20) by t. and gathering all of the terms containing unknowns on the left side of
the equation, we get

tViwy, cos(wit + 0r) + Vi sin(wpt + 01) = Vsinwt. (2.21)
Factoring out V4, from the left side,
WL [tewr, cos(wit + 0r,) + sin(wrt + 6)] = V sinwt. (2.22)

To match this up with the right-hand side, we would prefer if the left-hand side was
expressed as a single sinusoidal function of ¢. Fortunately, the term in brackets is of
the form a cos x + sin x which reduces to a single sinusoidal function. In other words,
we can always write

acosx +sinz = bsin(x + ¢) (2.23)

where b and ¢ are both closed-form functions of a. To see this, note that equation
(2.23) is merely the real part of

ae'@™/2) 4 el — peil@te) (2.24)
Factoring the exponentials,

ael®el™? 4 i — pei®el (2.25)
and we can divide out €%, leaving

ai+ 1 = be'. (2.26)
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This equation makes it obvious that

¢ = tan 'a, (2.27)
b = Va+l, (2.28)

so the desired identity is
acosz +sinx = Va2 + 1sin(x + tan™' a). (2.29)

This is exactly the sort of thing we need to simplify the left-hand side of equation
(2.22). The square root and arctangent functions do not present a problem since

those expressions are just constants (not functions of x, or in our case t). Applying
(2.29) to (2.22), we get

ViV (tewr,)? + 1sin [wit + 6, + tan ™" (tewr,)| = V sinwt. (2.30)
Since t.wr, appears twice, we begin using « in place of it:
Viva? + 1sin(wpt + 0, + tan™ ' ) = V sinwt. (2.31)

Now, an equation between two sinusoidal functions of ¢ can only hold true for all
values of t if the frequencies, amplitudes, and phases of these two functions are all
identical. Thus from (2.31) we obtain the three equations:

wp, = w (2.32)

Viva?+1 =V, (2.33)

O, +tanta = 0. (2.34)

Solving for Vi, and 6y, we have
Vv

VI = —— 2.35

L o (2.35)

0, = —tan 'o. (2.36)

At this point, we observe that the voltage swing on the load is taken down by the
damping divisor d = v/a? + 1, and that the load incurs a phase lag of § = —6;, =
tan~! a. Plugging the equations for V;, and 6y, back into (2.18), we finally have that
the unique real solution to the differential equation (2.6) is

v(t) = v sin(w — tan ™

NS @). (2.37)
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Chapter 3

Clock Schemes

Clocking Details

There are several clocking details that are determined by the clocking implementation
chosen. These include the number of clocking signals available, the number of QDCA
cells that can be controlled by a single wire, the size of the area clocked by a single
wire, the number of layers of clock wires, etc. For a discussion of these issues, see
chapter 4.

Before Design

Before discussing the particular clocking strategies, it may be useful to discuss the
types of clocking approaches. There are two broad issues to be briefly discussed. The
first is in regards to the broadest notion of floorplanning. The second is in regards to
how the clocking wires are used.

Floorplanning Approaches

Historically, clocking floorplans for QDCA have used one of two general approaches:
zone regions and columnar regions. The zone clocking regions approach assumes that
precise regions can be defined in both the z and y directions (figure 3.1). In other
words, small square or rectangular shapes can be used in creating clocking floorplans.
The columnar approach, on the other hand, assumes precise definition in only one
direction, leading to floorplanning with long (compared to the QDCA cell) columnar
shaped regions (figure 3.3). The zone floorplanning approach leads to greater circuit
densities and shorter feedback loops. The columnar approach is assumed to be more
realistic (i.e. easier to implement) in the short-term.
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Clock Signal Approaches

The second point concerns how the clocking wires are used. There are two approaches
here as well. The first has also traditionally been called “zone clocking” since it
was usually associated with the zone floorplan methodology discussed above. This
approach assumes that entire regions of the QDCA circuit are controlled at the same
time. The clocking field controlling the entire region rises and falls uniformly across
the controlled zone (figure 3.2). The second approach is wave type clocking where the
clocking field across a region is non-uniform. The clocking wires are used to create a
traveling wave, or computational wave, where computation occurs on the leading edge
of the wave. This leading edge, or gradient, is pushed forward through and across
the QDCA circuit independent of any “zones”. It is important to note that the same
set of clocking wires can be used to generate either type of clocking signal. It is a
question of what waveforms the wires produce rather than how they are placed.

5., ¢
S N
_

¢

Figure 3.1. Example of a zone floorplanned circuit. This
clocking zone layout is from a reversible crossover circuit.
Notice that small zones abut each other on both the x and y
dimensions.

Clocking Strategies

Several clocking strategies have been proposed. This is not an exhaustive list of
precise clocking implementations, but rather a set of strategies that can be employed
in combination in different sections of a system. The four basic strategies discussed
here are Landauer clocking, Bennett clocking, bi-directional pulse clocking, and uni-
directional Bennett clocking.

Landauer

Landauer clocking is a strategy in which the clocking wave moves in only one direction.
It can be thought of as a traveling wave in which data is latched at the peaks,
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Figure 3.2. Zone Clocking: Entire regions rise and fall
together. Here, a simple set of clocking zones computes from
left to right.

computation is occurring on the leading edge, and cells are relaxing on the falling
edge (figure 3.6).

The advantages of Landauer clocking include natural support for very fine-grained
pipelining and high throughput on the architectural side, and it requires only sim-
ple clock forms on the lower-level design side of things. Disadvantages include that
Landauer clocking requires logic gates with very fine-grained reversibility.

Retractile Cascade

In the retractile cascade, or Bennett, clocking scheme, computation proceeds in one
direction but the clock is used to decompute as well as compute. The clocking wave
sweeps across the circuit, remaining high, computing at the leading edge of the wave
(figures 3.7(a-f)). When the wave reaches the edge of the circuit (figure 3.7(g)), the
output remains latched in an area of high clock field and the decomputation begins
as the clock is released from the right to the left (figures 3.7(h-j)). At the end of the
complete clocking cycle, the original input and the final output remain latched (figure
3.7(k)).

The main advantage of Bennett clocking is that any irreversible circuit inside the
Bennett clocked region will be executed reversibly. The catch, though, is that at the
end of the clocking cycle both the original input and the output are latched. This can
introduce challenges for high level reversible pipelining. In addition, Bennett clocking
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Figure 3.3. Example of a zone clocked circuit. This clock-
ing zone layout is from a reversible crossover circuit. Notice
that small zones abut each other on both the x and y dimen-
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requires non-uniform clocking signals (figure 3.8). Unlike Landauer clocking where
one waveform but multiple phases are required, in Bennett clocking each clocking
wire has a different wave to generate the Bennett clocking behavior.

Bi-directional Shift (aka Pulse)

The bidirectional shift, or pulse, clocking strategy allows a single region of high clock
field to travel either left or right, controlled by the same set of physical wires (figures
3.9, 3.10).

It is reminiscent of the Landauer scheme in that computation occurs on the leading
edge of the wave and the circuit is released on the trailing edge. There are a few
important differences, though. First, rather than a periodic wave, the shift involves
only a single pulse. Second, the pulse travels both left to right and right to left on
the same set of clocking wires. These mean that the wave forms generated in this
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Figure 3.4. Example of wave forms generated by each
clocking wire for a four phase wave-style clock signal. This
corresponds to a Landauer type clocking signal as in figure
3.6.

Time

Figure 3.5. Example of wave forms generated by each
clocking wire for a zone-style clock signal. This corresponds
to a clocking signal as in figure 3.2.

clocking scheme are more complicated than the simple periodic forms generated for
the Landauer clocking.

The bi-directional shift has a substantial advantage in that it allows data to be shifted
in two directions using only one set of hardware. However, like Bennett clocking, it
requires each clocking wire to generate a unique signal (figure 3.11).

Uni-directional Bennett

In the uni-directional Bennett clocking strategy, the clocking wave sweeps across the
circuit, remaining high, computing at the leading edge of the wave (figure 3.12(a-i)).
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Figure 3.6. Landauer Clocking: Computation proceeds
from left to right. Data is latched at each peak. Computation
occurs on the rising edge (to the right of each peak) as the
wave moves to the right.

Figure 3.7. Retractile Cascade Clocking: Computation
proceeds from left to right. Data is latched and remains
latched until the result has been latched at the right. The
clock is then retracted until only the input and output are
latched.

When the entire circuit is held high, the circuit is released from the original input
side (figure 3.12(j-p)). At the end of the clock cycle, the only data latched is the
output (figure 3.12(q)).
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Time

Figure 3.8. Example of wave forms needed to generate
retractile cascade, or Bennett, clocking.

Direction of computation

Figure 3.9. Bi-directional Shift: Shift Right

The uni-directional Bennett clocking scheme can be thought of as a combination of
the Bennett and Landauer schemes. There are logic gates that are reversible if the
entire gate is charged before being released from one side or the other. The needs for
the clock in this case are similar to the Landauer scheme in that the clock wave moves
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Figure 3.11. Example of wave forms needed to generate
the bi-directional shift to the right.

in just one direction, but as in the Bennett scheme, the entire circuit is charged prior
to being released. The key difference coming in the direction of the release.

The uni-directional Bennett scheme combines the best of Bennett clocking with the
advantages and disadvantages of Landauer clocking. Uni-directional Bennett has the
distinct advantage over Bennett clocking of having only the output latched at the end
of the clock cycle. This implies higher throughput than Bennett clocking although
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Figure 3.12. Uni-directional Bennett

lower than strict Landauer clocking throughput. It also means that pipelining is
more natural in uni-directional Bennett than in Bennett clocking since at the end
of the cycle only the output is still latched. Also, while uni-directional Bennett, like
Landauer clocking, requires logic gates to be reversible if the system is to be reversible,
there is greater flexibility in designing the reversible gates since only the entire gate
needs to be reversible as opposed to each segment of the gate.
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Table 3.1. Comparison of Clocking Strategies

Clocking Pros Cons
Strategy
Landauer
e Fine-grained pipelin- e Reversibility requires
ing reversible logic family
e High throughput
Bennett
e Imposes low-level re- e Lowers throughput
versibility on any logic _ '
family e Requires non-uniform
clock signals
e Input and output both
latched at end of cycle
Bi-
dlr.e ctional e Transmits data in two e Requires non-uniform
Shift o
directions clocks
Uni-
(élrectlftnal e Only the output is e Lower throughput
enne latched at end of cycle than strict Landauer
(as opposed to Ben- o .
e Reversibility requires

nett)

Allows more gate fam-
ilies than strict Lan-
dauer clocking

More pipeline friendly
than Bennett

reversible logic family
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Figure 3.13. Example of wave forms needed to generate
uni-directional Bennett clocking.

No Clocking

It is worth mentioning briefly that there is another clocking philosophy that has not
been extensively explored. That is choosing not to clock the QDCA circuit. It is
impractical for an entire circuit to be unclocked due to problems with kink energy
and the potential for errors to occur due to thermal properties when large numbers of
QDCA cells interact without the restorative properties of the clock. However, there
is some indication that unclocked regions within a clocked circuit can be exploited.
For instance, a signal could be latched by a clock at the edge of an unclocked region
and then launched through the unclocked region to be “caught” by the clock at the
other end of the region !. Another powerful paradigm that could be exploited in these
regions is that of cellular automata. The cellular automata side of QDCA has not
been exploited in previous architecture work, but the undeveloped potential is there
and could be used as a component in a larger, clocked system.

Summary

Several topics related to clocking strategies have been discussed here. They include:

e Zone floorplanning vs Columnar floorplanning
e Zone clocking vs. Wave clocking

e Clocking Strategies: Landauer, Bennett, Bi-directional Shift, Uni-directional
Bennett, (and no clocking).

'Named the “Hail Mary” architecture by Mike Frank
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The clocking strategies each have advantages and disadvantages. In short:

e Landauer Clocking: Landauer clocking signals are regular, periodic signals that
are offset in phase but identical otherwise. This clock strategy lends itself to
circuits with fine-grained pipelining and high throughput. It also requires the
circuit to be reversible at very fine levels.

e Bennett Clocking: Bennett clocking signals are periodic but more complicated
in shape than Landauer clocking signals. Bennett clocking imposes reversibility
on any irreversible circuit at the cost of time. In addition, since Bennett clocking
leaves both the input and output latched at the end of a cycle, Bennett clocking
introduces challenges when it is part of a pipelined system.

e Bi-directional Shift (Pulse) Clocking: This is the only clock that allows informa-
tion to flow in two directions on the same circuit. It requires a circuit with very
fine grained reversibility (i.e. a wire) to be reversible. Like Bennett clocking, it
requires more complicated clocking signals than Landauer clocking.

e Uni-directional Bennett Clocking: Combines the throughput and pipelinability
of Landauer clocking with the reversibility of Bennett clocking while minimizing
the costs of each. Uni-directional Bennett clocking is slower than Landauer
clocking and requires complicated clocking signals. However, it is more pipeline
friendly than standard Bennett clocking, and it allows more freedom in designing
reversible circuits than Landauer clocking. Uni-directional Bennett clocking
incurs a higher space overhead than Bennett clocking, but significantly lessens
the time overhead. Similarly, the time overhead is greater than that of Landauer
clocking, and the space overhead is significantly lessened.

e No Clocking: Areas with no clock seem to have a great deal of potential as
components within a clocked system that should be explored.
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Chapter 4

Clock Circuit Issues

This chapter introduces and characterizes a novel circuit design for low power clock
distribution for QDCA. The characterization of the clocking circuitry includes the
evaluation of the coupling capacitances among the wires and with the ground plane;
moreover also the dissipative effects of the wires and the substrate are taken into
consideration. The phase shift between neighboring wires is included in the evaluation
as well as the number of wires driven by the same clock line, consequently the clocking
circuitry electrical characteristics are a function of the chosen design parameters. The
model of the clock tree is initially modeled as a RC circuit, then a resonant RLC circuit
is proposed and its power dissipation performance is compared to an RC circuit as
a function of the quality factor Q of the resonating circuit: it is shown that this
approach can greatly reduce the power dissipated on the clocking layer of a QDCA
circuit.

Overview on clock distribution circuit for QDCA

In the early proof of concept [18] work, the clock was explicitly delivered to every
cell through metal wires. This was sufficient for the goals of the experiments, but
it has some obvious shortcomings and prohibits large scale integration. In order to
overcome these and to facilitate a shift toward molecular QDCA, a clocking scheme
was envisioned that would use a sequence of metal wires buried beneath the QDCA
layer that would generate an E-field that would control the tunneling within the
QDCA layer [15]. By variably controlling the strength of the field at different points,
directionality can be imposed on the QDCA circuit. In the typical scheme the wires
are divided into four groups, and each wire is assigned a phased sinusoidal voltage
source V (t) = Vsin(2m fot+¢;). The phases of the wires are ¢; = (i-7/2,i = 0,1, 2, 3).
Note that at least three phases are needed to provide directionality to the flow of
information on the QDCA layer.

Figure 4.1 shows a cartoon view of a possible implementation of the four phased clock
distribution for QDCA. The wires are actually on the top of the QDCA layer to take
advantage of the typical planar process for the metalization. A ground plane is found
on the other side of the QDCA layer from the clocking wires in order to terminate
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Figure 4.1. Possible clock distribution circuitry for QDCA
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Figure 4.2. Cross Section of a generic QDCA implemen-
tation

the E-field lines. Four wires (@1, ®o, P53, ®4) carry the four phase shifted signals. The
actual distribution on the QDCA layer is obtained through smaller wires branched
out from the main carriers.

Capacitive coupling

The overall capacitive effects on the clocking wires can be considered as the sum of
two main contributions:

Ciot = Cw + Cf,

where Cyy represents the coupling with neighboring wires and C represents the
coupling with the ground plane. In the following subsections we analyze in detail
these two contributions.

Capacitive coupling with the neighboring wires

The clock wires experience a capacitive coupling with their neighbors. For a generic
wire, the strongest coupling occurs with the two closest neighbors. The capacitance
model between wires (that is usually called C,,) is typically obtained in VLSI by
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Figure 4.3. Parasitic coupling with neighbor wires

solving Green’s function with a multipole expansion (as in the FastCap software [27]),
by using a finite difference method to solve the Poisson equation (1Poisson [40]), or
by using finite elements (FIERCE [7]). Since this work is the first one addressing
this problem, we make the simplifying assumption that the value of the capacitance
is obtained from the simple plane capacitor formula

Aw
d,

w
Cm = €€, -

where d,, is the distance between two neighbor wires, A,, is the area of the wire
exposed to the neighbors and € is relative permittivity of the dielectric between the
wires. Future work can address the refinement of the model.

In addition, there is an effect similar to what happens in VLSI when the wires of
a bus are affected by crosstalk [16], the time varying signal on the two neighboring
wires affects the total charge () that needs to be provided to the target wire to obtain
a certain value of V' on it. This effect can be modeled with a & multiplicative factor
applied to C,,.

Consider a wire coupled with its two neighbors through the capacitance C), as shown
in Figure 4.3. The equivalent capacitance seen on the middle wire can be calculated
as follows:

Vi(t) = sin(wt — ¢)
Vo (t) = sin(wt)
V3(t) = sin(wt + ¢)

where ¢ represents the phase shift between neighboring wires.

Further,
Vo (t) = Va(t) — V5(t) = —25m(§) - cos(wt + %)
Vi(t) = Va(t) — Vi(t) = 23m(§) - cos(wt — %5)
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from the definition of capacitance:

L) = C,, d‘fl’f”
L(t) = Cy, d‘f;;”

and from the Kirkhoff’s Law

av, —dVy

I(t) = 1,(t) + L(t) = Cy( p + E)

being:

dVa
dt

dbb . (25
— = -9 s
n wsm(

)sin(wt + %)

¢
2

= 2wsin(
)sin(wt — %)

Therefore the current is:

I(t) = 2C,wsin(=) {sin(wt + g) — sin(wt — ?)}

2

[ I RSTN G ESS

= 4C,wsin(

) |costensin )]

The capacitance seen on the middle wire is therefore (from the definition of capaci-
tance)

I1(t)
Cw =
i
where
dVa(t
th( ) = wcos(wt)

and therefore finally:
_ g2 ®
Cw =Fk-C,, =4sin (§)Cm
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Capacitive coupling with the ground plane and dissipative ef-
fects

As shown in Figure 4.2, the QDCA layer is sandwiched between the clocking wires
and the ground plane. The capacitance through the QDCA layer depends on the
relative permittivity of the chosen material to implement the QDCA circuits and on
its vertical size. Similar to what was seen for Cyy, a simplifying assumption is made
to model C}, as:

A

Cp = ¢pel - -2

L = €of, d,

where d, is the distance between the wire and the ground plane, A, is the area of the
wire facing the QDCA layer and €? is relative permittivity of the QDCA layer.

Resonant RLC circuit for low power clock distribu-
tion

Consider a simple RC circuit (see fig 4.4) as the model of the clock distribution
where Ry, represents the overall resistance of the clocking wire (Ry = Ry + Rwo,
where Ry is the resistance of the distribution wire with larger cross-section, Ry
is the resistance of the clocking wire with smaller cross-section), Cy, represents its
capacitance with its two neighboring wires, and C';, and R, represent the capacitance
and the dissipative effect with the ground plane through the dielectric composing the
QDCA layer. The total capacitance is Cy; = Cy + Cp,, and the power dissipated per
clock period can be calculated as follows.

From the definition of voltage as the energy per unit charge, the energy stored on
the ideal capacitor should be QV = C,,V? since all the work done on the charge in
moving it from one plate to the other would appear as energy stored. However, since
the work done to put a dq charge at a potential V' is dU = Vdgq, the total energy to
put @ charge on the capacitor is

Q Q 2 2
q Q CiotV
U= / Vdg = / dg = -
0 q 0 C’tot 1 QCtot 2

This expression shows that just half of the QV = C;,;VV? work appears as energy
stored in the capacitor. For a finite value of Ry, and assuming that R; is negligible
compared to (', half of the energy supplied by the power supply for charging the
capacitor is dissipated as heat in the resistor, regardless of the size of the resistor.
Considering a sinusoidally changing voltage supply from 0 to V', then, the energy
dissipated on Ry in the charge and discharge of the capacitor Cy,; occurring in a
period is Cy,;V2. Therefore, for a frequency of operation f;, the power dissipated on
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Figure 4.4. Model of Clocking with an RC circuit
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Figure 4.5. Model of Clocking with an RLC resonating
circuit

the clocking distribution circuit is:
Pre = CiotV? fo (4.1)

The RC circuit in figure 4.4 is a low band pass filter characterized by its cutoff
frequency, fo = m This is the frequency at which the amplitude of the voltage
on the capacitor is halved, meaning that the operating frequency is limited by the

RC constant.

The distribution of the clock could be done through a resonant parallel RLC circuit.
A resonating circuit has a very limited current drain from the source at its resonating
frequency. This has been studied for low power clock distribution in conventional
VLSI [9] [6]. It is useful to compare the power dissipation of the RC and RLC
circuits. We will show that if the resonant circuit has a good quality (measured by
the @ factor) the introduction of the resonant tank improves dramatically the power
performances.

Consider the RLC circuit in figure 4. Ly, represents the inductor introduced to
generate the resonant circuit. As before, the total capacitance is Cy; = Cyw + Cp.
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The relation between L, and Cy, to obtain resonance is 2w foL, = 1/(27foCiot).
Therefore, the resonant frequency can be obtained by:

1

fO - 27'('\/ LWCtot

(4.2)

The value of Ly, can be tuned for the value of the parasitic capacitances Cy,; to keep
the product of the two constant

Since at f the reactive loads cancel each other, the current absorbed from the volt-
age supply flows only through the resistive load. Therefore the power dissipated at
resonance is

V2
2}%tot

Prrc = (4.3)

where R;,; = Rw1 + Rws + Rp. To compare this result with the previous for RC in
eq. 4.1 (similar to [9]) we introduce the definition of quality factor @ as:

Mazximum Energy Stored
Q = 2rfy- Y

4.4
Average Power Dissipation (4.4)

The maximum energy stored in the circuit is the amount of energy resonating between
Cir and Ly, which can be expressed as the maximum amount of energy on the

. 2 . 2
capacltance: % As shown above average power at resonance is Prrc = R
therefore

CtotV.
— 2

Q - 27Tf0 : V2 (45)

2Rtot

= 27 fo - RiotChot

From 4.6 and 4.3

7Chot foV?
Prrc = —tégfo
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The ratio between Prrc and Prc is therefore:

PRLC _ 7T-Cytot‘/QfO . 1 _ E (4 6)
PRC Q CtotV2f0 Q ‘

Therefore, if () > m the RLC resonating circuit is dissipating less power than the RC.

Parallel load effect

Previously we considered that the voltage supply is connected to a single clocking
wire, however, for real clocking of QDCA circuits, the same voltage supply will most
likely be connected to several (n) parallel clocking wires as shown in Figure 4.1. In
this section we will introduce n as a parameter for the evaluation of the quality of
the resonator. The introduction of n parallel loads will obviously affect both R;,; and
Ciot yielding new values of R}, = Ry + % + % and C}, =n-CI.

The parallel effect of the load equally effects C';, and Ry. The partition of current on
them, then, remains the same. Therefore, the equation 4.1 for the RC circuit with n
parallel wires is only slightly modified to:

zl%c >n- Ctotv2f0

whereas for the resonant RLC circuit we have:

V2 ) 71'Cmtfov2

RLC = SR n 0 (4.7)

where R}, = Rw1 + Rwa + Rr. The increase of n scales the power stored in the
clocking circuit by the same factor. Therefore the ratio of Prrc and Pro assumes
the same expression of equation 4.6 and using n parallel wires does not affect the
condition ) > w for the quality factor of the resonating circuit.

Finally, to maintain the target resonating frequency fy the scaling of Cy,; by n must

be balanced by a symmetric scaling of Ly, therefore Lj;, = LTW

Evaluations

In this section we evaluate the power dissipation per unit area (P; measured in
W/em?) of a possible layout for clock distribution. The power dissipation per square
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Figure 4.7. Geometric constants according to [15]

centimeter is compared to the typical limit of 100W/cm? that represents a critical
limit for the capability of heat dissipation in VLSI. The considered QDCA implemen-
tation is based on quantum fortresses and the dimensions involved in the computation
of the parameters are summarized in figure 4.6. Moreover, parameters reported in
table 4 are chosen according to the geometric rules defined in [15] and are shown in
figure 4.7: the geometric constant a = 220nm is such that each QDCA cell is clocked
by a single wire.

First, consider the effect of the Q of the RLC resonator has on the power dissipation of
the circuit for a range of frequencies (figure 4). Notice that for Q=1, there is effectively
no resonance, and Prpc = Pge. As Q increases, there is a substantial decrease in
power consumption. Notice, too, that the intersection with the 100 W/cm? line occurs
at higher frequencies as the Q) increases. Note that the plots assume that for each
frequency the tuning Ly, is set to allow resonance at that specific frequency.

The plot also shows also a Q* value of about 300 that is obtained by the given
geometry and parameters reported in Table 4 and therefore represents the actual Q
for the chosen geometries.

It is also important to look at the power dissipation for a given frequency (e.g. 1
GHz) and varying supply voltages. As can be seen in figure 4, for a resonating RLC
circuit with a quality factor of Q* the circuit can be driven with a voltage up to 20

57



Table 4.1. Physical parameters

Parameter Value \ Unit \ Description

a 2.20E-07 m geometric constant

L 1.00E-02 m length of a wire

h 3.00E-08 m height of a wire

w 3.00E-08 m width of a wire

A 2.20E-07 m pitch between wires

d 2.05E-07 m distance between wires (Delta-w/2)
Aq 3.00E-10 m? Area facing the QDCA layer

Ay 3.00E-10 m? Area facing the other wires

S 9.00E-16 m? Area of the section

p(Cu) 1.7E-08 ohm*m resistivity of the wire

p (Si) 6.40E+02 ohm*m resistivity of intrinsic Silicon

p (P doped Si) | 1.00E-05 ohm*m resistivity of P doped Silicon

e, (SiGe) 1.41E+401 relative permittivity of Silicon Germanium alloy
e (Si) 11.68 relative permittivity of Silicon (also doped)
€0 8.85E-12 | m kg~ Ts*A? | permittivity of free space

| 13 Vv Source voltage amplitude

10) 1.570796 radiant phase shift between adjacent wires
dl 2.93E-07 m thickness layer 1

dg 2.44E-08 m thickness QDCA layer

d2 2.44E-08 m thickness layer

ds 2.44E-08 m thickness of substrate

Table 4.2. Circuit parameters

’ Circuit Parameter \ Value \ Unit \ Description
Co 8.55932E-14 F Capacitance with the substrate
k(phi) 2 multiplicative factor
Cm 1.30E-14 F Capacitance with adjacent wire
Ctot 1.12E-13 F Total Capacitance
Rw 1.89E4-05 Ohm | Resistance of a wire
RI1 7.30E+05 Ohm | Parasitic Resistance of the QDCA layers
Rtot 9.19E+05 Ohm | Total resistance
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values of Q. In red: 100W/cm? limit

V without hitting the limit of power dissipation 100 W/cm?2. This result provides a
valuable degree of flexibility since at the moment it is unknown what driving voltage
will be required to obtain the switching of the quantum fortress based QDCA cells

from the locked to the relaxed state.
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Finally we analyze the impact of the phase shift between neighboring wires on the
power consumption. Figure 4 shows the impact of a reduced phase shift between
neighboring wires given a frequency of 1 GHz and a supply voltage of 1 V.

From 4 it can be seen that for V; = 1V the RC circuit dissipates less than 100 W/cm?.

Finally in figure 4 we analyze the effect of a reduced phase shift between neighboring
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wires on the power consumption for f = 1GHz and V; = 1V It can be seen with a
¢ < /2 the power dissipation can be reduced under the limit of 100 W/cm? without
a resonating circuit. This effect is due to the reduced capacitive load seen throughout
the clocking circuitry and provides an extra parameter to reduce the power dissipation
in a QDCA clocking circuit when an RLC circuit is not used.
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Figure 4.10. P, as a function of ¢ at f=1 GHz and V=1
V. In red: 100W/cm? limit

Conclusion

This chapter has addressed the characterization of the clock distribution circuits for
QDCA. While there is a substantial body of literature on QDCA circuit design, little
has been said about the clock distribution circuits required to make the QDCA circuits
operable. This chapter has provided an electrical characterization of the parameters
involved in the clocking circuitry and compared two approaches to implementing the
clocking circuitry: a simple RC circuit and an improved resonating RLC circuit.

The analysis of the RLC circuit shows that it reduces power consumption below that
possible with the RC allowing the clocking circuit to operate at higher computational
frequencies while dissipating less than 100 W/cm?.
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Chapter 5

QDCA Circuit Design

As mentioned in the introduction, drawing a line in the design space and insisting on
reversibility below that line while tolerating irreversibility above the line is a good
approach to designing with QDCA. This chapter discusses some of the architectural
tradeoffs, where they can be made, the costs and the opportunities, and some example
architectures.

It is important to make a distinction here between physical reversibiltily and logi-
cal reversibility. At some point, depending on design restrictions and implentation
choices, a point of diminishing returns is reached with physical reversibility where the
cost of reversibility (time and space) overshadows the gains of reversibility (power).
The location of this point will vary with the system and the implementations, but
it is important to be aware of. Also, while physical reversibility may no longer offer
substantial improvements beyond this point in terms of power savings, support for
higher level logical reversibility may still be a useful design strategy. This sort of
higher level consideration will not be addressed further in this document.

As with any system, before it can be designed, there is a set of decisions that need to
be made. The questions that need to be answered are somewhat different in designing
a QDCA system than in traditional CMOS design, though. There are two sides to the
set of questions. The first is the set of questions that define what toolbox is available
to pull from. The second set of questions determines how the design can be evaluated
to see if it meets its time, space, and power budget goals. Table 5 lays out one way
of asking these questions.

It is worth noting that any reversible part, be it clock or gate, can be abused to create
a system that is dissipative. Special care should be taken in the interfaces between
different clocking schemes and at points where multiple data produced by different
functional units converges (i.e. feedback loops, memory requests, etc.). Common
pitfalls at the interfaces between clocking regions include: data being produced and
consumed at different rates (leading to bottlenecks or idling); incorrect hand-offs
between regions (e.g. data produced by region one at time x but region two isn’t
ready to copy it until time x+A by which time region one has already released the
data); mishandling the decomputation requirements of different regions (e.g. Bennett
clocking leaves the input of a region latched while Landauer clocking does not).
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Table 5.1. Questions Before Design

|

‘ Design

\ Analysis

QDCA Imp.

Are physical
CrOSSOVers al-
lowed?

Are 45 degree cells
allowed?

What is the dis-
sipation per cell
switching event?

What are the phys-
ical dimensions of
the cell?

What is the cell
spacing?

How cells wide are

the QDCA wires?

Clocking Imp.

How many clock
signals are al-
lowed?

What signal
shapes can be
produced?

How many layers
of clocking are
available?

What is the pitch
of the clocking
wires?

How big/small can
the wires be?

What range of fre-

quencies are avail-
able?

Budgets

What space is
available?

What time require-
ments apply?

What power bud-
get is available?

Given the an-
swers to all other
questions, does
the design sat-
isfy  the  time,
space, and power
requirements?
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It is also worth noting that this chapter does not discuss the design of unclocked
regions of QDCA cells. This is an area of design that has not been extensively explored
and hopefully will be ready for inclusion in subsequent editions of this manual.

Circuit Design Strategies

Circuits can be designed with varying degrees of logical reversibility, independent of
physical reversibility. The pairing of circuit design strategies with clocking strategies
leads to physical reversibility or irreversibility. This section will discuss the basic
options for circuit design strategy and then discuss the effect of different pairings on
physical reversibility and the time/space tradeoffs of the different pairings.

There are two axes on which to classify these circuits. One is the direction of op-
eration (uni-directional vs bi-directional), and the second is the level of reversibility
(irreversible, gate reversible, sub-gate reversible). Not all six options are reasonable,
though. For instance, the “bi-directional irreversible” option is nonsensical since if a
gate is bi-directional, it must be reversible on some level.

Uni-directional Irreversible

The uni-directional irreversible option is the most explored circuit design strategy to
date. In this strategy the circuit only produces meaningful output when the clock is
run in one direction and the circuit is logically irreversible. A very basic example is
a simple majority gate (figure 5.1). When the clock is reversed, the circuit no longer
acts as a majority gate (specifically, it acts like a fan-out). Further, the majority gate
is not a 1:1 function and information about the “losing” input is dissipated.

ApEEEEEE A
5]
5]
BrEpEEEEREEEED B D
5]
5]
CopnEEBE (o}

Figure 5.1. The majority gate is an example of a uni-
directional, irreversible circuit.

Uni-directional Gate Level Reversible

There is a set of circuits that perform 1:1 functions but are reversible if and only
if the entire gate is locked before being any of the QDCA values are released for
a particular circuit implementation of the function. Further, they do not perform
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the same function when the direction is reversed, making them uni-directional. Some
implementations of circuits from gate classes 3, 5, 6, or 7 would fall into this category.
These gate classes use a different set of functions for the inverse of the function rather
than using the same gate as the inverse.

Uni-directional Sub-gate Level Reversible

There is also a set of circuits that are reversible at a much finer grain than the gate
level. These tend to be much simpler circuits than the previous strategies. One
example of this is a fanout circuit in which there is one input and either two or three
copies of the input as outputs. If this circuit were clocked by a very fine Landauer
type clock, there would be no dissipation since the level of reversibility in the circuit
is comparable or superior to that in the clock. Further, this is a uni-directional circuit
because if the direction of the clock were reversed, the result would be a majority
gate rather than a fanout.

A
AREEEEEEEEEEEE A
A

Figure 5.2. The basic fan-out circuit is an example of a
uni-directional circuit that is reversible at the sub-gate level
but is not bidirectional.

Bi-directional Gate Level Reversible

Bi-directional circuits perform the same function whether clocked from the left or
from the right. As in the uni-directional case, a gate level reversible circuit performs
a 1:1 function and does not erase any bits provided the entire gate is charged before
being released. Figures 5.3 and 5.4 show the QDCA layout and a schematic of a
Toffoli gate [8]. The Toffoli function negates bit C if bits A and B are both logical
ones. The Toffoli function is its own inverse. This particular layout would dissipate if
it was released in a Landauer type way at Area 1. Since the connetion to the copy of
G1 at this point has already been released, there is no way to “copy” the value back
to the stored value of G1.!

! This is a somewhat artificial example. With a simple change this circuit could be made sub-gate
level reversible.
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Figure 5.3. QDCA layout of an example of a bi-directional
circuit that is reversible at the whole-gate level. This is one
implementation of a Toffoli gate.

[ Moty Gate

T
® Inverter ; ;

Figure 5.4. Schematic of an example of a bi-directional
circuit that is reversible at the whole-gate level. This is one
implementation of a Toffoli gate.

Bi-directional Sub-Gate Level Reversible

Combining two uni-directional, sub-gate level reversible components (e.g. the gate

and its inverse) can create a bi-directional, sub-gate level reversible circuit as in the
NAND/UnNAND circuit in figure 5.5

NAND(A B)
00000

A > BEEEE BEEA
B 03 B
B B
B BEE8 a® BEEE @
BEEEEEE BeE@0poEaan BEEEEEH0
B HEEE 3 BEEE B
B8

B B

GEEES

N
NAND(A )

Figure 5.5. The combination of the NAND and UnNAND
gates creates a bi-directional circuit that is reversible at the
sub-gate level.
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Matching Circuit and Clocking Strategies

Any circuit strategy can be matched with any clocking strategy, but some pairings
are more advantageous than others. Table 5.2 shows which pairings are reversible
and irreversible. Notice that one column in table 5.2 is completely reversible. This
corresponds to the Bennett style clocking. While Bennett clocking can make any
circuit style reversible, it incurs a time penalty of roughly 2x over Landauer clocking
sine the clock cycle includes sweeping down and back a circuit rather than just down
as in Landauer clocking.

There is also one row that is reversible regardless of the clocking scheme. Unfortu-
nately, this is the bi-directional sub-gate level reversible circuit class with only one
known member, the wire. Even though this class includes only the wire, it is im-
portant to include it in this discussion since a significant part of any design will be
communication between components.

In general, Bennett and uni-directional Bennett clocking incur a time overhead. In
addition, Bennett clocked circuits leave the input latched at the end of the clock
cycle. To be fully reversible within a larger system using multiple clocking strategies,
a Bennett clocked system must incur additional time and space penalty to account
for the additional circuitry and/or time to decompute the input. The amount of ad-
ditional overhead varies depending on the approach taken (i.e. the collapsed Bennett
layout or the the reversible Bennett pipeline).

Gate level reversible circuits will in the general case incur a space overhead of approx-
imately 2x. This is because any circuit can be made reversible by saving its inputs
and intermediate solutions. Once the result is obtained, the intermediate results can
be decomputed by means of a mirror circuit which takes as input all of the saved
inputs and intermediate results and return the only the original input. The space
overhead of this approach for general circuits can grow much bigger than 2x, but for
small circuits on the level of a simple gate, the approximation is close.

For most of the rows in table 5.2, there are multiple entries that are reversible. There
are a few basic guidelines deciding which reversible strategy to choose. In general,
Bennett clocking incurs the most overhead. For each circuit strategy, if there is a
reversible option using a clocking strategy other than Bennett, that other option
should be used. Further, if both Landauer and uni-directional Bennett clocking are
reversible options for a circuit strategy, Landauer clocking should be used since it has
less overhead and is easier to implement. After applying these basic guidelines, there
are six entries left to be considered (table 5.3). They are:

e Uni-directional irreversible circuit with Bennett clocking: Any irreversible cir-
cuit can be Bennett clocked, but there is a time penalty. Also, interfacing
reversibly to other clocking regions introduces additional time and space penal-
ties.
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Table 5.2. Reversibility of Circuit Design Strategies and
Clocking Strategies

H Landauer \ Bennett \ Bi-D Shift \ Uni-D. Bennett

Uni-Irrev. Irr Rev Irr Irr
Uni-Gate Rev. Irr Rev Irr Irr
Uni-Sub-Gate Rev. Rev Rev Irr Rev
Bi-Gate Rev. Irr Rev Irr Rev
Bi-Sub-Gate Rev. Rev Rev Rev Rev

Uni-directional gate level reversible circuit with Bennett clocking: this would
seem to combine the cost of reversibility with the cost of imposing reversibil-
ity by clock. Except for a limited number of situations, there is little reason
to design in this region. Reversible gates usually have a space overhead and
combining them with Bennett clocking leads to the worst of the time/space
overheads.

Uni-directional sub-gate level reversible circuit with Landauer clocking: This is
a small set of circuits, but it contains some very important ones such as fanout
and a majority gate with its inputs saved and communicated to the output
of the gate. Landauer clocking is very fast and has high throughput, but the
amount of garbage data can grow exponentially when circuits are designed in
this input-saving manner.

Bi-directional gate level reversible circuit with Uni-directional Bennett clocking:
Bi-directional gate level circuits will have some space overhead due to their
reversibility, and uni-directional Bennett clocking has some time overhead when
compared with Landauer clocking. However, the space overhead is likely to be
less than the input-saving method, and the uni-directional Bennett strategy
preserves pipelining and relatively high throughput.

Bi-directional sub-gate level reversible circuit with Landauer or bi-directional
shift clocking: The set of known bi-directional sub-gate level reversible circuits
currently consists of the wire. This region of design space is important, though,
because it shows that communication between different regions can be accom-
plished in two manners that are both reversible and efficient.

There are two basic rules-of-thumb to take away from the above discussion. First,
reversible circuits incur a space penalty for being reversible. However, if the circuit
is designed with reversibility in mind, that penalty can be minimized. Second, re-
versibility by clocking incurs a time penalty. The range of circuit design strategies
and clocking strategies allows necessary flexibility for designers to optimize for their
particular set of constraints.
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Table 5.3. Important Circuit Design Strategies and Clock-
ing Strategies Matches

’ H Landauer \ Bennett \ Bi-D Shift \ Uni-D. Bennett

Uni-Irrev. v
Uni-Gate Rev. V
Uni-Sub-Gate Rev. V
Bi-Gate Rev. Vv
Bi-Sub-Gate Rev. vV V

Special Concerns for Reversible Circuits

When considering reversible circuits, especially when Bennett clocking is involved,
there is a temptation to blur what inverse is being considered and used. Below is a
case study of a particular 3-input, 3-output reversible gate.

The specific invertible function we’re using as an example is a particular reversible
majority "gate” (i.e., operation) having only 2 garbage bits (there are other such
gates), which we will abbreviate rMA.J. This function is useful in reversible computing
with traditional technology. In this discussion, it can be considered as one example
of a 3-input, 3-output reversible gate. The rMAJ(x,y,z) operation can be defined as
follows:

¥ =MAJ(z,y, z)
y =10y (5.1)
Z=xdz

where MAJ denotes the usual (1-output, irreversible) 3-input majority operation:
MAJ(x,y,2) =2y + 2z +yz (5.2)
This implements a permutation consisting of a 2-cycle composed with a 3-cycle:
(101,110) o (011,111, 100) (5.3)
Its truth table can be seen in table 5.4. It is a universal gate for constructing arbitrary
Boolean functions embedded within reversible functions with garbage outputs. We

can construct AND because when x=0, note that x’ = yz. We can also construct
NOT, because when x=1, y’ = —y.

Any gate that is universal in the above sense is automatically also universal for
constructing arbitrary n-bit reversible functions with no garbage. The n-bit reversible
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Table 5.4. rMAJ Operation Truth Table

xly [z | x|y |7
0/0]0]0]0]0
001001
o[1[00[1]0
011111
1[0(0]0 11
1[0 [1]1[1]0
110 1]0]1
L[1[1]1[0]0

Table 5.5. tMAJ~! Operation Truth Table

x|y [z x|y |7
0/0]0]0]0]0
001001
0(1[00[1]0
0(1[1]1]0]0
{00111
1[0[1]1[1]0
110 1]0]1
11011

gates comprise the symmetric group S(2") of permutations on 2" items. For any finite
group, the inverse G~! of any reversible gate G can be formed by a certain power r
of the original gate; in group theory, the exponent r is called the order of the element
G. In this case, since the permutation comprises a 2-cycle and a 3-cycle, the order r
of the permutation is LCM(2,3)=6, meaning that rMAJ® = I, and so the exponent r
to invert the gate is 6-1 = 5.

Note, however, that rMAJ by itself is not equal to its own inverse TMAJ ™!, due to the
presence of the 3-cycle. The truth table of its inverse rMAJ™! can be seen in table
5.5

This can be described in Boolean algebra form, derived from Karnaugh maps, as:
x=x-z 4+ xoy + Yz
Yy =xz+xy + ~xy—z (5.4)
2 =x—z+xy + ryz

Notice that these equations are very different in form from those that define MAJ!
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This illustrates the general phenomenon that computing the inverse of a function may
require a very different algorithm from computing the original function.

As another example, consider the difference between algorithms for multiplying or-
dered pairs of k-bit primes and for factoring the resulting products. Much of modern
cryptography depends on the fact that the inverse of a function such as this is much
harder to compute than the original function, using known algorithms. Functions
whose inverse is exponentially more difficult to compute are called ”one-way.” How-
ever, we should note that a non-expanding function that is composed entirely of
reversible gate operations can never really be a one-way function, since one can al-
ways run the original gate sequence backwards with identical time complexity. So,
for example, if there is a polynomial-time implementation of non-expanding multi-
plication of prime number sequences using reversible gates, then FACTOR is in P.
Anyway, that is a tangent.

Now, we can reduce the total number of gates required to implement equations (4)
from 26 to 18 (3 NOT, 9 AND, and 6 OR) through common subexpression elimination:

tl = T

to =y

t3 = 2

ty = xts = 2

ty = aty = x—y (5.5)
le = t1y = vy

=ty +ts+tez =z + 0y + Yz
Y =z +ts+ tets = xz + vy + xy—z
2=ty +xy + titez = x0z + Y + T2

Even simpler logic for this function might exist that takes advantage of the MAJ gate
more directly, rather than always through its use in AND and OR. However, we will
not take the time to investigate that here.

Now, rMAJ itself can be implemented directly from its equations (1). In QDCA,
XOR requires 3 MAJ gates and a NOT gate, while AND uses 1 MAJ gate, so the
equations (1) translate to 8 MAJ gates altogether and 2 NOT gates, while equations
(5) involve 13 MAJ gates and 3 NOT gates.

Let’s go ahead and draw the Boolean circuits for rMAJ and rMAJ~!. They can be
seen in figures 5.6 and 5.7.

We have several options for clocking this circuit. We could use 3-phase wave clocking
with extra garbage outputs (not shown), in which case the four stages form a chain
1 clock cycle deep. Or, we could use retractile clocking, in which case the initiation
interval is 10 ticks long, where a tick is the time to latch or unlatch a stage. After
the stage (not shown) that is biasing the pipeline input (PI) stage is latched, The
10 ticks are: (1) Latch PI. (2) Latch stage 1. (3) Latch stage 2. (4) Latch stage
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Stage 1 Stage 2  Stage 3

X __D X' = MAJ(X,y,2)
y m—{ > y' = x@y

:‘ :::i1:1:1:11:1:;,(6%3
) 1@%.7 7' =x®z

Figure 5.6. Implementaion of rMAJ using QDCA primi-
tives. The wedge-shaped icon represents a QDCA majority
gate. The AND gate icon represents a QDCA majority gate
with one input tied to a constant 0 (e.g., a cell with trapped
charges). The bubble represents a QDCA bidirectional NOT
gate. Note this circuit is 3 logic levels deep if you count the
MAJ gates, but don’t count the NOTs.

X- .. Z 3 X' = XZ + Xy + Xyz

——Y' = X2+ XY+ Xyz

7' = X2+ Xy +XyZ

Figure 5.7. Implementaion of rMAJ~! Again, the AND
and OR icons represent majority gates with constant inputs.
As with rMAJ, the logic can be implemented with 4 stages
of logic in which there is only 1 level of gates per stage, not
counting the inverter bubbles as gates. The timing options
for this structure are therefore identical to the ones for rMAJ
discussed in the caption of Figure 5.6.

3. () Latch PO, the pipeline output register. The data is held there until someone
else unlatches it, which we won’t discuss in this sequence. (6) Unlatch stage 3. (7)
Unlatch stage 2. (8) Unlatch stage 1. (9) Unlatch PI. (10) Unlatch other circuit (not
shown) that is biasing PI, and maybe simultaneously re-latch a new input to it from
another path. After all this, PI is now ready to accept a new input and the cycle
can begin again. The throughput is %th of the 3-phase wave-clocked approach. If we
wished, since each stage computes an invertible (if expanding) function of its inputs,
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we could insert additional pipeline registers in the middle to improve throughput, but
this would also add more interconnects. Also, there is no guarantee that the reverse
of the forward stages can be implemented easily in a single level of logic.
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Chapter 6

Architectural Approaches

The QDCA design work done prior to 2006 dealt with irreversible designs. This work
included proof-of-concept layouts of a complete (though simple) microprocessor and
an accompanying memory; an FPGA cell; several other memory cell designs; and
a processing-in-memory like execution model for QDCA. While this work was all
irreversible logic, it revealed several design principles that can also be exploited by
designers interested in reversibility. The basic principles revealed include:

Layout=timing: Because there is a limited number of QDCA cells that can be
controlled by a single clocking wire (determined by the specific QDCA imple-
mentation and clocking circuit implementation), there is a more direct connec-
tion between physical space and the time for a QDCA signal to travel across
it. While conventional circuit designers worry about things like clock skew, the
problem in QDCA is much more explicit.

Processing-in-wire: Unlike CMOS devices, the logic and communication are
done by the same device. Because of this, the strict separation between combi-
national logic units and wires does not need to be maintained.

Fine-grained Pipelining: The natural implication of the first two items is the
proclivity of QDCA toward fine-grained pipelining. Because communication
across a distance requires several clocking “zones” and because the wire can
contain the logic, this naturally leads to implementing circuits with fine-grained
pipelining.

The work that lead to the identification of these three principles assumed the follow-

ing:

Zone floorplanning
Zone-type clock signal
Four phase clock

Data on QDCA layer cannot influence the clock layer
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e Physical crossovers available

e Both 90 degree cells and 45 degree cells available

Changing these assumptions does not necessarily invalidate the principles, but dif-
ferent assumptions may lead to the identification of more domain specific design
principles as well as illuminating true QDCA-wide design principles. For instance,
the fine-grained pipelining that is so obvious under this set of assumptions is less
obvious when Bennett clocking, for instance, is assumed.

Obviously, a system can be designed with many components each clocked in a dif-
ferent manner according to the constraints of the component. In order to ensure the
reversibility of the system up to the desired level, the interfaces between components
needs to be considered carefully to eliminate any unintended erasure of information.
Four design examples are discussed below. The retractile cascade fully reversible
pipeline was first explored by Younis and Knight for “traditional” reversible com-
puting. There are a few extra challenges for QDCA that are discussed. The mirror
circuit fully reversible pipeline is another traditional reversible approach that that
tends to be less space efficient but improves time efficiency. The collapsed Bennett
model was first explored by Murphy and DeBenedictis. It is a potential hardware
implementation of Bennett’s 1989 algorithm. Finally, a partially reversible pipeline is
discussed that maximizes throughput while selectively using reversibility to minimize
dissipation.

Retractile Cascade Fully Reversible Pipeline

This is the reversible pipelining method that was invented by Younis and Knight '93
for application in a CMOS technology context. As we’ll see, it is easily adapted to
the QDCA technology paradigm.

The general picture of the bidirectional-retractile pipeline architecture is as can be
seen in figure 6.1. Notice that the computational sections are Bennett clocked, mean-
ing any circuit design style will be reversible.

In QDCA, if the wire lengths are short and there are not too many levels of logic
per stage, then it should be possible to combine some of these steps together, and
obtain a 4-step cycle, as shown in figure 6.2. However, if there are several levels of
logic per pipeline stage, then it may not be safe to depend on the entire pipeline stage
simultaneously and adiabatically converging to the exact desired state. If the number
of steps in the cycle are held constant, one could expect that the adiabaticity would
be reduced at a given frequency if the pipeline stage is deeper, due to the increased
intrinsic propagation delay along the depth of the circuit. Multiple clocking stages
can be introduced into the computation segment of the pipeline, though.
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<—e‘1—<—f‘1—+g_1—

Figure 6.1. Bidirectional-retractile scheme for reversible
pipelining invented by Younis and Knight. The vertical rect-
angles represent pipeline registers. The labels e, f, and ¢
represent reversible functions; this particular pipeline is in-
tended for computing the overall function g o f o e, or its
inverse, depending on which direction it is operated in. The
boxes represent retractile circuits for computing the func-
tions shown, where the direction from inputs to outputs is
indicated by the arrows. The normal sequence of operation
is as follows. Assume that block e has just produced its out-
put, which has been latched into pipeline stage 2. Now, the
complete cycle until new input arrives on stage 2 is as follows.
(1) f is operated in the forwards direction, and meanwhile,
e is retracted, and e~! is operated. (2) f’s output is latched
into stage 3, and meanwhile, the contents of stage 1 are un-
latched reversibly under control of e~!. (3) g is operated in
the forwards direction, while f is retracted, reversibly clear-
ing its contents, and f~! is operated, resupplying an image
of stage 2’s contents, and e~! is retracted. (4) The stage 2
contents are unlatched reversibly under control of f~!, and
the stage 4 contents are latched. Now stage 2 is empty and
stage 4 contains valid data. Meanwhile, stage 1 is being writ-
ten with a new valid input. (5) e is charged, g discharged,
g~ ! charged, (6) stage 2 is charged, stage 3 discharged. After
this we are back to the initial conditions and can begin a new
cycle.

and output latched)

In effect, the pipeline stages themselves can be internally pipelined. This leads to some
slightly more complicated equations than the standard pipelining throughput and
delay equations. However, it does not necessarily dramatically increase the number
of clocking signals required.

Each pipeline stage contains the pipeline in table 6.1. The “compute release” (i.e.
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Figure 6.2. Four-step timing sequence for bidirectional
pipeline. Notice the latency is only 1 tick per stage. This de-
sign requires 12 distinct clocks (12 types of clocking regions).
For this design to work, it must be possible to adiabatically
charge up the logic region and the pipeline register within a
single transition time.

Table 6.1. Pipelining within a Pipe Stage

Stage || Latch | Compute | Drive | Compute Release

Uncompute Drive | Uncompute Release
Delay L Cn D Cn D Cn
Step 1 2 3 4 ) 6

the Bennett clock is retracting across the compute stage) and “uncompute” (i.e. the
Bennett clock is csacading across the uncompute stage) can be overlapped at time
four since the effects are controlled by different clocking wires.

Figure 6.3 shows an example of a fully reversible retractile cascade pipeline with
four clocking wires for each compute stage. Notice that the uncompute stage of any
pipeline stage i uses the same clocking signals as the compute stage of pipeline stage
v+ 1.

Throughput

The initial delay (the time to fill the pipeline) can be described by the following
equation:

Ly = (30n+2D+L)S (61)
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Table 6.2. Symbol Meanings for Retractile Cascade
Pipeline Equations

’ Symbol ‘ Meaning ‘

C Delay through a single computation
stage

D Time a stage needs to be locked in
order to successfully drive a neigh-
boring stage.

L Time required to latch a signal

S Number of pipeline stages in the
system

n Number of clocking wires in a com-

putation stage

Notice that in general C = D = L. = time for a
signal to be either latched or released (whichever
is greater).

where n is the number of compute regions in one pipe stage (i.e. the number of wires
used to control the Bennett clocked region), C' is the delay for one compute section
to switch from unlatched to latched, D is the time needed to allow the result of the
compute stage to drive the memory stage, L is the time for the memory latch to
switch, and S is the total number of pipeline stages.

Throughput depends on when the next input enters the pipeline. If it is done at the
soonest possible moment, the throughput will be:

throughput = (6.2)

2Cn+ D

However, this will may result in a larger number of unique clocking signals being
required. If the input is held so clocking signals can be reused, the throughput
equation changes to:

1
3Cn+2D+ L

throughput = (6.3)

Number of Unique Clock Signals Required

The number of uniquely clocked pipeline stages can be determined by finding the
least common denominator of the number of cycles for one stage of the pipeline to
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begin driving the next (n+1, where n is the number of computing wires and 1 allows
for the time needed for the next latch to be driven) and the number of cycles for an
input to move completely through one stage of the pipeline (3n + 2 + d, where n is
the number of computing wires and 2 allows for the 2 driving stages needed over the
course of computation in one stage, and d is the number of cycles delayed between the
completion of the processing of one input and inserting new data into the pipeline).

The least common denominator can be determined by multiplying the two numbers
together and dividing by the greatest common factor. The greatest common factor
can be found using the Euclidean algorithm.

The total number of unique clocking signals required can be calculated by:

signals = (1 +lcd(n +1,3n+ 2+ d)) * (1 +n), (6.4)

where lcd() is the least common denominator function, and the other symbols are
consistent with the above discussion. The 1+ n is the number of clocking signals per
pipeline stage, where this 1 is the number of wires needed for the latch associated
with the pipe stage, and n is the number of wires in the compute stage. The wires in
the uncompute stage are repeat signals of the next stage and should not be counted
twice. However, the final uncompute stage has nothing to overlap with. The 1 in
1 +lcd(n + 1,3n + 2 + d) accounts for these wires as well as the latch for the final
output that is not considered to be part of any other stage.

Stages using same clocks

i —
Siege EEESESSEES
\ \Compule
Uncompute
Hl Switch = rising edge of clock Clocks reused ﬁﬁﬁﬁﬁﬁﬁ
[0 Hold = clock remains high accross stage EEEEEE

[ Release = falling edge of clock
Il Relax = clock remains low

Figure 6.3. Clocking signals needed for a pipeline with a
compute phase with four clocking wires. Notice that sets of
clocking signals can be repeated in whole between stages (e.g.
at time 16 between stages 1 and 4) and across stages such as
between the uncompute section of stage i and the compute
section of stage i+1
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Mirror Circuit Fully Reversible Pipeline

For the mirror circuit approach, reversibility comes from the circuit rather than the
clock. One approach is to simply transform the irreversible gates into reversible
“expanding” gates by fanning out their inputs and replicating them at the output.
The structure shown in figure 6.4 is a portion of a pipeline for computing an iterated
sequence of maps:

(6.5)

Each of the functions e, f, g, h represents a different invertible map, each of which
may be either an expanding non-onto function (with more outputs than inputs), a
non-expanding bijective function (with the same number of inputs and outputs), or a
conditionally-reversible contracting partial function (with more inputs than outputs).
Thus, the form of the functions efgh is completely unrestricted, apart from the
condition that they be invertible, and that (if they are only partial functions, in other
words only conditionally reversible) their preconditions are satisfied by the actual
data.
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Figure 6.4. Reversible pipeline based on mirror circuits.
The structure is optimized to minimize latency.
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Each of these functions f gets implemented in pipelined fashion by embedding it into
an expanding function f., (generally with more outputs than f) which is composed
directly from the immediately-available pipelineable reversible primitives, some of
which may be expanding operations (e.g., AND with both inputs copied, or MAJ
with all 3 inputs copied). The result is that we get both the desired output y = f(x)
and also some garbage data (“gbg” in the figure). To get rid of the garbage data,
we construct the inverse f;! of f., by using the mirror-image circuit, leaving us with
just z and y. All this is particularly easy to do in QDCA due to the fact that its
reversible gates can be input-consuming, and information can flow through them in
either direction, depending on the clocking sequence.
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After obtaining y, we would like to get rid of x. This is done later on by constructing
the inverse f~! of the function f and embedding it into an expanding circuit, f..!.
Note that f'z is in general a totally different circuit from f'! The difference is
that f;! takes y and produces z plus garbage, whereas f_;! takes y plus garbage and
produces x. There is in general no simple, straightforward transformation from one of
these circuits to the other! In fact, if f is one-way, then f_! will be an exponentially

. . 71
larger circuit than f_ .

After obtaining a new copy of x plus garbage, we then decompute both copies of x,
and the garbage by running them through e_xl*l, which is simply the mirror-image
circuit of f'. We are now left with only y, which can be taken through the next
function in the desired sequence.

To reduce the latency, notice that in figure 6.4 we have interleaved things so that we
can begin the next function g as soon as we have obtained y for the first time. After
running g, and its mirror g_!, we use y as input to f_!, producing the garbage that is
required in order for us to be able to use ;}71 to decompute the copy of x that is out-
put from the e_!/ e;j_l sequence which is used to decompute w, which is the original
input to the previous stage e., (not shown) that produced x originally. This elegant

structure emerged from a discussion between Mike Frank and Erik DeBenedictis.

The advantages of this structure are as follows: The input-output latency is almost
as low as possible; the only time overhead here is perhaps the extra propagation
delay required for the signals to travel longer distances necessitated by the hardware
overheads compared to an irreversible solution. The throughput is as high as possible
since data can be propagated through the pipeline in a minimal 3-phase wave pattern;
the only lower bound on the wavelength is the cell size, or the minimum width of the
clocking wires. The clocking pattern is columnar and highly regular. Only 3 clocks
are needed if crossovers are provided at the hardware level. The number of crossovers
required is not especially large.

The only significant disadvantage of this design style is that it requires somewhat more
than 4 times the hardware of an irreversible solution, and about twice the hardware of
the bidirectional-retractile approach. This is due to the use of the mirrored, inverted,
and mirrored-inverted versions of each function, in addition to the original function.
This is in contrast to the retractile approach where the mirrored versions of the
circuits reuse the same hardware and merely retract the clocking sequence.

The total number of gate-operations performed is about the same in the two tech-
niques, since they both require roughly four gate operations for each gate in the
original circuit (do expanding function, undo it, do expanding inverse function, undo
it). However, one should keep in mind that for either design style, if the original
function has a one-way characteristic, then the overhead to implement the inverse
functions can be significant, and in such cases, it may be preferred to operate irre-
versibly, or to keep around the original inputs as garbage, even if the original function
was invertible and thus garbage-free operation was possible in principle.
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One can think of the mirror-pipelined circuit shown in figure 6.4 as an “unrolled”
version of the same operation sequence that is shown in figure 6.2. Similarly to
the situation with loop unrolling for microprocessors, more redundant code (here, cir-
cuitry) is required, but the parallelizability of the code is improved, and the achievable
throughput is greater.

Collapsed Bennett

At a high level of abstraction, reversibility can be forced onto any algorithm or circuit
by saving the inputs and all intermediate results. However, depending on the function,
this can lead to an exponential explosion in the amount of data that needs to be
stored. Charles Bennett proposed an algorithm that minimizes the amount of data
that needs to be stored at the cost of execution time [2]. Using Bennett’s algorithm,
any irreversible algorithm can be divided into segments that will be calculated, have
the intermediate result latched so it can be used by the next segment, and then
when it is no longer needed, uncalculate the intermediate result so it does not have
to be stored. Bennett’s algorithm is an optimal ordering for the computing and
uncomputing the segments. Figure 6.5 shows an example of the order of computations
and uncomputations for an algorithm broken into eight segments.
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Figure 6.5. Bennett’s algorithm divides an algorithm into
stages (8 stages in this example) and selectively computes and
decomputes them to store the least amount of data necessary
to maintain the reversibility of an irreversible algorithm.

Erik DeBenedictis introduced the beginnings of a potentially implementable model
that collapses Bennett’s reversible algorithm tree into a single level of logic with a
stack at either end of the combinational logic and a shifting mechanism to pop the top
of one stack and push it onto the other stack (i.e. shift left or shift right). I further
developed this model and designed a simple ripple-carry adder to demonstrate the
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proposed operation.

A schematic of the components can be seen in figure 6.6. It consists of a left stack,
an area of combinational logic, a shifter unit, a shift-disable area, and a right stack.
In addition, the logic unit as a whole can be disabled by adjusting the voltage bias
across the area, and separately the shifter can be similarly disabled.

Interface to Stacks

Figure 6.6. The regions of the collapsed Bennett layout
include two stacks, a logic or computational area, a shift area
that allows data to be transferred between the stacks, and an
interface between the stacks and the logic and shift regions.

The collapsed Bennett model operates as follows:

1. Initial input begins at the top of the left stack

2. A cascade shaped Bennett clock moves across the logic section (starting at the
left, the clock goes high and stays high as the clock front travels to the right).

3. Result is latched at the top of the right stack
4. The cascade is retracted, decomputing the logic (leaving the results latched)

5. A set of results is shifted to prepare for the next stage

a) Right stack is popped and the value is pushed onto the left stack (via
the shifter) and is ready to be the input in the next cycle

b) Left stack is popped and the value is pushed onto the right stack (via
the shifter) and is ready to be decomputed in the next cycle

6. This process is repeated with the shifting determined by Bennett’s 1989 algo-
rithm [2]

A simple adder is shown in this section to illustrate the operation of the layout and
demonstrate the required interfaces between the computation and storage. One can
imagine sandwiching an entire processor between two stacks in this manner for a
general purpose reversible processor.
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Shift Disable

Figure 6.7. There are two disable sections in this layout.
The top area disables the logic, while the bottom area dis-
ables the shift. While disabled, the QDCA cells have no value
and do not contribute to the computation of any nearby cells.

Figure 6.8. Clocking signals required for four modes of
operation of collapsed Bennett clocking layout: (a) Compute,
(b) UnCompute, (c) Shift Left, (d) Shift Right

Partially Reversible Pipeline

This section reports the proposed approach to obtain high performances in power
consumption and throughput. The design is divided into computational and memory
stages, the computational stages are clocked with the Bennett scheme and do not
dissipate power whereas the memory stages are used to introduce multiple stages
in the circuit and therefore to increase the computation speed with pipelining. We
consider a circuit as being partitioned into N stages where each stage has i; inputs
and o; outputs. Obviously i; = o¢;_y).
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Figure 6.9. Proposed pipelined approach: Top view
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Computation Stages

In this section we describe the clocking scheme for the combinational parts of the
circuit. Before describing the adopted clocking scheme we provide some background
on the clock distribution techniques and clocking schemes proposed for QDCA.

We use the distribution mechanism introduced in [15] where a E field generated on
a layer of metallic wires above (or below) the QDCA layer controls the tunneling
inside of the single QDCA cells: since the cells are not directly connected to the
clocking circuitry, this approach has the major advantage of allowing very high level
of integration for the QDCA cells that can be implemented with molecules. Moreover
the continuous transition of the E field on the leading edge of the wave reduces the
possibility of kink. The traveling E field of [15] is generated by providing each of
the wires with a voltage phase shifted from the neighbor of a A¢ = 7 having a
conducting (ground) layer on the other side of the QDCA layer. [15] shows that the
E field generated with such circuit can assume a sinusoidal shape thus allowing for
the so called wave clocking i.e. the E field or more accurately, the component of the
vector E in the z direction E., in the QDCA layer is described by the wave equation
[21]:
E.(z,t) = Eqcos(kz — wt)

With the wave clocking the switching of the cells occurs only on the edge of the
wave therefore implying a clear directionality in the propagation and virtually a null
probability of kink. This traveling wave is also referred to as “computational wave”
[5] and is a space continuous implementation of the classic four phases- four zones
clocking scheme introduced in [22]. The Landauer clocking [42] is another name of
this scheme and it refers to the fact that the traveling wave performs always a copy
function of the data before deleting it (as for example in the QDCA wire).

The maximum performance in terms of speed is related to the maximum applicable
clock speed and is a consequence of the physics of the tunneling between quantum
dots. In order to maintain the adiabatic solution of the Scrhodinger equation it is
required that the switch time ¢* for the E field on a cell to be higher of the tunneling
speed between quantum dots [22] consequently the fastest applicable clock period to
a cell is

T, = 2t*

21
2t °

and therefore w < wy =

The constraint on the maximum applicable period will be used in a later section to
measure the throughput of Landauer clocking for the case studied, generally for o

outputs T'r = 5. Moreover the traveling £, wave is also characterized by its phase
velocity

Lw A

k2t

, therefore for a given t*, v and \ are inversely proportional: a faster traveling wave
implies a a lesser populated pipeline (i.e. a smaller number of data present in the
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pipeline at a given time ¢) and vice versa.

In this paper we use the wave clocking distribution mechanism of [15] to reproduce
the Bennett clocking scheme in the computational stages of the pipeline therefore our
computational wave [5] is split in Bennett clocked zones [20] [21].

The Bennett scheme has two steps, in the first step it performs the computation on the
inputs and propagates to the outputs without ever deleting the intermediate results
until the outputs are generated and latched, in the second step the clock “backs oft”
i.e. the release of the cells starts from the outputs and goes back to the inputs with
a eventual release of the whole circuit. The second step is what can be called the
de-computation as in this stage all the intermediate results latched in the QDCA cells
are released, this process does not delete any information as it is easy to show that any
released cell has always at least one cell on its left that carries its same information,
therefore when the cell is released there is always a copy of its information, this copy
process is what saves the information to be thermalized as shown in [42].

Circuits implemented with Bennett clocking therefore do not dissipate energy pro-
vided that the input and output are copied while the speed of computation is a
consequence of the time required to the signals to propagate back and fort in the
circuit.

Moreover circuits clocked with the Bennett scheme have also an important advantage
that the circuit does not require any modification to the layout to avoid deleting the
information included in the inputs as it would happen if the inputs needed to be
propagated to the outputs as shown in Figure 6.11. Figure 6.11 also shows that if the
computation is done in an irreversible way i.e. without preserving the information of
the inputs, the power dissipated when losing a bit of information is almost equal to
the kink energy Eyss ~ Er > KTIn2. The value of the dissipated energy is obtained
from the non equilibrium equation i.e. a set of first-order differential equations for
the coherence vector of QDCA cells in contact with the thermal environment [21].

The Bennett scheme can be implemented through the wave clocking by applying
suitable signals (¥, ...®,, shown in Figure 6.13) to the buried wires in order to have
the propagation of a computational wave that keeps the the cell locked and therefore
the intermediate results until the output are saved in the memory stage and after
releases the cells in the opposite direction following the two steps procedure discussed
above. The temporal sequence of the clock value throughout the Bennett stage is
shown in Figure 6.12 where T represents the time period of the stage.

The signals applied to each buried clocking wire are shown in figure 6.13; as can
be seen the phase ®; of stage j + 1 releases the information contained in it while
the memory stage is switching and the the phase ®,, of stage j is in hold phase.
This should allow an asymmetric interaction of the memory cell that should allow to
propagate always the value on the stage j while not deleting the information in stage
J + 1 when this has the same value on the one in stage j.
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Figure 6.12. Clocking wave for the Bennett scheme
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With this clocking scheme data are output from the stage at every period ¢t = T that
is required to propagate the wave forward to the outputs and back to the inputs. An
approximate analytical expression of F.(x,t) is the following

E.(z,t) = Eq (1 —up <)\£ — trip(t — g)>)

where ug is the Heaviside step function trip is the triangular function of width T
and A, is the width of the Bennett-clocked region. The use of uy represents an
approximation on the use of smooth transitions of duration ¢*.

As discussed above, to keep adiabaticity the switch time on a cell must be at least ¢*
therefore, considering d the lateral size of a QDCA cell, and N = \./d the width of
the Bennett-clocked region in number of cells, we have

2\

Memory Stages

The memory stages are a single buffer register used to separate the different stages of
the pipeline, their implementation is rather straightforward as they could in principle
be implemented with a single vertical row of QDCA cells or the minimum number of
cells related to the achievable pitch of the clocking wires. The memory stages provide
the inputs to the Bennett clocked zones and latch their outputs; as shown in Figure
6.14 the clocking signal is sinusoidal with the same period T of the Bennett clocking
scheme. As discussed above when describing the clocking scheme of the computation
stages, an asymmetric interaction on the memory cells should provide a left to right
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directionality of the information propagation while also avoiding the deletion of the
information coming from the right when it represents the same binary value of the
one coming from the left. A sketch of the propagation in the two opposite directions
is shown in Figure 6.15 where two opposite values are interacting on the memory
cells in the middle. Since the cell on the left locks its value (attains the hold phase)
earlier than the one on the right, the Coulombic interaction (quadripole moment) on
the memory cell is stronger and therefore it should cause the memory cell to assume
its value. It is evident that the proposed asymmetric interaction requires a very
accurate synchronization of the clocks, that could be beyond the reach of a feasible
implementation: therefore if the overlapping of the switch zone of the memory and
the relax zone of the stage 7 + 1 would show too many difficulties the waveforms
of figure 6.13 and 6.14 could be modified to avoid such overlapping. Obviously this
modification would imply that the decomputation of data in the stage j + 1 would
always delete all the inputs and not only those that are different from the outputs of
the stage j.

Vmax

s, Stage j
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Vinese 1 E
Prnem / \ Memory

vmln

Vinax i E
61 \ / Stage f#+1
y : : shifi=T.2

min

T2 T t

Figure 6.14. Clocking signal for the memory zones

Performance evaluation

The performances of the proposed solution are evaluated both in terms of throughput
and power consumption The following considerations apply:

e the stages allow introducing pipelining and therefore increase the throughput

e the number of stages increments the power consumption as it increases the
amount of discarded information
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Figure 6.15. Asymmetric interaction on the memory cell

Therefore the allocation of the amount of stages is the outcome of a trade off among
computing performances and power consumption.

For what is related to the throughput we already showed in a previous section that
the period of a Bennett stage is T, = 2Nt*, therefore for a pipelined combinatorial
circuit (no feedback loops are considered) composed of M stages and o outputs the

throughput is
o o)

T.=— =
T, 2Nt

whereas, as shown in Figure 6.16 the initial latency is proportional to T;/2:

MT,
m:Qb

For the same M staged pipeline the power consumption as a function of time P()
can be expressed as follows:

P(t) = Eagiws - »_ > Ki(t)3(t — *57) (6.6)

where K;(t) is the number of inputs on stage 7 that change value at time ¢, Fgiss is
the energy dissipated (thermalized) when a bit is deleted on the stage registers. The
time varying value of K;(t) accounts for the random time variability of the data in the
pipeline on the memory stage 7 and it could be considered being in average equal to
half of the bits stored in the memory. The power dissipation of a circuit is therefore
spatially localized on the memory stages and is a time varying function composed of
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Figure 6.16. Pipelined stages with Bennett clocking

a train of pulses accounting for the dissipation occurring at the discrete time instants
t = jT/2 (with j integer) on the memory stages, Figure 6.17 shows a possible shape
of the P(t) not related to a specific circuit implementation. Note also that, as can
be seen in Figure 6.16 at each t = j7'/2 the power dissipation occurs only on [ M /2]
i.e. at the same the deletion of data occurs only in that half of the memory stages
where the computing and the decomputing waves meet. Consequently, at a given
time ¢t = nT'/2 the actual number of coefficients K;(t) # 0 is | M/2].

P(t) -,

t‘ttfltTtI t

T2 T 3172 2T 5172 k1) 712 5T KT t

Figure 6.17. Possible shape of P(t)
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Case Study: parity checker XOR tree

The size of the zones clocked with the Bennett scheme can vary from a minimum
of two QDCA cells size (the one cell case would be degenerated into a Landauer
scheme and the clock would be a traveling wave) to the size of the whole circuit (thus
becoming a purely Bennett clocked circuit). As stated previously, we expect that by
increasing the size of the zones the throughput and the power consumption would
decrease.

It should be noticed that the contribution to power dissipation strongly depends on
the circuit layout: a circuit composed of only wires and inverters and thus composed
of only reversible building blocks, would have the best performances with Landauer
clocking as no information would be deleted apart from the I/O whereas a circuit
comprising Majority voters would require the introduction of a Bennett scheme to
reduce the dissipation due to the deletion of information. To have some advantage in
power dissipation a Bennett clocked stage should have a number of MVs big enough
such that the number of bit of information that would be deleted in that stage using
Landauer clocking is significantly higher than the number of inputs deleted of the
Bennett stage. Note that the number of bits deleted in a stage is not necessarily
equal to the MVs as shown in the next example.

We show a simple example of the proposed approach. An M stages binary tree
composed of XOR gates generates the parity bit for w = 2™ inputs. We report an
analysis of throughput and power dissipation of the XOR based parity bit generator
by using the previously introduced formulas with the simplification of the worst case
scenario. The performances in throughput in this case can be evaluated as follows:
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considering that only one output is generated at each T; the throughput for the
Landauer scheme is

Tr = T
. With the Bennett scheme the performances depend on the size chosen for each zone
because this decides the value of T, = 2/Nt*, in the following analysis we will consider
a minimum value of N corresponding to the size (in the x direction) of an XOR gate
and we will evaluate the performances as a function of integer multiples of N. Again
since o = 1 the throughput is

For what is related to the analysis of power consumption, since the XOR function
(XOR(A,B)= (NOT(A) AND B) OR (A AND NOT(B))) comprises two AND and
one OR, as shown in Figure 6.19 there is no combination of the inputs that causes
the presence of different inputs to the three gates at the same time, therefore in the
worst case for each computed output the power dissipation is with Landauer clocking
2F 4. For Bennett clocking also the maximum amount of power dissipated in a XOR
gate is 2Fy;,5 since in the worst case (no overlapping of the waveforms on the memory
stages) both inputs will be deleted.
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Figure 6.19. Dissipation in the XOR gate

To compare the power performances of a M stages binary XOR tree clocked with
the Landauer and Bennett schemes also the following assumptions and definitions are
used:

1. the dissipated energy of a thermalized bit of information is considered equal to
the kink energy, i.e. Fyss >~ Ej

2. the number of stages of the XOR tree is k;

3. the number of stages of the pipeline is M;
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4. the number of stages of the XOR tree per pipeline stage is ¢ = %
5. the kink energy value is Ej; = 3.14577 - 10720 Joule obtained for a molecular
squared cell of lateral size [ = 1.5nm [12] and relative permittivity ¢, = 1 (no

dielectric material between cells)

6. the values of dissipated energy are calculated over the respective period of com-
putation for each scheme, the corresponding power values are considered aver-
aged on the same period

7. since we are considering the worst case scenario, the value of K;(t) from equation

6.6 is non time dependent therefore the deleted information is always equal to
the number of inputs of stage ¢

From the previous assumptions and from equation 6.6 the energy dissipated in a
period T, for Bennett clocked scheme in the XOR binary tree is calculated as follows:

Ty
Ey — / Py(t)dt
0

where the formula for the sum of a geometric progression of ratio 2¢ has been used.
Similarly the energy dissipated in a Landauer clocked binary tree is also the sum on
the energy dissipated on the whole binary tree:

T
B, - / Pu(t)dt
0

M-—1
= 2E, Z X
=0

= 2E,(2™ —1)
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Figure 6.20. Throughput comparison

Figures 6.20 through 6.24 compare on different parameters a binary tree with M=14
stages as a function of the number of stages of the XOR tree per pipeline stage is ¢,
obviously being ¢ a parameter used only for Bennett scheme the values for Landauer
scheme are always constant.Moreover, even though only the values of ¢ that provide
an integer M are physically significative, the extra points are used to show a better
interpolation of the curves. when c=14 the Bennett scheme has no actual pipelining
being the whole circuit in an only Bennett stage.

Figure 6.20 shows a comparison of the throughput in the Bennett and Landauer
scheme, as expected the Landauer scheme shows higher throughput and the gap
between the performances increases with the increase of c.

Figure 6.21 shows the advantages of the Bennett scheme as a measure of the dissipated
energy per period of computation (formulas reported above). The improvement in
terms of power consumption becomes better with the increase of ¢ however the power
dissipated also with a pure Bennett scheme ¢ = 14 does not become zero as the inputs
to the whole circuit are still deleted every T.

Figure 6.22 compares the power dissipation computed as the ratio between the energy
dissipated per period computation over the time length of a computation period 7; and
T,. The curves show again that the power dissipation for Bennett clocking improves
with the increase of c.

Figure 6.23 instead tries to answer to the questions “what is the amount of operations
(in this case output bits) per unit energy spent?” the answer also here show that
Bennett clocking is more efficient for energy considerations.
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Finally figure 6.24 addresses the question “Given a second of time and a Joule of
energy, what is the amount of operations (output bits) obtained?” thus introducing
also a time factor to the evaluation of the performances, in this case the result show
an interesting intersection of the two curves introducing a watershed between the val-
ues of ¢ for which Landauer clocking has better performances (¢ < 6) and the those
for which Bennett clocking behaves better (¢ > 6). This result can be explained as
follows: for low values of ¢ the throughput advantages of using a pipelined approach
with the Bennett scheme are not sufficient to overcome the penalty in terms of power
dissipation, with the increase of the size of the pipeline stages (higher ¢) the advan-
tages in terms of power dissipation have a bigger impact with respect to the reduction
in performances.

Discussion

Three very different approaches to reversible system design. The reversible pipeline is
erasure free at the cost of twice the circuit space. The Collapsed Bennett layout uses
minimal additional area but incurs a time penalty. The partially reversible floorplan
is relatively time and space efficient at the cost of power dissipation. The examples
discussed here are clearly not an exhaustive list. However, they do present three very
different approaches to the problem. The fully reversible pipeline approache attacks
the erasure problem primarily with hardware. The partially reversible pipeline some-
what ignores the higher level problem and trades minimal dissipation for increased
throughput. The Collapsed Bennett layout approaches the problem through a higher
level algorithm. To design small, fast, low-power systems, one must be aware of all
these approaches and be on the lookout for more.

Summary

Tables 6 and 6 summarize the set of the assumptions made for each architecture.
This chapter presented several examples of very different approaches to architecture
design for reversible QDCA systems. Which is the “best” will depend on the relative
availablility of time, space, and power and the particular QDCA implementation.
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Table 6.3. Summary of Assumptions, Part I

|

Architecture

\ Assumptions

Common for All Architectures

Data on QDCA layer cannot
influence clock

Physical crossovers available

Irreversible

Zone floorplanning
Zone-type clock signal
Four phase clock

Both 90 degree and 45 degree
cells available

Retractile Cascade

Zone or abutting columnar
floorplanning

Bennett clock signal

Multiple phase clock




Table 6.4. Summary of Assumptions, Part II

Architecture

\ Assumptions

Mirror Circuit

Zone or abutting columnar
floorplanning

Landauer clock signal

Multiple phase clock

Collapsed Bennett

Zone or abutting columnar
floorplanning

Bennett and pulse clock sig-
nals

Multiple phase clock

Partially Reversible Pipeline

columnar floorplanning
Bennett clock signal and latch

Multiple phase clock
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Chapter 7

Conclusion

This document is the first attempt to describe how to go about designing a QDCA
system, and the first description of how to design reversible QDCA systems above
the single gate level. The design space is substantial, and there are many questions
that designers need to answer before beginning to design. This document attempts to
make those questions clear and explicate the tradeoffs to be made while introducing
techniques and tools that can be used to design power efficient QDCA systems.
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