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Abstract

A continuum-scale model is presented to explain how electroactive
polymers such as polythiophene can be used to provide overcharge protec-
tion for lithium-ion batteries. The model shows how the cell is transformed
upon overcharge from a battery to a resistor with a resistivity that varies
with position across the separator. Upon discharge or open circuit, self
discharge transforms the resistor back into a battery, and normal cycling
can be resumed. A simplified model yields a design equation that shows
how the potential at which the cell shorts depends on the current den-
sity, separator thickness, and the variation of the electronic conductivity
and the oxidation potential of the polymer with degree of oxidation. The
shorting voltage is independent of the choice of positive electrode and
scales with the potential of the charged negative electrode.
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Introduction

Batteries using nonaqueous electrolytes, such as lithium-ion batteries, are attrac-
tive for applications requiring high energy density, because the nonaqueous electrolyte
enables high cell voltages. However, overcharge of a cell containing a nonaqueous elec-
trolyte can cause irreversible, exothermic degradation, leading to the risk of thermal
runaway and explosion. This risk is exacerbated in a large battery comprised of many
cells in series. In a string of cells connected in series, the same amount of current
passes through each cell. If the capacity of one cell in the string is lower than the
others, either because of imprecision in manufacturing or uneven rates of degradation,
then the weaker cell will be overcharged and overdischarged if the full capacity of the
stronger cells is utilized. The abuse of the weaker cell will cause its capacity to fade
even more rapidly, exacerbating its defects and leading to risk of catastrophic failure.

There are many requirements for an overcharge protection device for a large series-
connected string of cells. The device must prevent the cell’s potential from exceeding
a certain voltage. However, the device should maintain the cell’s potential at the
cutoff voltage in order to allow complete charging of the other cells in the string
before the cutoff potential for the string is reached, but without overcharging the
other cells. The device should not interfere with the cell chemistry or with thermal
management of the cell. It should have small mass, volume, and cost. It should not
cause a large leakage current. Finally, the device should be reversible, in that the cell
should return to normal performance after cessation of overcharge.

Two previous patents[1, 2] have suggested the use of electroactive polymers for
overcharge protection. There are many examples of electroactive polymers, such as
polyacetylene, polythiophene, and polypyrrole. They have the distinguishing charac-
teristic of changing from electronic insulators to metallic conductors upon oxidation.
The oxidation of the polymer is accompanied by insertion of an anion into the poly-
mer. The idea for using the electroactive polymers for overcharge protection is as
follows. During normal cell operation, the potential of the positive electrode lies be-
low the oxidation potential of the electroactive polymer, and the polymer stays in
its insulating state. If the cell is overcharged, its potential rises above the oxidation
potential of the polymer, causing oxidation of the polymer, leading to growth of an
electronic short across the cell.

In a previous publication [3], we have proven that the idea is feasible using a
commercially available electroactive polymer, and have demonstrated that cells can
be protected against overcharge by incorporation of electroactive polymers into the
separator of the cell. In this paper, we use computer simulations to elucidate the
processes occurring in the cell during the formation of the electronic short and present
a design equation for the effect of key parameters on the voltage at which the cell
shorts.

Full model

The model cell configuration is as follows. The positive electrode is comprised of an
intercalation material whose potential varies with state of charge, such as LiTiS2. The
separator consists of a porous, inert, mechanical separator whose pores are partially
filled with the electroactive polymer, the remaining void space being filled with elec-



trolyte. We use poly(3-butyl thiophene) as the electroactive polymer, and LiPF6 in
1:1 ethylene carbonate : dimethyl carbonate as the electrolyte. For brevity, we shall
refer to the electroactive polymer as PBT. Experimentally, one could add the PBT
to the separator by dipping the separator in a solution of dissolved, chemically syn-
thesized PBT, and then evaporating the solvent to leave a separator-PBT composite
membrane.[3] For simplicity, the negative electrode is lithium metal.

The electroactive polymer initially is in its insulating state. If exposed to a poten-
tial positive of its oxidation potential, the polymer can be oxidized. When oxidized,
an anion A from the electrolyte is inserted to balance the charge according to the
reaction

nT + nyA− → nAyT + nye−, (1)

where T represents a monomer unit of the polymer. We refer to the number of anions
inserted per unit monomer as y, which is the degree of oxidation of the polymer. For
most electroactive polymers, y has a range between 0 and about 0.3. The electronic
conductivity σ of the polymer increases by nearly 8 orders of magnitude with increas-
ing degree of oxidation. In addition, the thermodynamic potential, U , also called the
open-circuit potential or the oxidation potential, varies with degree of oxidation.[4]

In regular battery models,[5, 6] the potential in the electronically conducting
phases Φ1 is discontinuous across the cell, being governed by Ohm’s law in each
electrode but having no meaning in the electronically insulating separator. In con-
trast, in the present model, Φ1 is considered to be continuous across the entire cell,
while σ differs in the three regions of the cell (positive electrode, negative electrode,
and separator) and varies with degree of oxidation of the polymer. Nowhere does the
model specify the amount of ionic current in the electrolyte, in contrast to normal
battery models. Solving the coupled equations yields the amount of current that goes
into solution versus the amount of current that flows as an electronic short, according
to the balance among the electronic ohmic resistance of the separator and the kinetic
and ionic ohmic resistances of the electrodes and electrolyte. A detailed description
of the equations and assumptions used in the model can be found in reference [7].

Figure 1 shows a simulated galvanostatic overcharge at 1 mA/cm2 of a LiTiS2 |
Li cell with and without overcharge protection. The potential of the unprotected cell
increases rapidly as the LiTiS2 nears full charge. Experimentally, the cell potential
would not rise indefinitely, but would level off as unwanted side reactions occurred
at the higher potentials. In contrast to the unprotected cell, the simulated potential
of the cell containing the electroactive polymer levels off to a constant value as the
cell is overcharged. We refer to the value of this cell potential as Vss. One can
pass current indefinitely without further change in the cell potential. The simulated
behavior matches that observed experimentally[3] and indicates that the polymer is
able to form an electronic short across the cell.

Interestingly, the polymer “short” occurs at 4 V. This result makes the polymer
short an ideal overcharge-protection mechanism to protect a cell in a large stack,
because the potential of the overcharged cell would remain constant at Vss, allowing
other cells in a series-connected string to reach full charge without in turn being
overcharged. However, one ordinarily expects that a cell’s potential would drop to
near zero if the cell were electronically shorted. How, then, can there be an electronic
short while maintaining such a high cell potential?
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Figure 1: Simulated overcharge at 1 mA/cm2 of a Li | TiS2 cell with and without
electroactive polymer present for overcharge protection. Also shown is the open-
circuit potential of the LixTiS2 (dashed line) as a function of time and state of charge.
Arrows indicate the times at which profiles are drawn in Figures 2.



To answer this question, we examine the simulated profiles of degree of oxida-
tion across the separator, shown in Figure 2. The profiles are shown for different
times during the charge given in Figure 1. During normal cell operation, when the
unprotected and protected cells exhibit identical behavior, the polymer is entirely in
its neutral state (y = 0). When the potential at the positive electrode exceeds the
oxidation potential of the polymer, the polymer begins to be oxidized. Because the
unoxidized polymer is so resistive, the oxidation reaction moves as a front across the
separator rather than being uniformly distributed across the polymer.

0.25

0.20

0.15

0.10

0.05

0

D
eg

re
e 

of
 o

xi
da

tio
n 

y

20151050
Distance across separator (µm)

40 - 46 min

38.2

37.4

37.3
37.0

36.6

34

Figure 2: Degree of oxidation of the polythiophene as a function of position across
the separator. Time in minutes, corresponding to the time during charge as shown
in Figure 1, is indicated as a parameter. The profiles at 40, 42, and 46 minutes are
nearly indistinguishable.

At 37.4 minutes, the amount of current going into solution at the negative elec-
trode is less than the total current being galvanostatically applied to the cell. The
difference is the electronic current i1 passing through the electroactive polymer. The
percent of the total current which is electronic rises to nearly 100% by 46 minutes.
At this point, the cell can be termed a “resistor” instead of a “battery,” as the cur-
rent in the separator is electronic, not ionic. The complete change from “battery” to
“resistor” is a gradual transition that takes nearly 10 minutes, during which some of
the current in the separator is carried electronically while the remainder is ionic. It



takes less than 2 minutes for half of the current to switch from ionic to electronic.
After 46 minutes, the state of the cell ceases to change with time, and it can be

termed to have reached a “steady state.” There are two interesting features of the
profile for the degree of oxidation at steady state. First, the oxidation front never
extends entirely across the cell. The polymer remains in its neutral state adjacent to
the negative electrode, and there is a smooth increase in degree of oxidation across
the separator. Second, the maximum degree of oxidation, which occurs adjacent to
the positive electrode, is equal to 0.19. This is less than the maximum possible degree
of oxidation of poly(3-butylthiophene), which is about 0.28. Thus, the polymer does
not necessarily become fully oxidized when a short forms.

The profile of y(x) across the cell determines the profile of the potential drop
between the potentials of the positive and negative electrodes. Initially, the potential
drop occurs linearly across the separator, which carries miniscule electronic current
during normal cell operation, according to Ohm’s law and the very low conductivity
of the neutral polymer. As the polymer becomes oxidized, its conductivity increases.
The potential drop therefore must be sustained by an insulating region somewhere
in the polymer. This insulating region is found near x = 0 because the reducing
potential of the negative electrode keeps the polymer in its neutral state there. At
“steady state” overcharge, the polymer thus functions as a resistor between two voltage
sources, with a state of oxidation and thus resistivity which varies with position across
the separator. Most of the potential drop occurs across a very narrow region next to
the negative electrode.

Simplified model

The simulations shown above provide insights that allow one to develop a simplified
model of the system during steady-state overcharge. At steady state, electrochemical
reaction and mass transport in the electrolyte are negligible, and the system behaves
essentially as a resistor. A resistor is described simply by Ohm’s law,

i1 = −σ∇Φ1. (2)

Since all of the current is electronic, i1 is equal to I, the total applied current. If no
reaction is occurring, then there can be no driving force for reaction; that is, there
can be no surface overpotential. Therefore, at every point in space, the potential in
the conducting polymer, Φ1, must be equal to the thermodynamic potential, U, which
depends on the degree of oxidation y. Thus, equation 2 can be rewritten as

I = −σ (y(x))
dU (y(x))

dx
= −σ(y)

dU(y)

dy

dy

dx
, (3)

where for simplicity we have treated the cell as one-dimensional.
The boundary condition for this equation depends on the state of the polymer

adjacent to the negative electrode. Let x = 0 at the negative electrode-separator
interface and let x = Ls at the positive electrode-separator interface. Because Φ1

is continuous across the cell, the potential of the polymer immediately adjacent to
the negative electrode is fixed by the potential of the negative electrode. Because
there can be no surface overpotential, the potential in the polymer fixes its degree of



oxidation at that position. Polythiophene is in its neutral state for potentials lower
than 2 V, which is higher than the potential of negative electrodes of interest for
lithium batteries. Therefore, we can use

y = 0 at x = 0 (4)

as the boundary condition.
Integrating equation 3 then yields an implicit equation for y as a function of x,

x = −
1

I

∫
y

0

σ
dU

dy′
dy′. (5)

Equation 5 represents a simplified model for the behavior of the system during
steady-state overcharge. One sees from this equation that the parameters governing
the behavior of the short are the current density I, the separator thickness Ls, the
conductivity σ as a function of y, and the slope of the oxidation potential of the
polymer U with degree of oxidation.

The potential of the cell is the potential at the positive current collector minus
the potential at the negative current collector:

Vss = U (y(x = Ls)) − Φ1(negative electrode). (6)

We see that the potential of the cell, Vss, is completely independent of the nature
of the positive electrode. In other words, the potential at which a short will form
depends only on the nature of the electroactive polymer in the separator. Barring
any chemical interaction of the electroactive polymer with the positive electrode, a
given electroactive polymer can be used to provide overcharge protection for any cell
chemistry (within the limits of the electroactive polymer as specified below).

Integrating equation 5 across the separator yields

Ls ≤ −
1

I

∫
ymax

0

σ
dU

dy′
dy′. (7)

This equation tells us the two limits of the ability of a given electroactive polymer to
short a cell. The first limitation is that the short may occur at such a high value of Vss

that the PBT is damaged irreversibly, impairing its performance on subsequent over-
charge events. Most electroactive polymers become oxidized irreversibly above some
threshhold ymax, equal to about 0.3 for most polythiophenes. Thus, y(x = Ls) must
be less than ymax to avoid degradation of the electroactive polymer. Therefore, Vss

should not be higher than U(ymax). As a consequence, a given electroactive polymer
can protect a cell only within a potential range that is lower than its degradation po-
tential. This may prove to be a serious limitation of the use of electroactive polymers
to protect high-potential positive electrodes against overcharge. The poly(3-butyl
thiophene) used in this investigation is stable up to about 4.2 V. Research is needed
to find polymers with other substituents which may have a higher oxidative stability
window.

The second limitation determines whether or not a short forms at all. If σ(y) is
too low, or Ls or I is too high, then there may be no solution to equation 7. An
electroactive polymer with a higher conductivity or a thinner separator would be
required to enable shorting of the cell.



The simple model presented above shows that the parameters governing the steady-
state behavior of the short are Ls, I, σ(y), and ∂U/∂y. The simple model also allows
one to identify how these parameters affect its behavior. There are several factors
to consider when describing the behavior of the short. The most important factor is
Vss, as the purpose of the short is to allow the cell to reach full charge without being
overcharged. Vss depends on y(Ls) and U(y) as given by equation 6. A second factor
is the amount of charge required to form the short, which will determine how quickly
the short forms and how much the negative electrode must be oversized. The amount
of charge required is determined by the profile of y(x). A third consideration is how
much self-discharge will occur after the charging current is turned off. At the end
of overcharge, the electroactive polymer in the separator is electronically conducting.
When the current is turned off or reversed, electronic current will still be able to
flow through the internal short, causing both reduction of the polymer back to its
insulating state and self discharge of the positive electrode. The effect of Ls, I, and
σ on these three factors is given in Table 1. The fourth governing parameter, ∂U/∂y,
determines the degree to which the other three parameters affect Vss. The smaller
∂U/∂y, the less Vss will change with a change in Ls, I, or σ.

Table 1: Qualitative effects of increasing current density, separator thickness, and
electronic conductivity on the profile of the degree of oxidation of the polymer, the
shorting voltage, and the amount of self-discharge.

y(x) Vss self-discharge
↑I ↑ ↑ ↑

↑Ls -∗ ↑ ↓

↑ σ(y) ↓ ↓ ↑

∗Increasing the separator thickness does not change the slope of the y(x) profile,
although increasing Ls does increase the value of y(Ls).

The effect of Ls and I is illustrated in Figure 3, which shows steady-state profiles
for y for different values of the current density. As described in equation 6, the value of
y at the positive electrode-separator interface is what determines the shorting voltage.
Figure 4 shows how the shorting voltage Vss depends on I for a separator thickness
of 25 µm.

Conclusions

The use of an electroactive polymer incorporated into a battery’s separator is
an attractive new option for overcharge protection. It meets most of the criteria for
an overcharge-protection device for large batteries, in that it is cheap, light-weight,
compact, reversible, prevents the cell from exceeding the cutoff voltage, and holds the
potential at the cutoff voltage indefinitely. Further study is needed to verify the long-
term durability of the electroactive polymer in the environment of the lithium-ion
battery.

The model, in both its complete and simplified forms, has shown qualitative agree-
ment with all experiments performed to date.[4] The behavior of the short is governed



0.25

0.20

0.15

0.10

0.05

0

D
eg

re
e 

of
 o

xi
da

tio
n 

y

200150100500
Distance across separator (µm)

500
100

10

1

0.1

0.01

0.001 mA/cm2

Figure 3: Steady-state profiles of the degree of oxidation as a function of distance
from the negative electrode, for different values of the current density indicated as a
parameter.
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Figure 4: Shorting voltage as a function of current density for a 25 µm-thick separator.
Vss changes only slightly with current density because U(y) for the polythiophene is
relatively flat.

by the profile of the degree of oxidation across the separator. The polymer is in the
completely neutral state adjacent to the negative electrode, and is more oxidized (but
not necessarily fully oxidized) adjacent to the positive electrode. The submicrometer-
thick insulating region next to the negative electrode is what allows the cell to be
electronically shorted but still maintain a high cell potential, which is a desirable
feature for an overcharge-protection device. The steady-state behavior of the short
and thus the shorting potential Vss are functions of I, Ls, σ, and ∂U/∂y. Table 1
summarizes the effect of these parameters on the steady-state behavior of the short.
The principles summarized in this table can be used to select an electroactive poly-
mer with a particular U(y) and then tailor its morphology to create a conductivity
in the separator that forms a short with a desired dependence of Vss on the applied
current density. To minimize the self discharge, one would want to have the most
resistive morphology of the electroactive polymer that still provides a short at the
desired shorting voltage. Vss is independent of the nature of the positive electrode
and scales with the potential of the charged negative electrode.

The limitations of the electroactive polymer are expressed in equation 7. Vss must
be less than U(ymax) or else irreversible degradation of the short will occur. σ(y)
must be high enough that equation 7 can be satisfied or else a short will not form.
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