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ABSTRACT 

We ca lcu la te  t he  branching r a t i o  F(P + i?+i?')/F(P + rr) t o  

lowest contr ibut ing order i n  quantum electrodynamics, with a vector  

meson model for  the  pseudoscalar meson form fac to r .  

processes 7 4p+p-; 7 

Our r e s u l t s  aTe compared with those of previous ca lcu la t ions .  

We t r e a t  t he  

0 0 + -  @+e-; K~ +p+p-; < +. e+e-; fi 3 e e . 

c 
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I. INTRODUCTION 

The decays of  neu t r a l  pseudoscalar mesons i n t o  lepton p a i r s  

a r e  of i n t e r e s t  because t h e  observation of high branching r a t i o s  t o  

these modes may ind ica t e  t h e  existence of neu t r a l  lepton cur ren ts .  A 

r e l i a b l e  estimate of the  branching r a t i o s  due t o  conventional mechanisms 

i s  desirable,  t o  give meaning t o  the  notion of "high branching r a t i o s " .  

A lower l i m i t  f o r  t h e  branching r a t i o  

given by Geffen and B.-L. Young.' 

r ( P  +R+R-)/r(P + m )  has been 

This lower bound (sometimes c a l l e d  

t h e  u n i t a r i t y  l i m i t )  i s  model-independent and depends only on t h e  

assumption t h a t  the  two-photon intermediate s t a t e  dominates the  

u n i t a r i t y  sum f o r  t h e  absorptive p a r t  of t he  amplitude for P + R + R -  

(see Fig. 1). The sca l e  f o r  t he  branching r a t i o  i s  s e t  by t h i s  - t. 

u n i t a r i t y  l i m i t  f o r  7 + p'p-). But the  a c t u a l  p a r t i a l  decay 

r a t e  i n t o  lepton p a i r s  may be an order of magnitude o r  more l a r g e r ,  

depending on t h e  s i z e  of t he  r e a l  p a r t  of t h e  amplitude. Previous 

ca lcu la t ions  by Drell ,2 Berman and G e f f e ~ ~ , ~  Sehgal, 4 and B.-L. Young 5 

have, i n  f a c t ,  given some values very much l a r g e r  than t h e  u n i t a r i t y  

l i m i t ,  depending on t h e  cut-off parameters and o the r  d e t a i l s  of t h e  

models. 

Because of t h e  i n t e r e s t  by experimenters i n  a p l aus ib l e  

r ( P  + R+R-)/I'(P 3 y y ) ,  _. t h e o r e t i c a l  estimate of the  branching r a t i o  

and because of t h e  wide range i n  t h e  previous t h e o r e t i c a l  estimates,  

we present ye t  another ca lcu la t ion ,  based on a vector-dominance model 

of electromagnetic couplings. I n  'the main we assume t h a t  t he re  a r e  no 
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d i r e c t  Pry or PVr couplings. All photon couplings then occur v i a  

the intermediary of vector mesons, as i s  shown f o r  t he  relevant  

processes i n  Fig.  1. 

The form f a c t o r  f o r  t he  t r a n s i t i o n  of a pseudoscalar meson 

of mass M i n t o  two v i r t u a l  photons, kl and k2, F(k:, k:; $), 

2 2 2 2 - 1  i s  theseforeproport ional  t o  [(T + kl)(m2 + k2) J , where y and 

m2 a r e  vector meson masses. I n  the  process P + J+R- such a form 

fac to r  gives a rap id ly  convergent loop in t eg ra l .  I n  advance of t he  

de t a i l ed  computation we may an t i c ipa t e  tha t  our r e s u l t  should corres-  

pond roughly t o  those of Dre l l  2 and Berman and Geffen3,provided t h e i r  

cut-off parameters ar,e taken around the  vector meson mass. 

son we a l so  evaluate the  branching r a t i o  wi th  a s ing le  vector  meson 

propagator, corresponding t o  the existence of a PVr coupling. This 

i s  the  same ca lcu la t ion  as was done by Sehgal, repeated here because 

For compari- 

4 ‘  

0 
K2 Sehgal gave no formulas and only numerical values f o r  

t h ree  choices of cut-off  mass. 

decay f o r  

We compute the branching r a t i o  r( ‘q + p+p-)/l?( ‘q --;r yy) as a 

function of vector meson mass. 

e lec t ronic  decays of  ‘q, Kg, 

The r e su l t i ng  branching r a t i o s  a r e  somewhat smaller than those obtained 

by previous authors.  2-5 

The model i s  a l so  appl ied t o  the  
0 0 + -  and 71 ; and t o  the  decay K2 + p  1-1 . 

To indica te  the  r e l a t i v e  importance of  t h e  

processes here considered, we include i n  Appendix C the  pred ic ted  

branching r a t i o s  for the  competing D a l i t z  p a i r  and double Da l i t z  p a i r  

decays. 
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I. c 
i 

Par t  of our aim i n  t h i s  paper i s  f rankly  pedagogical. We 

have included an appendix on our conventions for t he  ca lcu la t ion  of 

Feynman amplitudes and on t h e  evaluation o f  loop i n t e g r a l s  over i n t e r n a l  

four-momenta. 

present ca lcu la t ion .  

I n  a second appendix we give some of t he  d e t a i l s  of t h e  
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11. MODEL AND CALCULATION 

We assume that electromagnetic decays of q proceed through 

intermediate states of  two identical vector mesons (V). The Feynman 

diagrams for  the processes q + W  +y-y 

in Fig. 1. A form factor for the q is 

circumvent the logarithmic divergence in 

and q -+W + R + R -  are shown 

needed in the first place to 

the amplitude for q +.e+,&-, 

which occurs in the limit of a point interaction. 

vector mesons is inspired by the SU(3) Hamiltonian f o r  the qW 

The use of identical 

vertex. The Hamiltonian & = T r ( V  V ) contains the piece 9 3  
0 0  (P P + ww - 2(P(P)ll. 

A. Radiative Decay 

* The F e w a n  amplitude f o r  the process 7 +y-y is 

I c 

where f/p' is the VW coupling constant, G is the V r  coupling 

constant, fi is the mass of the vector meson, ci is the polarization 

vector f o r  the ith photon and k its momentum. Therefore the i - 
radiative decay rate is 

where M is the 7 meson mass. 

3c 
We use the Pauli metric. A complete discussion of our conventions 

is given in Appendix A. 
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B. Leptonic Decay 

For the process 'q + R + R - ,  The Feynman amplitude is 

UCRL-18487 

where 

(4) 

Here e is the lepton charge, u and v are respectively positive- 

and negative-energy Dirac spinors, m is the lepton mass, and ra a 

Dirac matrix. 

The evaluation of (3) and (4) is straightforward; the standard 

techniques of quantum electrodynamics can be brought to bear. The 

manipulations are given in Appendix B. 

C. Branching Ratio and Unitarity Limit 

The branching ratio for P + R+R- to P 4m can be written 
as 

where a is the fine structure constant. The quantities X and Y, 

defined in Appendix B, are proportional to the dispersive and absorptive 

parts of the matrix element, ( 3 ) .  The absorptive part Y is independent 
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of the  model chosen f o r  the  7 form factor ,  depending only upon the  

on-mass-shell amplitudes f o r  11 + m  and y y  + R + R - .  Hence neglecting 

X 

r a t io ,  as f i r s t  observed by Geffen and B.-L. Young.' 

i n  Eq. ( 5 )  gives us an almost rigorous lower bound on t h e  branching 

The value of Y 

i s  (see Appendix B)  

Y 1 q-l$ 
The u n i t a r i t y  l i m i t  f o r  the  branching r a t i o  i s  thus 

%+.e- >, 2a 2 m  - 2 1 In(. + --,)I. 2m . 
5 - Y  M2 

(7) 
. ML 

We do not have an equally compact expression for  X; it i s  

necessary t o  perform numerically t h e  f i n a l  one-dimensional i n t eg ra t ion  

(over an aux i l i a ry  Feynman parameter). 

down e x p l i c i t l y  i n  Appendix B. 

These l as t  in t eg ra l s  a r e  wr i t t en  

The r e s u l t s  a r e  presented i n  Section 111. 

D. Another Model 

Another possible  model f o r  the  form fac to r  i s  a s ing le  vector 

meson propagator, corresponding t o  a d i r e c t  'qVr coupling. This model 

provides a somewhat "harder" form fac to r  and comparison o f  t h e  r e s u l t s  

of the  two models w i l l  give some indicat ion of t he  s e n s i t i v i t y  of t h e  

branching r a t i o  t o  the  d e t a i l s  of t he  assumptions about t he  ver tex.  

The two calculat ions a re  very analogous, the  second one involving one 
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l e s s  propagator i n  the  denominator of  (4).  

Appendix €3 and the  r e s u l t s  i n  Section 111. Sehgal ca lcu la ted  the  

branching r a t i o  r(K2 +p'p-)/I'(Kg +m) using t h i s  model. But h i s  

paper only sketches the  calculat ion and gives numerical values for j u s t  

th ree  choices o f  cut-off (vector meson) mass. 

Deta i l s  again a r e  given i n  

4 

0 
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111. RESULTS OF THIS CALCULATION; COMPARISON 

WITH PREVIOUS CALCULATIONS 

The lower bound on the  branching r a t i o  i s  given by Eq. (7) 

as 1.07 x lom5. Our r e s u l t s  a r e  shown as a function of vector meson 

2 mass i n  Fig. 2. The r e s u l t s  of Dre l l  and of Berman and Geffen3 f o r  

the  decay T[ +e'e- can be converted t o  7 +p+p-; these  a r e  a l so  

shown i n  Fig. 2. 

0 

1. Behavior as  a function of p; Comparisons with other  r e s u l t s  

We f i r s t  consider t h e  general behavior of t h e  branching r a t i o  

For the  two models employed here as  a function o f  vector meson mass. 

t h e  r e a l  p a r t  b f  t h e  amplitude has a zero f o r  p/M 1. This i s  

v i s i b l e  i n  Fig.  2 for t he  

value of  (p/M - 1) for t h e  ri\rv model t h a t  it cannot be seen on 

VVr model, but occurs at  such a small 

the  scale  of  Fig. 2. For l a rge  values of p/M there  i s  a divergence 

of the  amplitude as 

which occurs fo r  point  coupling of  q n .  Expl ic i t ly ,  the  asymptotic 

branching r a t i o  f o r  both models i s  

I 

,gn p, corresponding t o  the  logari%hmic divergence 

--:- : 



-9- UCRL -18487 

3 Berman and Geffen used t h e  form factor 

2 
c1 

2 2 2  
P + kl + k2 

whence 

9 (9) 

It is perhaps not surprising that the Berman-Geffen result gives 

numerical values lying between those of our two models, as shown in 

Fig. 2, since their form factor has characteristics intermediate 

between the 7W and v V r  form factors. The limiting form of their 

branching ratio can be seen from (10) to be the same as (8). 
2 Drell considered a dispersion relation (in the square of the 

pseudoscalar meson mass) for the form factor describing the decay 

P -+ &+R-.  

our Eq. (6), times a form factor 

a pseudoscalar meson of mass into two real photons 

[G(Q, ) = F(0, 0; -Q2), where F(kl, kg; M?) is our form factor]. 

The imaginary part of the form factor is proportional to 
I 

G(Q2) which describes the decay of 

2 2 

Drell chose 
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where p i s  now a cutoff paramter. This gives f o r  the  branching 

r a t i o  

Drell's r e s u l t  diverges much more rapidly as  a function of 

Eq. (8). We remark here t h a t  there  i s  not a c l ea r  physical  in te rpre ta -  

t i o n  f o r  the  cutoff parameter 

p than 

1-1 i n  Drell's (or even i n  Berman and 

Geffen' s )  calculat ion.  

between the  cutoff and our vector meson mass. Consequently one should 

not take too l i t e r a l l y  the  graphs which give a l l  r e s u l t s  as a function 

o f  the  same mass parameter. 

I n  pa r t i cu la r ,  there  i s  no obvious correspondence 

2. Branching r a t i o  for  r e a l i s t i c  vector meson mass values 

For the  physical  vector meson masses the numerical values of 

the branching r a t i o  f o r  the  qW model o f  t h e  form fac to r  a r e  

I -  

compared with the  lower limit of 1.07 x loe5. 

p a r t  of t h e  amplitude contributes only 

We note t h a t  t he  r e a l  

10 t o  20 percent i n  the  r a t e .  

The spread i n  the  above values may be taken as an indicat ion 

of the var ia t ion  expected from the  breaking of SU(3) symmetry. But 
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more bas ic  poin t  of  view. The nonet model o f  PW coupling gives a 
, 0 0  Lagrangian densi ty  proport ional  t o  (p p + o w  - 2(p(p)q, where the  

space-time s t ruc ture  has been suppressed. For t he  present  purposes we 

assume t h a t  the  couplings a r e  of t h i s  form f o r  t he  physical  p a r t i c l e s .  

We assume t h a t  the photon transforms as 

cp, and t h a t  t he  vector meson-. 

2 

0 1  
3 3 r - p  + -  fiW8 = + - w -  

photon coupling constants a r e  of t he  “universal” form, Gi = emi/rv . 
Then the  X(p) of Eq. ( 5 )  and ( B . 1 4 )  i s  replaced by 

This gives a branching r a t i o ,  

even c loser  t o  the  u n i t a r i t y  limit than the  value found with 

IJ. = mp i n  (13). 

The estimate j u s t  made included symmetry breaking i n  a very 

spec ia l  way (hadronic couplings unbroken, photon-vector-meson coupling 

of universal  form, e t c . ) .  

break the  symmetry, each one giving a d i f f e ren t  branching r a t i o .  

Clearly there  a r e  a myriad of o ther  ways t o  

But 

i f  SU(3) symmetry i s  good to ,  say, 5O?# accuracy, it i s  d i f f i c u l t  

t o  imagine the  branching r a t i o  ly ing  outs ide t h e  i n t e r v a l  of from one 

t o  two times t h e u n i t a r i t y  bound, a t  l e a s t  i n  our vector  dominance 

model. 
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Similar considerations about symmetry breaking can be made for 

the q V r  model of the form factor. It is clear from Fig. 2 that the 

same conclusion w i l l  be reached, and that a result more than three 

times the unitarity limit would be surprising, unless there are other 

mechanisms at work. 

3. Discussion of B.-L,. Young's results 

Extensive estimates of the branching ratio have been made by 

B.-L. Young.5 As a model f o r  the 7 form factor, Young has a cutoff 

function times a vertex function which is a linear combination of 

Try-, qVy, and qW contributions. The form factor is schematically 

illustrated in Fig. 3. He uses physical masses of vector mesons and 

SU(3) and empirical estimates for the coupling constants. Young has 

several models for the cutoff function, but the results are not sensitive 

to these variations, provided different models are compared at equiva- 

lent effective values of the cutoff parameter A .  In Fig. 4 we have 

plotted the boundaries of Young's various curves which he calculated 

with different values of fi, gij, and r0 (c.f. Fig. 3). 
The range of values f o r  the branching ratio is, at first glance, 

almostununderstandablylarge. As a first remark we observe that, while 

the qVr and qW parts of the amplitude need no cut-off, the point 

coupling 7y-y does. Thus Young's results diverge logarithmically with 

his cut-off parameter (which has nothing to do with the mass of a 

vector meson) provided lim r(kl, k2) 0,apart from the cut-off 2 2  
2 2  
kl,k*-+ ca 
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function, i.e., his L 4 0. The second point is that the detailed 

behavior of T'(kl, k ) for small o r  moderate 

magnitudes and relative signs of the contributions from ~y-y, VVy, 

and qW, and this behavior affects the magnitude of the branching 

CQ 

2 ki depends on the 2 2  
2 

ratio. The largest values come from (a) the smallest values of 

(obtained from r6 (T)/To('o). = 8 and 'the so lifetime) ; (b) choices 
Po 

of signs of fi and g which make T'(kl, 2 2  k2) increase with ij 
2 2  kl, k2 4 0 until eventdally damped by the cutoff function. His 

"dipole model'' has two cutoff parameters, one fixed and one variable, 

and the behavior of the result is governed mainly by the fixed, 

relatively small cutoff. 

Fig. 4. 

This produces the lower, flat curve in our 

o +  B. K2 + p  1-1- 

For this process the unitarity bound is 1.17 x 10". In 

this case, the motivation for our,model is less clear since the decay 

K + y y  involves both weak and electromagnetic interactions. But if 0 

the electromagnetic part is dominated by vector mesons the fiodel 

should provide a fair estimate of the real part of the amplitude. 

In Fig. 5 we display our results for the branching ratio, 

along with those of Drell and of Berman and Geffen for this process 

as a function of vector meson mass. 4 Sehgal's three values, f o r  

EL/% = 1, 2, and 4 

lom5. 

are 1.6, 2.0 and 3.5, respectively, in units of 

The first value is considerably larper than our result of 

1.26 x 10-5 at p/% = 1, but the other two values are in agreement 
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w i t h  our curve f o r  the  KVy model. The r e l a t ions  among the  various 

calculat ions as a function of vector meson mass or cut-off a r e  qu i t e  

similar t o  those found for  7 decay, although d e t a i l s  such as the  

zero i n  the  r e a l  p a r t  of the  amplitude a t  some value o f  

d i f f e ren t  because o f  t he  somewhat d i f f e ren t  kinematics. 

p a re  

' 6  Beg considered a spec i f i c  model for decays involving both 

weak and electromagnetic in te rac t ions .  

r e l a t i o n  language, the model i s  e f fec t ive ly  equivalent t o  a current-  

current Hamiltonian fo r  t he  hadronic p a r t  of the  weak in te rac t ions  w i t h  

AS = 0, LL neut ra l  currents .  I n  pa r t i cu la r ,  the  AS = 0 vector 

current  has a contribution from the  

Although phrased i n  dispersion 

pO-meson f i e l d  and the  a x i a l  vector 

0 f K2 i, R 4 -  current from the  divergence of the  no f i e l d .  

would then proceed mainly as  K2 -+ no v i a  the  AS = 1 neut ra l  hadronic 

current,  and -+ w, TT 3 R+R- by one o f  t h e  models discussed here .  

Be/g uses D r e l l ' s  model w i t h  p = 2 %, 
0 0  matrix element of 

o f  P(Ki -+ p'p-) < 0.7 sec 

r a t i o  

re levant  f o r  the  present considerations, it i s  perhaps of  i n t e r e s t  t o  

examine the  experimental data  on 

can be converted i n t o  a branching r a t i o .  

most accurate value f o r  the  r a t e  of  i s  t h a t  of  Banner e t  a l .  

They f i n d  I'(Ki -+ y-y)/r(K2 3 a l l )  = (4.68 k 0.64) x 10 , giving an 

absolute r a t e  of I'(5 i , ~ )  = (8.9 k 1.3) x 10 sec . Be'g's upper 

The decay 

0 

and an upper l i m i t  f o r  the  

K2 +fi , t o  give an approximate absolute upper l i m i t  

-1 . 
rj+R-/rn i s  j u s t  t h a t  of the  Dre l l  model. 

Evidently B6g' s value f o r  t h e  branching 

Although no* s t r i c t l y  

0 
K2 4 y - y  so that  Bdg's absolute r a t e  

The most recent and apparently 

0 7 
K2 +yy- 

0 -4 

0 3 -1 

l i m i t  then becomes an upper l i m i t  on t h e  branching r a t i o  of roughly 
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8 x From Fig.  5 we yee that D r e l l ' s  model gives 2.8 x lom5 
for Within the framework of his model, this 

means that Bgg's estimate for the Kg 3 no matrix element was too 

p = 2%(p/npc = 3 . 8 ) .  

large by a factor of q G  
that it was called a "generous upper limit"! 

- - 1.7, remarkably close considering 

f -  0 f -  C. 7 +e e and K, -+e e 

For these extremely rare decay modes, the branching ratios are 

again close to the unitarity bound, for reasonable masses of the vector 

mesons. We therefore state only the lower bounds: 

>/ 4 . 5 ~ 1 0  -9 . 

0 + -  D. II - + e e  

The direct decay of the neutral pion into an electron-positron 

pair was the process originally studied by Drell,* and by Berman and 

Geffen.3 

are, as before, rather insensitive to the value taken for the cutoff 

The predictions of Berman and Geffen, and of our calculation 

or vector meson mass, while Drell's expression is quite sensitive to 

the cutoff. The zero in the real part of the amplitude occurs in this 

case for a rather large value of the cutoff, b p t h  for our models and 
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for that of Berman and Geffen. Consequently, over the range of cutoff 

masses corresponding to intermediate states p, w, cp, the branching 

ratio is decreasing. 

in Table I. Only our values for the eVV model are quoted. 

The predictions f o r  this process are summarized 
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IV. SUMMARY 

Our calculations indicate that for the vector dominance model 

the branching ratios for the decays (P 3 a',!?-) to (P + yy) are 

not much larger than the lower bounds given by unitarity. For the 

decay q -3 p'p-, we therefore expect that 

i w- r 7 +all - (0.4-1.0) x lom5 . 
I 

Detailed numerical values are given in Section I I I A .  For KF decays 

the branching ratio Pjfl-/Pyy is of the same magnitude as for 11 

decay, but because of the small fraction of decays K2 -+ ~ y , ~  the 

process K2 -3p p w i l l  be much less cornmon: 

0 

0 + -  

-+P+P-) -8 0 - (0.5-1.0) x io 
r ( K 2  + all) 

In both cases the deca3i.s to electron pairs are suppressed by an 

additional factor of about 4 x 10 . Because of the insensitivity 

of our results to vector meson mass, near the physical masses of 

vector mesons, we believe our predictions for the total branching 

ratios reliable within a factor of two. 

-4 
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Table I 

Branching Ratios for r~ +e+e- 0 

Cutoff or Vector Meson Mass 
Source (Units of pion mass) r(rIo 4 e+e-)/r(rIO -+ m) 

Uni tari ty -- 4.7 x 10-8 

Drell 1.0 3 x 

6.95 12 x 

Drell 13 * 90 22 x 10-8 

Berman and Geffen 9.8 5.7 x 

Drell 

Berman and Geffen 3.16 6.7 x iom8 

This Calculation 5.7 ( P I  6.4 x 

This Calculation 7.6 (Cp) 6.1 x low8 
This Calculation 10 4.9 x 
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APPENDIX A: CONVENTIONS, NOTATION, BASIC FORMULAS 

AND FEYNMAN INTEGRALS 

1. Metric and Dirac Matrices 

The notation for 4-vectors is A = (A, A4 = iAo), so that 
P "  
The spinor notation is that scalar products are 

of Pauli's Handbuch article, with Hermitean r-matrices and r 
diagonal. Explicitly, 

A-B = A,.: - AOBO. 
4 

0 -iu 
;) 

. 1  0 0 -1 

r4 =(, -J ' 5 = (-1 ,) 
(r r -r r ) . The spin tensor is CT = - 

according to 

equations, (5r.p + m) u(p) = 0 and (irap - m) v(p) = 0. For an 

The spinors are normalized 1 
pv 2i p v v p  

(GU) = 2m, (k) = -2m. They satisfy the free-particle 

antiparticle of momentum p. and helicity h it is sometimes conven- 

2. S-Matrix Formulas 

The invariant amplitude %7 is related to the S-matrix through 

the relation, 

where a and f3 are the initial and final state labels and the product 

of factors ('2Ei) is over both initial and final states. For a decay 

-- 
----I-- __ 
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process a 3 (1 ,2 , - - . , n )  the  t r a n s i t i o n  probabi l i ty  i s  

UCRL-18487 

For a two-particle f i n a l  s t a t e ,  

where 

2 
'CM 1 

2 - 4 -  - -  
m a 

8 3 .  The Evaluation of  Feynman In tegra ls  

I n  general, t h e  in t eg ra l  over the  undetermined loop momentum 

k i n  a Feynman diagram takes the  form 

4 d k F(k; pi; m . )  
a ... 
n 

where 

a = (k - Si)2  + mi 2 
i 

s i s  a l i n e a r  combination o f  ex terna l  momenta P i  

m 3 a r e  the  ( i n t e r n a l  and ex terna l )  masses i n  the  

i 

problem, and 

F i s  a polynomial i n  the  components of  k. 

, '  * I  
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To evaluate such an integral ,  it i s  convenient t o  introduce auxi l ia ry  

through one of the following iden t i t i e s .  

Some other usefil re la t ions  are 

n-1 1 
1 x d x  

[Ax + B ( l  - J 

0 
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An i n t e g r a l  of t he  form ( A . 4 )  can always be brought t o  the  

schematic form 

4 

[(k - R )  

d k F(k j  p i j  m j )  
I =  2 2 n  * 

+ a 1 
(one-dimensional 
i n t e g r a l s  ) 

The exact form w i l l  depend on which of the  above i d e n t i t i e s  

( A . l O )  

ne chooses 

t o  employ. If the  k-space i n t e g r a l  i s  a t  worst logar i thmica l ly  diver- 
. .  

gent, we can make a change of variable,  

k‘ = k - R  , ( A . l l )  

without changing the  value of t he  i n t e g r a l  (nor adding any f i n i t e  

number f o r  t h e  case of a logarithmic divergence). 

b r ing  the  k-space i n t e g r a l  t o  the  form 

Hence we can always 

d k F(k + R;  pi; mj) I [k2 + a2In 
(A.12) 

Because of t he  symmetry of the  range of in tegra t ion ,  t he  odd powers of 

k i n  F do not contribute.  To ge t  t o  the  f i n a l ,  usable form we 

must average over k which amounts t o  the  subs t i t u t ions  
IJ. 

P’ 
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e t c .  

Therefore we need only evaluate in t eg ra l s  of the  form 

(m - l)! (n - m - l)! 4 2 m-2 2 
- i n  =i [k2 + a2In (a2)n-m (n - l)! 
- d k ( k )  

Y 

which ex i s t ,  provided n > r n >  0.  

Q,uite c l ea r ly  the  major task i n  the  evaluation of  Feynman 

in t eg ra l s  i s  the  computation of t he  in t eg ra l s  over the  aux i l i a ry  

parameters. 

I 
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APB3NDIX B: DETAILS OF THE CALCULATION 

UCRL-18487 , 

We begin with Eqs. (3) and (4) of  Section 11. Use of  the 

Dirac equation f o r  the leptons and various identities allows us to 

write the effective value of  e in the form, 

where 

B = 4 t 2k-p 

and 

2 2  2 2 
D = k (k + p )(p - k)2[(p - k)2 + p2][(k - q2l2 + m 1. 

(B.3) 

The evaluation of c(q,) e)'v(q2) in the helicity representation leads 

to a matrix element, 

where 

The quantities' X and Y, appearing in Eq. (5) of Section I1 for  the 

- _ .  ' 

: I 

branching ratio, are related to I by 
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The evaluation if I is straightforward, but the presence of 

five denominators necessitates some manipulation. As a preliminary we 

remark that the change of variables, k +p - k, leaves the numerator 

in (B .4 )  invariant and leaves D unchanged except for q2 + ql. 

Furthermore, in the frame where 

causes 

invariant. 

integrand in (B .4 ) ,  as follows: 

p" = 0, the transformation 2 + -2 
2 (k - ql) + (k - q2)2, while leaving k2 and (p - k)2 

These two changes of variable can be used to simplif'y the 

k[M2k2 + ( k - ~ ) ~ ]  = $(h!?k2 + [$ + (p - k)2  - k2I2} 

2 2  = $(M4 + 4M2k2 + 2I$[(p - k)2 - k2] + [(p - k)2 - k 3 } . 

The third term in the curly bracket gives zero contribution to the 

integral, as can be seen by the above changes of variable, The last 

term can be written 

2)x 
- [(p - k)2 - k2]' 1 1 1 

D = (F - &I - k)2)(k2 + p2 (p - k)2 + p 

2 1 1 1 
k2 (k2 + p2 (p - k)2 + p2) [(k - q2)2 + m2] ' 

- +- 1 tr 
[(k - q2) + m 1 

Similar use of partial fractions and the above changes of variables 

can be used to reduce I to a sum of terms involving only three 

denominators. The result can be written as 



Feynman parameterization. The result is 

L =  
m 2m I-1 
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where 

and 

The simpler integral L can be evaluated immediately using 

In passing we note that for large vector meson mass 

has the asymptotic value, 

(p/m >> l), L 

(B.10) 

The remaining integral J(y, m2) can, by means of the 

Feynman parameterization, be expressed as a double integral, the 

first of which can be performed in terms of elementary functions. 

The resultant is 

h 
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1 

J(q,m2) = dx Y 
1 6 ~  

(B.ll) 

where 

A = (5 +m2 - px)' - 4rnFrn; - 4$m2(1 - x ) ~  . ( B . 1 2 )  

The remaining integral over x is most conveniently done numerically 

for the specific (y, m2) values needed in (B.6). 
d 

Before displaying the final forms suitable for numerical 

computation it is of interest to consider the question of the unitarity 

limit [Eq. ( 7 ) l .  This bound comes from the existence of a model- 

independent absorptive part from physically allowed two-photon inter- 

mediate states in Fig. l(bi. 

directly from unitarity equations and the physical amplitudes for 

7 -+ yy and 

by delta functions, as discussed by Sehgal.' Alternatively, it must 

emerge directly from any model calculation. If it is assumed that the 

vector meson mass is large enough that neither r V  nor W inter: 

This absorptive part can be calculated 
7 

y-r -+ a+.l-, as in Ref. 1, o r  by replacing the propagators U 

mediate states are physical, then in the expression (B.61), only 

J(0, 0) can give rise to an absorptive (imaginary) part. 

because J(y, m2) corresponds to a simple spinless triangle graph 

of the form of Fig. l(b) with the diagonal internal legs having masses 

This is 

m and 5.  To see explicitly how the imaginary part emerges, 
consider (B.ll) and (B.12) with "1 = m2 = 0. We have 
1 

fr ' i 
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1 

J(o,o) = zl 1 
dx 2$mJn 1 - -(1 - x) 

P 
M 

where, f o r  t h e  moment, t h e  sign of t h e  argument of t he  logarithm should 

be considered as not ye t  ce r t a in  because of t h e  ambiguity i n  

Rn(f ) = 2Rn(+f).  2 To a sce r t a in  the  proper sign we note t h a t  for I? < 0 

t h e r e  can be no phys ica l ly  allowed intermediate s t a t e  and hence no absorp- 

t i v e  p a r t .  

t h a t  J(0,O) i s  r e a l  f o r  M < 0. Now we can consider M? > 0. The 

square root  i n  (B.13) i s  now r e a l  and l e s s  than x f o r  (& + 1)-'. x < 1 

and imaginary f o r  0 < x < (& f 1)-' . This  means t h a t  t h e  i n t e g r a l  

receives a r e a l  contribution over the  whole range of in tegra t ion  and an 

By inspection of ( B . 1 3 )  as it stands it i s  e a s i l y  v e r i f i e d  

2 

imaginary contribution f o r  x on the  range, (& + 1)" < x < 1: 

1 
1 8 n 2  M I m  J ( 0 , O )  = - J l  k q w *  

5.1 2m 

Evaluation of t h i s  i n t e g r a l  l eads  d i r e c t l y  t o  the  expression Y i n  

Eq. (6) of Section 11. 

The reader who f inds  t h e  e x p l i c i t  evaluation of  t h e  imaginary 

too  spec i f ic  can consider t he  ana ly t i c  proper t ies  o f  p a r t  of J ( 0 , O )  

t he  t r i a n g l e  graph represented by ( B . 7 )  o r  (B.ll), using techniques 

developed f o r  a r b i t r a r y  Feynman diagrams. 13 

We now re turn  t o  the  task  of exhib i t ing  t h e  f i n a l  forms of 

J(m,,m,) needed i n  ( B . 6 ) .  The fea tures  of t h e  integrand of J ( O , O ) ,  

.'- I 

'" I 

.. i 

* /  

1 
I -. - -__I_- 

- 
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noted above, imply t h a t  the  logarithm becomes an arctangent over part  

of the  range of in tegra t ion .  For J(0, p) t h e  l o g  form holds over 

the whole range, while for J(p, p) t h e  arctangent.  The complete 

expression for  X = Re Z from (B.6 )  is 

2 
X = A + 2  ( B . 1 4 )  1 

where 
a 

(SYlfa - x)(b  + x) 
X 

1 = dx 

0 5J$/-(T-Lj 

1 



and 

I : =  $-$- 
M 

-1 
a =(?&+l> 

-32- 

-1 
b = (&-I) 

UCRL-18487 

e =  2 2 [ q m m  + p2 - 2m .I 
M~ - 4 m  

m M  - 4 m p  2 2  +T 4 - p 2 + 2 m 2 ] .  
f =  M~ 2 - 4 m  2 [ J 2 2  

I n  A1 and A t he  arctangents 'are t o  be chosen on the  i n t e r v a l  3 
( 0  2). 

?. 2 
The ca lcu la t ion  f o r  t he  second model, with a s ing le  vector 

meson propagator (7Vy coupling, instead of  ?)W) c lose ly  p a r a l l e l s  

t h e  previous one. The denominator (B.  3) i s  replaced as 'follows : 
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Here, f o r  convenience, we have w r i t t e n  a form e x p l i c i t l y  symmetric 

i n  k2 and 

the  same transformation of var iab les  as discussed below (B.5) y i e lds  

an integrand t o  replace t h a t  i n  (B.4) of the  form: 

(p - k)2 and have included a f ac to r  of  p-2. Use of 

Only t h e  l as t  term gives a new in t eg ra l ,  not  present  i n  the  f irst  

model. The expression replacing (B. 6) i s  therefore  
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The f i n a l  r e s u l t  f o r  X i n  t h i s  model i s  

UCRL-18487 

where the  in t eg ra l s  Ai a r e  defined below (B.14). 
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APPENDIX C: RATES FOR COMPETING PROCESSES 

The branching r a t i o s  for the  D a l i t z  p a i r  and double Dal i tz  

meson have been ca lcu la ted  by Jarlskog pair decay modes of t h e  

and P i l k ~ h n , ~  using standard methods of  QJD. 

‘q 

Applying t h e i r  r e s u l t s  

0 t o  the  decays of ‘q, Kg, and 

r a t i o s .  

0 
(K2 3rd 

no, we obtain the  following branching 

-6 = 4 x 1 0  

1.6 x 

= 6.6 x loe5 

x 6 x 1 0  -8 

-6 
= 4 x 1 0  

-2 1.6 x i o  
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+ - + -  (K: -+e  e e e 

(K2 +rr) 
= 6.3 x 0 

UCRL-18487 

Experiment :lo 1.17 * 0.04 x lo-* 

0 + - + -  
R - + e e e e  - 5 .  = 3.5 x 10 , 

(no +rr> 
Experiment :11 3.18 +_ 0.30 x lom5 

The s ingle  Dal i tz  p a i r  formation i s  perhaps of most i n t e r e s t  

because of i t s  possible  presence as a background f o r  t he  decay 

mode. We ca lcu la te  the  branching r a t i o  p = r(V 3 p+p-y)/l?(V + yy), 

using our  model f o r  t he  11 form f ac to r .  The process i n  the  numerator 

i s  D a l i t z  p a i r  production 11 + m  + p  p y; we ignore contr ibut ions 

from inner Bremsstrahlung q + p  p 4p'p-y. The l a t t e r  process i s  

suppressed by a fac tor  of about a cornpared with 7 +p+p-. We 

f i n d  

p'p- 

+ -  
+ -  

I ,  

-(s ds + 2m 2 )(I - 4m2/s)+(1 - -?l"r_, 9 
S (P - 4 4m 

where 

symbols have been defined previously.  

Wada, 

s i s  the  effective-mass-squared of t h e  lepton p a i r ,  and other  

This i s  Eq.  (13) of mol l  and 

12  4 2  
with the  additional- f ac to r  p /(p - s ) ~  i n  t he  integrand. 

- 1  
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The spectrum i n  s i s  s t rongly peaked towards small s, corresponding 

t o  "almost r ea l "  intermediate photons converting i n t o  the  lepton p a i r .  

Hence the  presence o r  absence of  the  vector  meson propagator i s  of 

l i t t l e  consequence. 

Using a p-meson intermediate state, we f i n d  f o r  pdecay ,  

0 -4 p = 7.8 x and f o r  K2 decay p = 5.6 x 10 . These branching 

r a t i o s  a r e  

7 "1-1 1-1 of experimental i n t e r e s t .  However, high e f f ec t ive  masses 

of the p'p- system a r e  s t rongly suppressed, so t h a t  an experiment 

with reasonable mass resolut ion can minimize the  contamination. To 

show t h i s  quant i ta t ive ly ,  we p l o t  i n  Fig.  6 the  f r ac t ion  of  Dal i tz  

p a i r s  with e f f ec t ive  mass-squared grea te r  than minimum accepted values 

-50 times the  branching r a t i o  f o r  t he  d i r e c t  decay 

+ -  

of mass-squared. For example, an experiment wt th  reso lu t ion  of  

0.3(M2 - 4m 2 - 0.08 GeV2 ' i n  t he  e f f ec t ive  mass squared, would accept 

about 1 Dal i tz  p a i r  f o r  every 2 directly-produced p a i r s .  

F ina l ly  we note t h a t  "inner Bremsstrahlung" gives r i s e  t o  a 

t a i l  on the  mass-square d i s t r ibu t ion  of  the  directly-produced pairs, 

which can e a s i l y  be t r e a t e d  separately.  
14 

\ 
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! Fig. 1. 

Fig.  2. 

Fig.  3 .  

Fig.  4. 

Fig. 5 .  

Fig.  6. 

FIGURE CMTIONS 

Feynman diagrams for  the  decay processes. 

( a ) :  11 +yy; (b) :  7 -+R+R- . 
Branching r a t i o  I? f o r  e t a  decay as a function of  

vector meson o r  cutoff  mass. Dotted l i n e :  Dre l l ;  Dashed 

l i n e :  Berman and Geffen; Sol id  l i n e :  Present 'QVV model; 

cl+P - 4 - Y  

long dashes: Present 'qVr model; Dot-dashed l i n e :  Lower 

bound from u n i t a r i t y .  

Schematic representat ion of Young's form fac to r .  

Range of branching r a t i o s  obtained by Young versus h i s  cu tof f  

parameter. 

Branching r a t i o  I? 

vector meson o r  cutoff  mass. 

Fraction o f  Dal i tz  p a i r s  i n  7 4 y p  1-1 w i t h  e f f ec t ive  II] ss -  

squared > lower l i m i t  accepted by experiment, so. Multiply 

right-hand sca le  by 0.72 f o r  K2 decay. 

f o r  K g  decay as a function of 
P + P - 4 r  

(Same l abe l s  as Fig. 2 . )  
+ -  

0 

, '  . .  
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s u c h  employee or c o n t r a c t o r  o f  t h e  Commission,  or employee 
o f  such  c o n t r a c t o r  p r e p a r e s ,  d i s s e m i n a t e s ,  or p r o v i d e s  a c c e s s  
t o ,  any i n f o r m a t i o n  p u r s u a n t  t o  h i s  employment o r  c o n t r a c t  
w i t h  t h e  Commission,  or h i s  employment w i t h  s u c h  c o n t r a c t o r .  
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