
Declarative Flow Control for Distributed Instrumentation

B. Parvin, G. Fontenay, and J. Taylor D. Callahan
�Computing Sciences Life sciences

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory
Berkeley, CA 94720 Berkeley, CA 94720

Abstract

We have developed a “microscopy channel” to adver-
tise a unique set of on-line scientific instruments and to
let users join a particular session, perform an experiment,
collaborate with other users, and collect data for further
analysis. The channel is a collaborative problem solving
environment (CPSE) that allows for both synchronous and
asynchronous collaboration, as well as flow control for en-
hanced scalability. The flow control is a declarative fea-
ture that enhances software functionality at the experimen-
tal scale.

Our testbed includes several unique electron and optical
microscopes with applications ranging from material sci-
ence to cell biology. We have built a system that leverages
current commercial CORBA services, Web Servers, and
flow control specifications to meet diverse requirements for
microscopy and experimental protocols. In this context, we
have defined and enhanced Instrument Services (IS), Ex-
change Services (ES), Computational Services (CS), and
Declarative Services (DS) that sit on top of CORBA and its
enabling services (naming, trading, security, and notifica-
tion) IS provides a layer of abstraction for controlling any
type of microscope. ES provides a common set of utilities
for information management and transaction. CS provides
the analytical capabilities needed for online microscopy.
DS provides mechanisms for flow control for improving
the dynamic behavior of the system.

1 Introduction
The current trend in telepresence research is to bring ex-

perts and facilities together from geographically dispersed
locations [3, 5, 10, 6]. The natural evolution of this re-
search is to couple declarative representation with object
oriented techniques for maximizing reusability and flex-
ibility, increasing abstraction, and reducing maintenance
cost. A declarative approach provides a semantic that is
concise and deep. For example, rule based systems pro-
vide the basis for dynamic interaction between the users
and applications with an abstraction that is much like pred-
icate logic and more understandable than traditional ap-

�This research is supported by Director, Office of Science, the Office
of Biological and Environmental Research, and the Office of Advanced
Scientific Computing Research, Mathematical, Information, and Compu-
tational Sciences Division of the U. S. Department of Energy under Con-
tract No. DE-AC03-76SF00098 with the University of California. The
publication number is LBNL-47408. E-mail: parvin@media.lbl.gov.

proaches. In this context, the logic (the declarative part)
can be changed on demand, but the methods for applying
the logic to the state of the system remain intact. In con-
trast, any change to the logic, in the present framework,
requires deep changes in the procedural code that are dif-
ficult to maintain. Furthermore, different scientific experi-
ments require different sets of logic. Thus, the design must
be extensible.

The design themes are functionality, scalability, and
performance. We are also interested in interactivity, which
is achieved through the best effort with most commer-
cial ORBs or Web servers. Functionality refers to what
and how an instrument does something and how well sys-
tem resources can be managed and accessed. Scalability
refers to the number of instruments, vendor-specific desk-
top workstations, analysis programs, and collaborators that
can simultaneously attach themselves to the system. Per-
formance refers to how well system resources are being
utilized. Our testbed includes several electron and optical
microscopes that are located at Berkeley Lab (LBNL), Oak
Ridge National Laboratory (ORNL), and the University of
Illinois, with applications ranging from material science to
cell biology. Our system is named DeepView, which has
been installed at several institution. The interface to the
microscopy channel and a listing of various instruments
are shown in Figure 1. The channel is tightly coupled
with the OMG-defined. Naming and Trading services for
binding and resource discovery. From the user’s perspec-
tive, we established a set of desirable requirements in terms
of functionality, scalability, interactivity, safety, and secu-
rity. From the designer’s perspective, we abstracted these
requirements into four categories of services: Instrument
services (IS), Exchange services (ES), Computational ser-
vices (CS), and Declarative services (DS). These services
sit on top of CORBA, OMG defined services, and Web
servers. IS provides a layer of abstraction for controlling
any type of microscope or simulation software. Simulation
aims at generating a representation based on physical prop-
erties of a system and its relationship with respect to an ob-
servation mode. ES provides a common set of utilities for
information management and transaction. CS provides the
analytical capabilities needed for online microscopy and
problem solving. DS provides flow control and required
XML-based features for improving the dynamic behavior
of the collaborative infrastructure.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71307972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: User’s view of the microscopy channel.

CS offers an extensible array of tools for visualiza-
tion, model recovery, and comparative analysis of ob-
served and simulated data. Model recovery is an inverse
problem-solving process that attempts to (a) link a speci-
men’s behavior to external stimulation through feature ex-
traction, archival, and data mining or (b) construct a 3D
geometric model of an object through user interaction. In
general, model recovery is a computation-intensive algo-
rithmic process requiring the extensive support of high-
performance computing and low-latency network infras-
tructure.

The next section of the paper summarizes recent related
work in collaboratory computing. Section 3 describes soft-
ware architecture, ongoing scientific experiments and their
corresponding computational needs. Section 4 concludes
the paper.

2 Related Work
Previous systems fall under two categories: telepres-

ence [3, 5, 7] and collaborative frameworks [6]. Telepres-
ence research has focused on remote functionalityof the in-
strument and the necessary automation for large scale data
collection and analysis. In general, these systems ignore
many of the scalability issues that we have been advocat-
ing [6]. With respect to the collaborative framework, a tax-
onomy of existing systems is given below.

� UC Berkeley’s MASH project [4] uses MBone tools
in a heterogeneous environment to develop scalable
multimedia architecture for collaborative applications
in fully distributed systems.

� NCSA’s Habanero project provides smooth manage-
ment and simultaneous distribution of shared infor-
mation to all clients in a component-based, central-
ized system written primarily in Java.

� Rutgers University’s DISCIPLE uses a CORBA
framework for distributed access in a service-based,
centralized system for enforcing shared virtual space.

� Sun Microsystem’s Java Shared Development tool kit
enables collaborative-aware Java code to send data
to participants within a communication session. It
supports three types of transport protocols: TCP/IP
socket, light-weight reliable multicast, and remote in-
vocation method. In this framework, all objects are
manageable and collaboration occurs within a session
that includes channel, token, blobs, and listener.

� The University of Michigan’s Upper Atmosphere Re-
search Collaboratory (UARC) is a web-based dis-
tributed system (written mostly in Java) that collects
data from over 40 observational platforms for space
physics research for both synchronous and asyn-
chronous collaboration. In this system, data suppli-
ers publish their data on a data-dissemination server.
Clients then subscribe to receive the desired informa-
tion.

Our approach combines service-based distributed archi-
tecture with the declarative framework to maximize the
use of commercial middleware and emerging new tech-
nologies. This is based on an OMG-defined CORBA
framework [with an Internet Inter-ORB Protocol (IIOP)],
Web Servers, and emerging XML-based specifications.
CORBA provides virtual distributed containers for objects.
These objects can then be implemented in any language;
e.g., Java, C++. Furthermore, OMG has defined a num-
ber of enabling technologies for decoupled communica-
tion, object localization and resource discovery, and secu-
rity. The main advantages of using CORBA are that (a) it
is not restricted to the Java language, (b) it is available on
multiple platforms, (c) it supports a rich class of enabling
services, and (d) it supports real-time applications [8] un-
der a newly adopted standard.

2.1 Flow control
Over the last 8 years, several work flow models have

been proposed through various working group. The in-
tent is to define an abstract peer-to-peer collaboration that
can operate across the Internet. The first such specifica-
tion by the Workflow Management Coalition (WfMC), de-
fined a set of state model representing a process in terms
of running, terminating, and completion. The standard de-
fines the contents of requests and responses that are ex-
tensible and leverages well-known concepts such as prop-
erty objects or java beans. WfMC was later used by OMG
to define a framework for distributed workflow manage-
ment. The framework defines object models for workflow
requests, a registry, workflow process management, and
workflow activities. The simple workflow access proto-
col (SWAP) and Wf-XML are the evolution of the OMG
initiative. SWAP uses http protocol that renders interac-
tion between workflow applications. The lesson learned
from SWAP led to a Wf-XML specification with new fea-
tures such as synchronous and asynchronous interactions,
data typing, and timing. Our system uses a Wf-XML
to specify the workflow model in a distributed environ-
ment. Wf-XML is the only specification that meets the



science requirements for annotating time series data with
synchronous and asynchronous control.

3 Software Architecture
Our system uses an extensible object-oriented frame-

work so that applications can be rapidly assembled, main-
tained, and reused. These objects may reside on any host
and can be listed, queried, and activated in the system. The
architecture illustrated in Figure 2 bridges the gaps be-
tween different services that may reside at any node in a
distributed system.

Our system consists of three service categories that
interact with the ORB, Adaptive Communication Envi-
ronment (ACE), and Web servers: Instrument Services
(IS), Exchange Services (ES), and Computational Services
(CS). A brief review of Enabling Services is provided in
this section.

Figure 2: Architecture of DeepView

3.1 Enabling Services
Enabling services include OMG defined services (Nam-

ing, Trading, Security, and Notification) as well as Web
based technologies such as Web Servers and JSP. The
Naming Service binds a name to an object and allows that
object to be found subsequently. It behaves much like the
“White Pages.” The names are resolved within a naming
context that is organized as a graph. The naming context
is an object that stores name binding for objects, and it is
essentially a table. The Trading Service provides facili-
ties for dynamic object discovery. The trader stores a de-
scription of the service along with object reference, and be-
haves much like the “Yellow Pages.” It provides an adver-
tisement service, policies, and a matching engine through
an OMG-defined constraint language. The constraint is a
boolean expression that is somewhat similar to an SQL in-
terface. The constraint language provides boolean, arith-
metic, and comparison operations to locate a particular ob-
ject or resource based on its properties. The requirement

for resource management and brokering has been well doc-
umented [1] through the use of either LDAP or relational
databases. The CORBA Naming and Trading Services
are an alternative approach that is reliable (for writing),
and well supported by the commercial vendors. While the
Naming Service is hierarchical (much like a UNIX file sys-
tem), the Trading Service is flat. The Security Service is
based on the secure socket layer (SSL), which provides
authentication, privacy, and integrity for TCP-based con-
nections. SSL uses RSA public key encryptography for
authentication, where each application has an associated
public key and an associated private key. In this context,
data encrypted with the public key can only be decrypted
with the private key, and data encrypted with the private
key can only be decrypted with the public key. The Notifi-
cation Service is a replacement for Event Services. Several
communication models are supported by CORBA:

� The first model is based on the standard CORBA invo-
cation model of two-way, one-way, and deferred syn-
chronous interaction. Although this model simplifies
distributed processing, it lacks asynchronous message
delivery and does not support group communication,
which can lead to excessive polling.

� The second model uses COS Event Services that
provide decoupled communication between suppliers
and consumers. The key concept in this service is
the event channel, which can assume a variety of de-
sign patterns depending on the model of collabora-
tion among different components [9]. The roles that
the event channel can play include (a) a notifier for
the push/push model, (b) a procurer for the pull/pull
model, (c) a queue for the hybrid push/pull model,
and (d) an intelligent agent for the hybrid pull/push
model. Presently, only the push/push model with
typed and untyped events is supported. This service
allows clients to register with events of interest and
filter incoming events. A unique feature of the Noti-
fication Service is that it supports quality of service
(QoS) and various policies to enforce it. The un-
derlying transport protocol can be either TCP or re-
liable multicast. Reliable multicast is supported by
OrbixTalk, which provides assembly, sequencing, and
ordering of IP multicast packets for enhanced network
utilization.

In our system, all synchronous communications (for
collaboration) are performed through the event chan-
nel, and all asynchronous operations are conducted with
CORBA two-way and one-way communication. The Nam-
ing and Trading Services are used for object localization
and its required resources. The Naming Service is orga-
nized as a hierarchical tree structure for modular organi-
zation of objects. These services are federated, with each
physical site maintaining its own catalog of information.
However, this view is hidden from clients. The key advan-
tages of a federated organization are (a) improved reliabil-
ity (when a single server becomes inaccessible), (b) im-
proved performance (where different servers can work in



parallel), (c) improved scalability (where persistent infor-
mation is distributed on multiple hosts), and (d) improved
administration boundaries. Naming and Trading Services
are a powerful mechanism for resource discovery, broker-
ing, and subsequent load balancing.

The SSL handshake is initiated by a client sending a
message to the server. The server responds by sending its
X.509 certificate. The client extracts the public key from
the certificate and encrypts a session key. The server uses
its private key to decrypt the session key and application
data. Additionally, the server requests the client certificate
to resume a previously established handshake.

3.2 Instrument Services
The key to rapid integration of any instrument into the

system is declarative annotation of instrument control and
detectors. An instrument is partitioned into devices, each
of which may have a number of properties. A DTD de-
scription was developed, and the corresponding XML in-
formation has been constructed and stored for each in-
strument. The devices and properties can then be queried
through a Web interface. During initialization, the servers
access the persistent storage to configure themselves for a
particular instrument. In this context, Instrument Services
provide a scalable means of collaborative instrument con-
trol and interaction through three objects: instrument, in-
strument factory, and an abstract action class. See Figure
3. An instrument consists of a set of devices (e.g., con-
troller, detectors) that are advertised through the Naming
Service. Each device has a list of properties. For example,
the controller may include focus, shift, and tilt properties.
These properties and their corresponding attributes can be
queried and manipulated through instances of instrument
and action objects. An action consists of three simple in-
terfaces: get, set, and cando.

All actions occur within a managed session. When
a client instantiates an action, it passes an object that
uniquely identifies itself. By associating a particular user
with each action, the server may queue and/or prioritize
the processing of its services in the collaborative environ-
ment. The design of IS is partially influenced by the Object
Property Service (OPS) as defined by OMG. OPS provides
a mechanism to associate objects with typed name-value
pairs. These objects can then be manipulated through set
and get methods. In an instrument, the value of a control
parameter can change either by natural drifts in the sys-
tem or when it is set to a new value by a principal client.
The design of the server is multi-threaded. One thread au-
tonomously scans the property values (of each device) ev-
ery � seconds. The second thread simply changes the value
of a property through a set operation. In both cases, any
changes in the state of the system are recorded and then
broadcast to all clients. This design is scalable, since prop-
erties and their corresponding attributes are stored in a per-
sistent configuration file. In other words, addition of new
instruments will not require any changes to the CORBA
IDL representation, and thus no changes will be needed
to the clients (with the exception of instrument-specific
changes to the GUI). Each new instrument needs to define

a “plug-in” for the proposed architecture. Another utility
of IS is its use as a front end to a simulation engine or mod-
eling system. In this context, a physical instrument and a
simulation engine behave similarly. They both have con-
trol parameters, and they both generate blobs of data.

Figure 3: Relationship of key objects for Blob Manager
and Instrument Manager. Each additional instrument re-
quires a plug in for ControlSource and BlobSource. The
details of ControlSource and BlobSource are hidden at the
IDL level.

3.3 Exchange Services
Exchange Services provide a set of objects for infor-

mation exchange between collaborators, instruments, and
application programs. This set consists of:

� The session manager (SessionMgr) object, which pro-
vides a listing of active users and a policy for shar-
ing an instrument among multiple collaborators. This
policy empowers the current “principal” to pass the
control to another user. The instrument has a local
operator who can override current the principal by
assigning the instrument to a third party. Each time
a new user joins the system, his or her presence is
broadcast to all the other clients. Likewise, when the
user leaves, he or she is removed from the list of active
clients.

� The blob manager (BlobMgr) object, which provides
an efficient means of transferring bulk data between
various objects. It uses the same IDL that is used
by IS, but it is extended to handle blob data. On
the server side, the detailed implementation of Blob-
Mgr has a three stage pipeline for high throughput.
The pipeline architecture has shown a throughput of
15 frames/sec for compressed data over the wide area
network. Furthermore, the recent implementation of
ORBs from Iona and TAO has shown zero memory
copy with similar performance to the UNIX socket
over the high-speed network. As a result, all the bulk



data transfer is implemented as a sequence data type.
The server side of the blob manager is designed in
such a way that the number of blob objects (detec-
tors) are hidden from the IDL. As a result, each time a
new detector (blob generator) is added to the system,
no changes to the IDL are made. A client can query
various blob sources in the system and register to re-
ceive data from a specific detector. The blob object is
managed by the session manager.

� The shared space manager, which provides the neces-
sary services for clients to exchange chat messages,
graphics overlays, and images among multiple col-
laborators. Message sharing can be private or pub-
lic. Public messages are broadcast to all collabora-
tors, while private messages are sent to a subset of
collaborators. This component is tightly coupled to
the session manager for private messages.

3.4 Declarative Services
Declarative services refer to zero-th or higher order

forms of representing information about a particular ex-
perience. This representation is generated by a user. Such
a framework needs to incorporate several types of declar-
ative notions. Our present focus has been on flow control,
which is modeled after Wf-XML specification. The work-
flow engine provides interoperable functions in terms of
operations. Each operation may pass a set of request pa-
rameters and return a set of response parameters. Opera-
tions are divided into different groups so that they can be
identified by their context. There are three primary groups
of operations, which are named ProcessInstance, Process-
Definition, and Observer. The ProcessDefinition is a fac-
tory for creating an instance of a service, which can be
referenced by interoperable services. The ProcessInstance
corresponds to the actual invocation of ProcessDefinition
and maintains its own identifier. The Observer is essen-
tially a notifier pattern that informs other operations of any
state changes. The interaction of these operations is shown
in Figure 4.

Figure 4: Interaction of operations in Wf-XML.

In our system, collaborators communicate with servers
through OrbixWeb (a Java version of Iona’s ORB), where

remote GUI objects are implemented as Java beans. In the-
ory, Java provides scalability on different types of desk-
tops. However, some modification is needed for porting
the GUI across multiple platforms. The GUI component
aims to provide needed functionality for a particular type
of experiment. A fairly detailed abstraction exists for in-
situ and high-resolution microscopy. It also provides a log-
book where the state of the instrument can be traversed to
a previously known state. The GUI manager has two com-
ponents: a generic interface for common instrument con-
trol, and a set of specialized components that are instru-
ment specific.

The Java client is based on the model view controller
(MVC) pattern. The implementation uses the Java event
model. The model provides a proxy for a remote data
source, and provides three kinds of interfaces: command,
data, and notification. The command interface is for re-
questing changes to the model’s data. The data interface
is for requesting the model’s data. The notification inter-
face is for notifying listeners about changes in the model’s
data as a result of external events. The key models (event
sources) in the DeepView client are BlobSource, Control-
Source, MessageSource, and SessionSource. Each of these
sources can generate user-defined events. The view com-
ponents receive input from the user and forward it to an
appropriate controller. It displays data to the user by re-
questing it from a model. additionally, the view receives
notification from the model. The basic views in the system
are BlobCanvas, Device and PropertyTable, and Session-
Panel. The controller defines the relationship between in-
put from the view and the action made against the model.
It follows an observer pattern. The controllers use the three
interfaces provided by the model to maintain a consistent
view. The controllers are BlobPlayer, Instrument Manager,
and Session Manager.

Figure 5 shows a specific GUI that is designed for a
scanning electron microscope at the Oak Ridge National
Laboratory. The output of the blob manager, session man-
ager, shared space manager, and the instrument manager
are presented to the end user. Figure 6 shows the interac-
tion between clients and various services through the event
channel. At the instrument site, there are three channels
for Instrument State, Blob Manager, and Session Manager.
The Blob Manager samples the output of the detector peri-
odically and pushes a compressed image to the event chan-
nel. This is the most active channel, and it has been imple-
mented with a three stage pipeline architecture. The other
two channels simply notify the client application of any
changes. This design is service based, decoupled, and dis-
tributed. The behavior of the event channel indicates that
it broadcasts data at the rate of the client with the least
amount of network bandwidth. Thus, to avoid penalizing
clients with high network bandwidth, the system maintains
a pool of event channels for the Blob Manager. Each chan-
nel has a different updating frequency, and its characteris-
tic is registered with the Trading Service. The clients then
measure their bandwidth and connect themselves to an ap-
propriate channel with matching impedance. With the ex-



ception of event channels corresponding to the BlobMgr,
all other event channels run in a secure mode.

Figure 5: Collaborative view of the DeepView shows the
shared view space, which includes image, session manager,
and a listing of devices and properties at the instrument
site. Changes in the properties are recorded and broadcast
to all clients.

3.5 System Views
DeepView maintains three views of the system: the

naming view, content view, and meta view. Naming view
leverages the vendor-supported GUI for advertising ob-
ject references and their corresponding hierarchy. Content
view shows the current state of the instrument in terms of
devices and their associated properties in the instrument
control panel. Meta view uses XML to represent the rela-
tionship between devices, properties, and their attributes.
This view is used to annotate actions performed on the in-
strument and for logging information into the archival sys-
tem.

3.6 Computational Services
A number of computational components have been inte-

grated to enhance instrument operation and science exper-
iments through high performance computing [5, 2]. Two
new computational features are included in this paper that
address issues in material science as well as cell biology.

3.6.1 Stereo reconstruction

From a functional perspective, it is often difficult to exam-
ine 3D structural details that may be present on a specimen
holder when observed with scanning electron microscope.
We have developed an algorithm to view three dimensional

EVENT
CHANNEL

EVENT
CHANNEL

BLOB
MANAGER

SESSION
MANAGER

INSTRUMENT
STATE

SHARED
SPACE
EVENT

CHANNEL

EVENT
CHANNEL

PUSH SUPPLIERPUSH CONSUMER

EVENT
CHANNEL

EVENT
CHANNEL

EVENT
CHANNEL

TRADING
SERVICE

CLIENT 1

CLIENT n

Figure 6: Interaction between producers and consumers
through event channels. Each consumer measures its avail-
able bandwidth and connects itself to a blob manager
event channel with matching impedance. The data rate
for session manager and instrument manager is low and
no impedance matching is needed. The underlying trans-
port for the event channel can be either TCP or reliable
multicast.

structures by tilting the specimen. The details of this ap-
proach are beyond the scope of this paper; however, the
workflow model for this operation is included below as
well as an example of 3D reconstruction (in Figure 8).

3.6.2 Kinetic uptake and retention factors at cellular
level

An inverted optical microscope has been used to study the
kinetics of uptake and retention in living cells. In this case,
particular compounds of interest are injected into the cell
environment under computer control. Our system can be
programmed with user defined recipes that indicate con-
centration of various compounds (at different time points)
being injected into the cell environment, sampling rate for
collection of images, and various imaging parameters. The
system uses a workflow model to capture images period-
ically, segmenting those images, measuring cellular re-
sponses for a field of several hundred cells, and logging
those responses into an archival system. These responses
allow direct measurements of kinetic uptake and retention
factors for each cell line for subsequent comparison. The
archival system can then be browsed and queried through a
Web based interface. Examples of browsing raw data, seg-
mentation results, and corresponding metadata (computed
responses over a 2.5-hour period) are shown in Figures 9,
10, and 11.



Figure 7: Process invocation by the client side of workflow
control for stereo reconstruction. A workflow observer
model runs on the remote server for reconstruction.

(a) (b)

Figure 8: Stereo Reconstruction: (a) one of the two views
used for stereo reconstruction shows no apparent depth
cue; (b) the 3D map shows depth cues for different pieces
of specimen.

Figure 9: Tree structure representation of raw data and
viewing of a particular image.

Figure 10: Segmentation results for a field of nuclei se-
lected from Figure 9. This is an active page, where the
user can click on a specific nucleus and observe its re-
sponse over the entire experimental cycle (approximately
2.5 hours).



Figure 11: Response of an individual nucleus as a func-
tion of time as various compounds are injected into the cell
chamber at different time points.

4 Conclusion
A channel for distributed microscopy has been imple-

mented to meet the requirement for synchronous and asyn-
chronous collaboration. We have leveraged OMG-defined
services, Web servers, and XML based workflow specifi-
cations to construct four additional services for instrument
control, collaborative management, and analytical capabil-
ity. Our approach aims to leverage common off-the-shelf
middleware software to exploit economies of scale. How-
ever, a key design feature of our system has been scala-
bility. We view scalability not only as extensible software
interfaces, but also in how experimental parameters can be
varied through declarative workflow models. We have ap-
plied our design to problems in material science as well as
in cell biology.

References
[1] C. Baru, R. Frost, R. Marciano, R. Moore, A. Rajasekar, and

M. Wan. Metadata to support information-based computing envi-
ronment. In IEEE Conference on Meta Data Computing, 1997.

[2] G. Cong and B. Parvin. Shape recovery from eqaul thickness con-
tours. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22:1055–1061, 2000.

[3] M. Hadida-Hassan and et al. Web-based telemicroscopy. Journal of
Structural Biology, 125:229–234, 1999.

[4] S. McCanne. Scalable multimedia communication using ip multi-
cast and lightweight sessions. IEEE Internet Computing, 3:33–44,
1999.

[5] B. Parvin, J. Taylor, D. Callahan, W. Johnston, and U. Dahmen.
Visual servoing for on-line facilities. IEEE Computer Magazine,
1997.

[6] B. Parvin, J. Taylor, and G. Cong. A collaborative framework for
distributed microscopy. In IEEE Conf. on Super Computing, 1998.

[7] C. Potter and et al. Leginon: A system for fully automated acquisi-
tion of 1000 electron micrographs a day. UltraMicroscopy, 77:153–
161, 1999.

[8] D. Schmidt, D. Levin, and S. Mungee. The design of the tao real-
time object request broker. Computer Communications, 21, 1998.

[9] D. Schmidt and S. Vinoski. Object interconections–the OMG event
services. SIGS C++ Report, 1997.

[10] Young S.J. and etal. Implementing collaboratory for microscopic
digital anatomy. Int. Journal of Supercomputer Applications and
High Performance Computing, pages 170–181, 1996.


