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SYNOPSIS 

Progress in both molecular techniques and phylogenetic methods has 

challenged many of the interpretations of traditional taxonomy.  One example 

is in the recognition of the animal superphylum Lophotrochozoa (annelids, 

mollusks, echiurans, platyhelminthes, brachiopods, and other phyla), 

although the relationships within this group and the inclusion of some phyla 

remain uncertain.  While much of this progress in phylogenetic 

reconstruction has been based on comparing single gene sequences, there 

are also higher order features of genomes, such as the relative order of 

genes, that have contributed, and this seems likely to be even more fruitful in 

the future. Even though tremendous progress is being made on the 

sequence determination of whole nuclear genomes, the dataset of choice for 

genome-level characters for many animals across a broad taxonomic range 

remains mitochondrial genomes.  We review here what is known about 

mitochondrial genomes of the lophotrochozoans and how comparisons of 

some of these features may be useful in discerning the phylogeny of this 

group. 
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INTRODUCTION 

Because of improvements in molecular techniques over the past few 

decades, there has been an exponential increase in DNA sequences 

available, including those of complete genomes.  This enormous and rapidly 

growing data set is touching many areas, and has revolutionized our 

understanding of the evolutionary relationships among organisms, especially 

at very deep levels.  One of these revised understandings is that Protostomia 

includes several phyla that were previously excluded from the Coelomata 

(see below) and that it is composed of two major lineages, the 

Lophotrochozoa (Halanych et al. 1995) and the Ecdysozoa (arthropods, 

priapulids, nematodes, and other phyla) (Aguinaldo et al. 1997) although 

some maintain a contrasting view (Wägele et al. 1999; Blair et al. 2002; 

Philip, Creevey, and McInerney 2005).  This new classification is supported 

by comparisons of multiple data sets, including 18S rRNA (Halanych et al. 

1995; Aguinaldo et al. 1997; Giribet et al. 2000; Peterson and Eernisse 2001; 

Mallatt and Winchell 2002), the ATPase -subunit gene (Anderson, Cordoba, 

and Thollesson 2004), Hox cluster data (Adoutte et al. 2000; de Rosa 2001), 

and morphological data (Peterson and Eernisse 2001; Glenner et al. 2004). 

The Lophotrochozoa appears to include the phyla Brachiopoda, 

Phoronida, Bryozoa, Annelida, Echiura, Sipuncula, Rotifera, 

Acanthocephala, Gastrotricha, Gnathostomulida, Nemertea, Entoprocta, 

Dicymida, Orthonectida, Cycliophora and Platyhelminthes (Halanych 2004) 

(with the probable exception of acoels and nemertodermatids; (Ruiz-Trillo et 
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al. 1999; Ruiz-Trillo et al. 2002; Ruiz-Trillo et al. 2004)).  The inclusion of 

Chaetognatha, either within Lophotrochozoa or basal to the larger 

protostome assemblage, is still contentious (Helfenbein et al. 2004; Papillon 

et al. 2004).  In either position, the Chaetognatha has been convincingly 

shown not to be part of the superphylum Deuterostomia, as had been 

previously thought (Telford and Holland 1993; Wada and Satoh 1994; 

Papillon et al. 2004), a shift in interpretation that also applies to the phyla 

Brachiopoda, Phoronida, and Bryozoa (Field et al. 1988; Ghiselin 1988; 

Mackey et al. 1996; Williams et al. 1996; Helfenbein and Boore 2004; 

Passamaneck and Halanych 2004), and that has led to radical 

reinterpretation of the evolutionary patterns in embryological and 

morphological features.  The most radical shift in thinking, though, comes 

from the inclusion within the Lophotrochozoa of phyla without a body coelom 

(Platyhelminthes) or with a pseudocoelom (Nemertea, Rotifera, 

Acanthcephala, etc), leading to what Andre Adoutte has called “the end of 

the intermediate taxa” (Adoutte et al. 1999). 

Despite some controversy over the inclusion of a few phyla, the reality of 

the Lophotrochozoa is generally well supported.  However, the relationships 

within the lophotrochozoan taxa are still contentious and poorly resolved 

(Adoutte et al. 1999; Adoutte et al. 2000; Halanych 2004).  This lack of 

resolution, thought to be due to the rapid radiation of these taxa (Halanych et 

al. 1995; Halanych 2004) whether comparing 18S rRNA (Halanych et al. 

1995; Aguinaldo et al. 1997; Glenner et al. 2004), 28S rRNA (Mallatt and 
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Winchell 2002), Hox genes (de Rosa et al. 1999; de Rosa 2001), or 

morphology (Peterson and Eernisse 2001; Glenner et al. 2004), demands 

that we search for new and better types of phylogenetic characters.  

Comparing genome-level characters (Boore 2006) such as gene order is the 

next logical step. 

Although nuclear genomes undoubtedly contain a large number of such 

features, the best hope in the short run, due to considerations of expense 

and effort, may lie in comparing complete mitochondrial genomes.  Animal 

mtDNAs are of small size, typically less than 20 kb, are circular in form 

(except in some cnidarians (Bridge et al. 1992)), contain clearly homologous 

genes across the Metazoa (although a few cases have been shown where 

tRNA genes are paralogous, i.e., having arisen by gene duplication 

(Cantatore et al. 1987; Higgs et al. 2003; Rawlings, Collins, and Bieler 2003; 

Lavrov and Lang 2005), generally have little non-coding sequence, are 

maternally inherited, and can be physically isolated from nuclear DNA or 

amplified by long-PCR using primers matching conserved sequences (Boore 

1999; Boore, Macey, and Medina 2005).  Animal mitochondrial genomes 

typically have 37 genes, which encode 13 protein subunits for components of 

the respiratory chain (cox1-3, nad1-6, nad4L, atp6, atp8, and cob), 22 tRNAs 

(denoted as trnX with X being the one letter code for the corresponding 

amino acid), and two ribosomal RNAs (rrnS and rrnL).  A few exceptions 

exist, including those in some mollusks (Boore, Medina, and Rosenberg 

2004; Yokobori et al. 2004), platyhelminths (Le et al. 2000; von Nickisch-
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Rosenegk, Brown, and Boore 2001), nematodes (Okimoto et al. 1992), 

chaetognaths (Helfenbein et al. 2004; Papillon et al. 2004), cnidarians 

(Beagley, Okimoto, and Wolstenholme 1998; Van Oppen et al. 2002), and 

sponges (Lavrov et al. 2005).  The sequences of nucleotides and amino 

acids can be compared as well as higher level features such as gene 

arrangements (Boore and Brown 1998). 

Within most mtDNAs there is a single large non-coding region (NCR) that 

is known for some animals to contain the origin of replication and other 

elements for controlling transcription and replication (Clary and 

Wolstenholme 1984; Clayton 1984; Clayton 1991; Shadel and Clayton 

1997).  Within lophotrochozoans, even though NCRs are also present, no 

experiments to date have tried to identify such elements.  In some mtDNAs 

all of the genes are transcribed from the same strand, whereas in others they 

are distributed between both strands; in all figures of this work the genes are 

drawn as transcribed from left-to-right except for those underlined to indicate 

opposite orientation. 

There are 655 metazoan species for which complete mtDNA sequences 

are available at the National Center for Biotechnology Information (NCBI, i.e. 

GenBank), of which only 148 (less than a fifth) are protostomes. Of those 

only 40 are lophotrochozoans (Table 1), the rest being arthropods (96) and 

nematodes (12). As these numbers illustrate, there is an incredible bias 

towards deuterostome (especially vertebrate) sequencing. 
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However, among animal mtDNAs, it is outside of the Deuterostomia (and 

notably within the Lophotrochozoa) where the most remarkable variation in 

mtDNA features has been noted to occur, begging investigation in many 

questions such as:  Why do lophotrochozoan mtDNAs have such a large 

number of gene rearrangements and other novel features? How does the 

complex form of inheritance dubbed “doubly-uniparental” inheritance found 

for some lophotrochozoans (see below) relate to population structure or 

affect the co-evolutionary patterns with nuclear-encoded genes whose 

products function in mitochondria?  Are there cellular mechanisms that have 

made mitochondrial genes of this group more prone to being lost, 

rearranging, or having introns? 

In the past six years the number of complete mtDNAs sequenced from 

this group of organisms has increased by a factor of four, but it is still far 

from the amount of available data for arthropods or deuterostomes.  This 

review summarizes the information available for mitochondrial genome 

structure of lophotrochozoan animals and discusses the promise of further 

study for revealing novelty of structure and mechanism and for addressing 

the evolutionary relationships within this group. 

 

Annelida 

The annelids (segmented worms) show great diversity of ecological 

niches, morphological features, and reproductive strategies.  Traditionally 

they were believed to be closely related to arthropods since both phyla share 
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a segmented body plan and narratives of morphological transformation from 

lobopod to myriapod to insect were tempting to believe.  However molecular 

phylogenies have concluded a closer relationship of the Annelida with 

mollusks and other lophotrochozoans, indicating that segmentation could be 

a much more plastic character then previously thought. 

Recent studies have concluded that three other groups previously 

recognized as independent phyla, Echiura, Pogonophora, and 

Vestimentifera, are probably contained within the Annelida (Winnepenninckx, 

Backeljau, and De Wachter 1995; McHugh 1997; Kojima 1998; Boore and 

Brown 2000).  This may also be true for the Sipuncula (Boore and Staton 

2002), although the data available still are inconclusive (Mackey et al. 1996; 

Halanych, Dahlgren, and McHugh 2002; Glenner et al. 2004; Jennings and 

Halanych 2005).  

Complete mtDNA sequences are available for only four annelids (even 

when including the echiuran):  Lumbricus terrestris (Boore and Brown 1995), 

Platynereis dumerilii (Boore and Brown 2000; Boore 2001), Clymenella 

torquata (Jennings and Halanych 2005), and Urechis caupo (Boore 2004).  

Partial (about half in each case) mtDNA sequences are available for the 

pogonophoran Galathealinum brachiosum, the hirudinid Helobdella robusta 

(Boore and Brown 2000), and the sipunculid Phascolopsis gouldii (Boore and 

Staton 2002) (Fig.1). 

The gene order is very similar among the studied annelids, with just a few 

tRNA genes in different positions.  Only a moderate number of gene 
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rearrangements are necessary to explain the differences with the echiuran 

and sipunculid.  In all cases studied so far, all the sampled genes are 

transcribed in the same direction; as has been suggested before (Boore 

1999), there may be an evolutionary “ratchet” in cases where all genes 

coincidentally occur on the same strand that is caused by the loss of the 

transcriptional signals for the opposite strand, which then makes further 

inversions lethal. 

One other annelid exhibits a feature that has not been observed to date 

in the mtDNA of any triploblast animal, the presence of an intron (Vallès, 

Halanych and Boore, in preparation).  Previously, the only introns found for 

any animal mtDNA had been observed in diploblastic cnidarians (Beagley, 

Okada, and Wolstenholme 1996; Beagley, Okimoto, and Wolstenholme 

1998; Van Oppen et al. 2002) 

 

Platyhelminthes 

Platyhelminthes (flatworms) has generally been considered as the most 

basal bilaterian group.  They are characterized by the lack of a coelom and 

(in most) an anus and the capability of reproducing both sexually and 

asexually.  Recent studies indicate that Platyhelminthes in the traditional 

sense is not monophyletic, with the acoels and the nemertodermatids being 

basal bilaterians (Ruiz-Trillo et al. 1999; Ruiz-Trillo et al. 2002), but all others 

being derived within the Lophotrochozoa.  Understanding their evolutionary 

relationships has been controversial and attracted much attention since they 
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include many groups of parasites of importance to agriculture and human 

health (Littlewood, Rhode, and Clough 1999). 

There are 11 complete platyhelminth mtDNA sequences available in 

NCBI (Fig. 2) of which all are parasites:  Hymenolepis diminuta (von 

Nickisch-Rosenegk, Brown, and Boore 2001); Taenia asiatica (NC004826); 

T. solium (Nakao, Sako, and Ito 2003); T. crassiceps, Schistosoma 

japonicum, S. mekongi, S. mansoni, Fasciola hepatica, Paragonimus 

westermani (Le et al. 2000); Echinococcus multilocularis (NC000928) and E. 

granulosus (Le et al. 2002).  All of these mtDNAs have a similar gene order, 

differing only in the position of a few tRNA genes (trnE, trnS(nga), trnV, 

trnL(yaa), trnS(nct), and trnY), with the exception of S. mansoni, which has 

numerous rearrangements compared to the others, including transpositions 

of protein-encoding genes. In all of these platyhelminth mtDNAs, all genes 

are transcribed in the same direction and they all lack atp8.   

There are also available partial sequences of an acoel, Paratomella 

rubra, a nemertodernatid, Nemertoderma westbladi and a the free-living 

rhabditophoran, Microstomum lineare (Ruiz-Trillo et al. 2004).  Comparison 

of these partial gene arrangement to those that are complete reveals great 

variability within the structure of mtDNAs of platyhelminthes (Ruiz-Trillo et al. 

2004).  Even though the mtDNA is still incomplete, all genes sequenced to 

date for the three latter taxa are transcribed in the same direction. 
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Mollusca  

Mollusca is among the largest of phyla, displaying vast diversity in 

morphological, physiological, and ecological traits.  Characterized in most 

cases by the presence of the radula (a feeding apparatus formed by a 

chitinous ribbon of teeth), mollusks are traditionally (and contemporarily) 

considered to be coelomate protostomes.  There are a total of 20 complete 

mtDNA sequences of mollusks available in NCBI; all major groups of this 

phylum except monoplacophorans and aplacophorans are represented by at 

least one complete mtDNA sequence.  The organismal diversity seems to be 

mirrored by the immensely variable features shown by the mtDNAs of these 

organisms, including having doubly-uniparental inheritance (DUI), extreme 

shuffling of gene arrangements, and duplicated and missing genes. 

Bivalves are the second largest group of extant mollusks and exhibit the 

most altered body plan of the phylum (e.g., the radula has been replaced in 

many cases by a filter feeding apparatus, the head and mouth have been 

lost, and the body is encased in a bivalve shell (Giribet and Distel 2003)). 

There are six complete mtDNAs of bivalves (Fig. 3A) available in NCBI:  

Mytilus edulis (Boore, Medina, and Rosenberg 2004), M. galloprovincialis 

(Mizi et al. 2005), Venerupis philippinarum (NC003354), Lampsilis ornata 

(Serb and Lydeard 2003), Crassostrea virginica (Milbury and Gaffney 2005) 

and C. gigas (NC007175). Nearly complete sequences (including all 37 

expected genes and missing only a small fragment between cox1 and cox3) 
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are also available for the male type (AB055624) and female type 

(AB055625) mtDNAs of Inversidens japanensis.  

Bivalves are not just unusual at the morphological level, but they present 

some of the most remarkable characteristics in their mtDNAs as well.  

Although mtDNA is inherited only maternally in almost all animal groups, 

some bivalves have a very unusual mtDNA pattern of inheritance, termed 

“DUI” for “doubly-uniparental inheritance” (Zouros et al. 1994b).  Mothers 

transmit their mtDNA to daughters in the manner found to be typical for 

animals, but transmit this female-type mtDNA to sons such that it populates 

only somatic cells, not gametes, and only provides about half of the mtDNA 

in these somatic cells.  The other half is a variant form of mtDNA that can 

differ by as much as 30% in DNA sequence, and that is transmitted only from 

fathers to sons, which also forms the complete mtDNA repertoire of the male 

gametes.  This type of mtDNA inheritance has been shown to occur in the 

bivalve families Mytilidae, Unionidae and Veneridae (Skibinski, Gallagher, 

and Beynon 1994; Zouros et al. 1994a; Zouros et al. 1994b; Hoeh et al. 

1997; Passamonti and Scali 2001; Cao, Kenchington, and Zouros 2004) and 

so may be widespread within the Bivalvia, or perhaps even more broadly in 

other mollusks. 

Bivalves have also experienced a high degree of gene rearrangement.  

Of the available mtDNA sequences, the only similar pairs are from the 

congenerics C. virginica and C. gigas and the male and female types of I. 

japanensis.  All lack atp8 except L. ornata.  Crassostrea gigas has 
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duplications of rrnS and trnV and M. edulis of trnM.  Only in L. ornata and in 

I. japanensis are the genes transcribed in both directions; all others have the 

genes on a single strand. 

Gastropods are the most studied group of mollusks for complete mtDNA 

sequences and show less variability for mtDNA features.  In all of those 

sequenced to date, all 37 genes are present and the genes are transcribed 

from both strands.  Complete mtDNA sequences are available for four 

pulmonates, Albinaria coerula, Cepea nemoralis, Euhadra herklotsi 

(Hatzoglou, Rodakis, and Lecanidou 1995; Yamazaki et al. 1997), and 

Biomphalaria glabrata (DeJong, Emery, and Adema 2004), and for three 

opisthobranchs, Pupa strigosa (Kurabayashi and Ueshima 2000),  Roboastra 

europea (Grande et al. 2002), and Aplysia californica (NC005827).  These 

two groups have been united into the euthyneurans based on morphology 

and molecular data (Dayrat et al. 2001; Dayrat and Tillier 2002; Dayrat and 

Tillier 2003; Grande et al. 2004).  In general, they display a highly conserved 

gene order where only cox3 and a few tRNA genes (trnC, trnP, trnY and 

trnW) have in various instances changed location within the genome (Fig. 

3B). 

The only complete mtDNA sequence for prosobranch gastropods is that 

of Haliotis rubra (NC005940) and there is a partial sequence of Littorina 

saxatilis (Wilding, Mill, and Grahame 1999).  These have a similar gene 

order, differing by one inversion and several transpositions.  When 

comparing the prosobranchs with the euthyneurans however, very few 
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boundaries (only four) are shared between them, and the prosobranch gene 

order can be seen to be much more similar to that of the chiton (class 

Polyplacophora) Katharina tunicata (Boore and Brown 1994). 

Complete mtDNA sequences are available for four cephalopods: Loligo 

bleekeri (Tomita et al. 2002), Octopus vulgaris, Toradores pacificus, and 

Watasenia scintillans (Yokobori et al. 2004).  They are unusual in the 

number of duplications of NCRs and/or protein coding genes (Fig. 3C).  

Loligo bleekeri contains three NCRs that are approximately 500 bp long and 

very similar in sequence. However these NCRs are not distributed in tandem 

within the mtDNA, making their origin less unclear and inviting speculation 

that some process of concerted evolution maintains their sequence similarity 

(Tomita et al. 2002; Yokobori et al. 2004).  Similar duplications (where the 

duplicated copies have highly similar sequences) are present in T. pacificus 

and W. scintillans, although the duplication of protein coding genes has 

occurred in their mtDNAs as well.  An interesting trait about the latter two, 

(both belonging to the suborder Oegopsina), it is that they have exactly the 

same gene order, except for trnM, and share therefore the same duplicated 

genes, even though they are thought to belong to different families of 

cephalopods.  It would be interesting to see if all or most of the taxa 

belonging to the Oegopsina share such duplication.  

Complete mtDNAs of two scaphopods (Fig. 3D) have been completely 

sequenced to date, those of Graptacme eborea (Boore, Medina, and 

Rosenberg 2004) and Siphonodentalium lobatum (Dreyer and Steiner 2004).  



Valles, 15 

These mollusks are characterized by the presence of a tubular shell open at 

both ends.  This is one of the smallest groups of mollusks, comprising about 

510 species, and there is very little molecular data available (Steiner and 

Reynolds 2003).  The only unusual aspect of G. eborea is the lack of any 

large non-coding region that is usually present and inferred to contain the 

origin of replication and transcription control signals (Boore, Medina, and 

Rosenberg 2004).  Only one gene boundary is shared between these two 

mtDNAs. 

Finally the mtDNA only one polyplacophoran (Fig. 3E) has been 

completely sequenced, the chiton Katarina tunicata (Boore and Brown 1994).  

Contrary to the great majority of mollusks, the chiton shares many gene 

boundaries with most chordates and arthropods.  Clearly those gene 

arrangements shared among this early branching mollusk and outgroups 

constitutes a parsimonious reconstruction of the mitochondrial arrangement 

ancestral at this level of mollusk divergence. 

 

Brachiopoda 

Believed to be mollusks until late into the nineteenth century, brachiopods 

(lampshells) are marine, benthic, solitary organisms constituting an 

independent phylum.  Although this phylum contains only several hundred 

extant species, brachiopods were extremely abundant and diverse in the 

early Cambrian (Nielsen 2001; Brusca and Brusca 2002).  Brachiopods, 

phoronids, and bryozoans are generally grouped together based mostly on 
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the presence of a feeding structure called the lophophore, which gives name 

to the group, the lophophorates.  However it is not clear from molecular data 

that this group is monophyletic (Halanych et al. 1995; Mackey et al. 1996).  

Lophophorate taxa have traditionally been classified as deuterostomes 

based on the presence of a trimeric bauplan (division of the body into three 

coelomic compartments) and, for some groups, deuterostomous formation of 

the mouth.  Molecular data has strongly signaled that the lophophorates are, 

instead, part of the Protostomia (Halanych et al. 1995; Mackey et al. 1996; 

Cohen et al. 1998; de Rosa et al. 1999; de Rosa 2001; Mallatt and Winchell 

2002; Helfenbein and Boore 2004), causing reinterpretation of the evolution 

of many morphological features and to questioning their general reliability for 

phylogenetic analysis. 

Complete mitochondrial genome sequences have been described to date 

for four brachiopods (Fig. 4A): Terebratulina retusa (Stechmann and 

Schlegel 1999); Laqueus rubellus (Noguchi et al. 2000); Terebratalia 

transversa (Helfenbein, Brown, and Boore 2001) and Lingula anatina (AB 

178773). The first three taxa belong to the order terebratulida and are 

articulate brachiopods, whereas L. anatina belongs to the order Lingulida 

and is a inarticulate brachiopod. 

Among the terebratulids, all three mt genomes have all 37 genes present 

and transcribed in the same direction. The size of the genomes ranges 

between 14 and 15.5 kb, with most of this range being accounted for by T. 

retusa having longer protein coding and ribosomal gene length and a greater 
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number of non-coding nucleotides (852 non-coding nucleotides in T. retusa 

versus 202 and 79 in T. transversa and L. rubellus, respectively [Helfenbein 

et al. 2001]).  The larger non-coding region in T. retusa’s mtDNA is 794 bp 

long, between nad1 and nad6, and contains six copies of a 68 bp tandem 

repeat (Stechmann and Schlegel 1999).   Whether this region serves as the 

origin of replication or not is still to be determined experimentally.  Even 

though all three are within the same order of brachiopods, there are 

extensive differences.  Terebratalia transversa and L. rubellus are the more 

closely related pair (both in the Laqueidae) and they share a total of 14 gene 

boundaries.  Terebratulina retusa shares six gene boundaries with T. 

transversa and eight with L. rubellus. 

Lingula anatina on the other hand not only belongs to a different order but 

to a different subphylum of the brachiopoda as well (Linguliformea versus 

Rhynchonelliformea).  Its mtDNA is much larger, at 28,818 bp, and it 

contains multiple duplicated genes, two copies each of trnQ, trnV, and atp8, 

and four copies of trnM.  As in T. retusa, L. anatina has multiple repeat 

regions.  Lingula anatina has all the genes transcribed from the same strand 

but only shares three gene boundaries with T. retusa and two with T. 

transversa.  It would be interesting to see if other linguliformean brachiopods 

(and furthermore other inarticulate brachiopods) have features similar to L. 

anatina and to characterize the features of mtDNAs from representatives of 

the third order of brachiopods, the Craniiformea. 
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Phoronida 

Phoronids are small, marine, benthic worms that build chitinous tubes 

and have a lophophore.  The phylogenetic position of the phoronids has long 

been controversial (as for the rest of the lophophorates).  Although they have 

long been thought to be part of the Deuterostomia due to embryological 

features, molecular data clearly indicates their being part of the Protostomia 

(Field et al. 1988; Halanych et al. 1995; Mackey et al. 1996; Abouheif, 

Zardoya, and Meyer 1998; Mallatt and Winchell 2002; Helfenbein and Boore 

2004). 

Almost all of the mtDNA of Phoronis architecta has been described 

(Helfenbein and Boore 2004) (Fig. 4B).  The sequenced portion contains 31 

genes and the unstudied portion is a single block.  The genes are distributed 

between both strands and, remarkably, the gene order is nearly identical to 

that of the chiton K. tunicata, differing in the position of only three genes 

(trnE, trnD and atp6).  Comparisons of both gene order and sequence 

confirm the inclusion of the phoronids as being lophotrochozoans 

(Helfenbein and Boore 2004). 

 

Acanthocephala 

Acanthocephalans are obligate intestinal parasites of vertebrates and 

have traditionally been classified as pseudocoelomate aschelminths (a 

polyphyletic group no longer accepted by many systematists).  They have a 

highly modified spiral pattern of cleavage in embryogenesis and have often 



Valles, 19 

been thought to be basal to the deuterostome and protostome split.  Today 

molecular phylogenies support the affinities between the rotifers and the 

acanthocephalans (Winnepenninckx, Backeljau, and De Wachter 1995; 

Garey et al. 1996) as part of the protostomes (Winnepenninckx, Backeljau, 

and De Wachter 1995; Cavalier-Smith 1998; Garey and Schmidt-Rhaesa 

1998). 

Leptorhynchoides thecatus (Steinauer et al. 2005) is the only 

acanthocephalan with a complete mtDNA sequence available to date (Fig. 

4C).  As in the case for representatives of several other phyla (i.e. 

platyhelminthes, chaetognaths, nematodes, mollusks), the atp8 gene is 

missing.  All the genes are transcribed from the same strand. 

 

Chaetognatha 

Chaetognaths (arrow worms) are marine, usually transparent organisms 

that were considered until recently to be deuterostomes based on 

embryological characters, including the mouth not arising from the 

blastopore and mesoderm formed by enterocoely (Brusca and Brusca 2002).  

However molecular data point to a protostome affinity.  Both 18S rRNA and 

mtDNA comparisons place the chaetognaths as protostomes (Telford and 

Holland 1993; Abouheif, Zardoya, and Meyer 1998; Peterson and Eernisse 

2001; Helfenbein et al. 2004; Papillon et al. 2004) although their relative 

position within this clade remains controversial.  Whether chaetognaths are 

basal protostomes, lophotrochozoans, or sister taxa to the nematodes is still 
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subject to debate.  It is believed that their high rate of nucleotide substitution 

makes it difficult to reliably determine their phylogenetic position. 

There are only two complete mitochondrial genomes of chaetognaths 

published to date, those of Paraspadella gotoi (Helfenbein et al. 2004) and 

Spadella cephaloptera (Papillon et al. 2004) (Fig. 4D).  In both cases the 

mtDNA is surprisingly small, lacking both atp6 and atp8, and, in the case of 

S. cephaloptera, all 22 tRNA genes and, in P. gotoi, all but trnM.  

Presumably these genes are present in the nucleus with their products 

imported from the cytoplasm.  In both cases some genes are transcribed 

from each strand and a moderate number of rearrangements have occurred; 

they share five of their 13 gene boundaries. 

 

CONCLUSION 

 

The great expansion of molecular data sets and improvements in 

phylogenetic methods have drastically changed our understanding of body 

plan evolution.  Traditional key characters such as segmentation, radial 

versus spiral cell cleavage patterns in early embryogenesis, and modes of 

coelom formation appear to be more plastic and less reliable as phylogenetic 

characters then previously thought.  Although much of our understanding of 

the deepest evolutionary relationships among major animal groups has 

greatly improved, there remains much to do to arrive at a fully resolved 

phylogeny of early animal evolution. 
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An important component of this research lies in comparing mitochondrial 

genomes.  Comparisons of these diminutive, extrachromosomal genomes for 

features both of molecular sequences and gene arrangements have already 

made important contributions to our understanding of the evolutionary 

relationships of major protostome groups (Cohen et al. 1998; Boore and 

Brown 2000; Boore and Staton 2002; Helfenbein and Boore 2004).  To date, 

however, sampling has been highly biased toward chordates and arthropods, 

with no published, completely sequenced mtDNAs whatsoever for several 

phyla, including the lophotrochozoan phyla Bryozoa, Nemertea, Rotifera, 

Entoprocta, and Gnathostomulida. 

Further, mtDNAs are a model system for understanding patterns and 

processes of genome evolution (e.g. Zouros et al. 1994b; Boore and Brown 

1994, 1995; Hoeh et al. 1997; Helfenbein, Brown, and Boore 2001; 

Passamonti and Scali 2001; Rawling, Collins, and Bieler 2003; Boore, 

Medina, and Rosenberg 2004; Yokobori et al. 2004; Mizi et al. 2005).  Their 

small size and the possibility to physically isolate them or to generate 

templates by long-PCR enable broad phylogenetic sampling.  They contain 

all three primary transcript types (protein, rRNA, tRNA), have separate 

systems for translation of proteins, perform several essential cell functions, 

and produce factors that interact with scores or hundreds of nuclear gene 

products. 

The sampling of complete mtDNA sequences for representatives of the 

Lophotrochozoa is at an early stage, but has already raised many interesting 
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scientific questions such as:  Why do some organisms have all the genes on 

the same strand whereas others are divided among the two?  When all 

genes become (through random processes?) oriented on the same strand, is 

there a loss of the transcriptional system of its complement, and would there 

be an advantage to such reduction?  Double-uniparental inheritance has only 

been studied in detail in species of Mytilus, but how commonly does the 

presence of heteroplasmic mtDNA, as otherwise occasionally found, 

indicative of DUI?  What genomic processes are maintaining the sequence 

similarity among repeated elements in some mtDNAs?  How strong is the 

correlation between rates of gene rearrangement and sequence evolution?  

Further study of lophotrochozoan mitochondrial systems promises to yield 

insights into both phylogeny and genome evolution. 
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Table 1 
 

Taxa with complete or partial mtDNAs 

GenBank 
accession 
no. 

No. of 
protein 
genesa 

Complete 
or partial 

     

Annelida Platynereis dumerilii NC_000931 13 C 

 Lumbricus terrestris NC_001673 13 C 

 Clymenella torquata NC_006321 13 C 

 Helobdella robusta AF178680 9 P 

 Riftia pachyptila AY741662 11 P 

 
Galathealinum 
brachiosum AF178679 9 P 

     
Echiura Urechis caupo NC_006379 13 C 
     
Sipuncula Phascolopsis gouldii NC_001636 6 P 
     

Terebratulina retusa NC_000941 13 C 

Laqueus rubellus NC_002322 13 C 

Brachiopoda 

Terebratalia transversa NC_003086 13 C 
 Lingula anatina AB178773 13 (+1) P 
     

Albinaria coerula NC_001761 13 C 

Aplysia californica NC_005827 13 C 

Todarodes pacificus NC_006354 13 (+5) C 

Octopus vulgaris NC_006353 13 C 

Watasenia scintillans AB086202 13 (+5) C 

Biomphalaria galabrata NC_005439 13 C 

Graptacme eborea NC_006162 13 C 

Mytilus galloprovincialis NC_006886 12 C 

Mytilus edulis NC_006161 12 C 

Haliotis rubra NC_005940 13 C 
Siphonondentalium 
lobatum NC_005840 13 C 

Crassostrea gigas NC_001276 12 C 

Crassostrea virginica NC_007175 12 C 

Cepea nemoralis NC_001816 13 C 

Lampsilis ornata NC_005335 13 C 

Roboastra europea NC_004321 13 C 
Venerupis 
philippinarum NC_003354 12 C 

Loligo bleekeri NC_002507 13 C 

Mollusca 

Pupa strigosa NC_002176 13 C 
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Katharina  tunicata NC_001636 13 C  

Euhadra herklotsi Z1693-701 13 P 
 Littorina saxatilis AJ132137 7 P 
 Inversidens 

japanensis(male) AB055624 12 P 
 Inversidens 

japanensis(female) AB055625 12 P 
     

Paraspadella gotoi NC_006083 11 C Chaetognatha 

Spadella cephaloptera NC_006386 11 C 
     

Echinococcus 
multilocularis NC_000928 12 C 
Echinococcus 
granulosus AF346403 12 C 

Fasciola hepatica NC_002546 12 C 

Hymenolepis diminuta NC_002767 12 C 
Paragonimus 
westermani NC_002354 12 C 
Schistosoma 
japonicum  NC_002544 12 C 

Schistosoma mansoni NC_002545 12 C 

Schistosoma mekongi NC_002529 12 C 

Taenia asiatica NC_004826 12 C 

Taenia crassiceps NC_002547 12 C 

Platyhelminthes 

Taenia solium NC_004022 12 C 
     
Acoela Paratomella rubra AY228758 9 P 
     

Phoronida Phoronis architecta AY368231 13 P 

     

Acanthocephala 
Leptorhynchoides 
thecatus  NC_006892 12 C 

          

 

a If only a partial mtDNA sequence has been reported, this is the number of genes 

wholly or partly described.  If the complete mtDNA sequence is available, this is the 

number of unique protein encoding genes included, plus the number of duplicated 

copies in parentheses where these have been found. 
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Figure legends 

 

Figure 1.  Mitochondrial gene arrangements of annelids, including an 

echiuran, and a sipunculid.  Genes have standard abbreviations except for 

those encoding tRNAs, which are designated by just the one-letter 

abbreviation for the corresponding amino acid, with the two leucine and two 

serine tRNAs differentiated by numeral such that L1, L2, S1, and S2 are 

expected to recognize the codons CUN, UUR, AGN, and UCN, respectively.  

All genes are transcribed left-to-right as depicted.  The partial genomes of 

Riftia, Galatheolinum and Helobdella that are available to date have exactly 

the same gene arrangement as L. terrestris insofar as is known. 

 

Figure 2.  Mitochondrial gene arrangements of the Platyhelminthes.  Genes 

are abbreviated as in Figure 1. 

 

Figure 3.  Mitochondrial gene arrangements for the bivalves (A), gastropods 

(B), cephalopods (C), scaphopods (D), and the only polyplacophoran 

available to date (E).  Genes are abbreviated as in Figure 1 except that 

underlining is used to indicate genes in reverse transcriptional orientation, 

i.e., reading right-to-left as depicted. 
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Figure 4.  Mitochondrial gene arrangements of the brachiopods (A), a 

phoronid (B), an acanthocephalan (C), and two chaetognaths (D).  Genes 

are abbreviated as in Figure 3. 


