

Investigation of the current resolution limits of advanced EUV resists

Patrick Naulleau, Clemens Rammeloo CNSE, University at Albany, State University of New York

> Jason P. Cain EECS, University of California, Berkeley

> > Kim Dean SEMATECH

Paul Denham, Kenneth A. Goldberg, Brian Hoef *CXRO, Lawrence Berkeley National Laboratory*

Bruno La Fontaine, Adam Pawloski

Supported by SEMATECH, AMD

Carl Larson, Greg Wallraff IBM

College of Nanoscale Science and Engineering

- System description
- Demonstration of resist-limited
 performance
- Resist MTF
- LER versus speed trends

Patrick Naulleau

Berkeley MET exposure tool

- Based on MET optic
- Magnification = 5x, NA = 0.3
- Rayleigh resolution = 27 nm
- Field size = 200x600 μm
- Programmable coherence illuminator for low k₁
- Reticle and wafer load-lock and manual transfer systems
- Wafer-height sensor
- nm-resolution wafer-height sensor and focus actuation
- Pupil-fill monitor

Berkeley MET modeled to have good DOF down to 25 nm with annular illumination NIVERSITYATALBANY

te University of New Yorl

College of Nanoscale Science and Engineering

6

SERVELEY L

Response to pupil fill changes used to verify resist-limited status NIVERSITYATALBANY

- Variable pupil fill illuminator enables large changes in aerial-image quality
- Performance at the 30-nm half-pitch level observed to be poor independent of pupil fill
- Resist is playing dominant role in observed through pitch behavior

8

Patrick Naulleau

e University of New York

Modeled aerial-image performance JNIVERSITYATALBANY shows good process latitude

Bossungs based on 10% dose increments

Patrick Naulleau

9

MET 1K exposure latitude limits prevent it from reaching sizing at CDs <= 40 nm NIVERSITYATALBANY

Bossungs based on 5% dose increments Nominal dose = 21 mJ/cm^2

te University of New York

KRS shows much improved exposureIniversity of New YorkInitial and intrinsic bias of ~19 nm

Bossungs based on 5% dose increments Nominal dose = 19 mJ/cm²

Supplier A shows low intrinsic bias but poorINIVERSITYATALBANYProcess latitude below 45 nm half pitch

Bossungs based on 5% dose increments Nominal dose = 11 mJ/cm²

Supplier C also shows low intrinsic bias but limited exposure latitude at 40-nm half pitch

Bossungs based on 5% dose increments Nominal dose = 46 mJ/cm²

NIVERSITYATALBANY

te University of New York

Summary of top-tier chemically-amplified resist performance

Resist	Speed (mJ/cm ²)	Res.* (nm)	LER (nm)	Failure Mechanism	Intrinsic Bias (nm)
Supplier A	11	35	4.5	Top Loss	4
KRS	19	32.5	3.3	Collapse/ Top Loss	19
MET 1K	21	35	3.6	Top Loss	> 16
Supplier D	21	45	3.0	Collapse	NA
Supplier C	46	35	2.5	Collapse	4

* Resolution defined as smallest observed well-defined half pitch

Patrick Naulleau

Resist performance has strong impact on measured contrast

NIVERSITYAT ALBANY te University of New York

UIVERSITY AT ALBANY EUV Resist LER & Sensitivity

LER versus Sensitivity for selection of known EUV resists

- EUV printing with state-of-the-art EUV tools is now resist limited
 - Limits on the order of 32-nm nested and 27-nm isolated observed
- MTF measurement in resist serves as good relative comparison metric for resist performance
- Simultaneously meeting resolution, LER, and speed requirements remains significant challenge

20

Patrick Naulleau

Acknowledgments

Kevin Bradley Rene Delano Jeff Gamsby **Eric Gullikson Bob Gunion** Hanjing Huang **Drew Kemp Deirdre Olynick** Ron Oort Alex Liddle Seno Rekawa Farhad Salmassi Ron Tackaberry LBNL

Robert Brainard* Thomas Koehler Jim Thackeray Katherine Spear *Rohm and Haas*

Supported by:

SEMATECH and the SEMATECH logo are registered servicemarks of SEMATECH, Inc.

 Robert Brainard now at University at Albany, SUNY

Patrick Naulleau

NIVERSITYATALBANY

21

College of Nanoscale Science and Engineering