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Abstract 

Synchrotron-based EUV exposure tools continue to play a crucial roll in the development of 

EUV lithography. Utilizing a programmable-pupil-fill illuminator, the 0.3-NA microexposure 

tool at Lawrence Berkeley National Laboratory’s Advanced Light Source synchrotron radiation 

facility provides the highest resolution EUV projection printing capabilities available today. This 

makes it ideal for the characterization of advanced resist and mask processes. The Berkeley tool 

also serves as a good benchmarking platform for commercial implementations of 0.3-NA EUV 

microsteppers because its illuminator can be programmed to emulate the coherence conditions of 

the commercial tools. Here we present the latest resist and tool characterization results from the 

Berkeley EUV exposure station. 

1. Introduction 

For volume nanoelectronics production using Extreme ultraviolet (EUV) lithography [1] to 

become a reality around the year 2011, advanced research tools are required today. Initial 

production tools are expected to have numerical apertures (NA) of 0.25 and be used for the 32-

nm node. Relevant developmental systems thus also require NAs of 0.25 or higher. To meet the 

need for early development tools, microfield exposure systems trading off field size and speed 

for greatly reduced complexity have been developed. Similar microfield tools have been crucial 
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to sub-0.2-NA EUV development in the past [2-4] and they currently serve as the only source for 

high-NA EUV printing [5-8].  

System design for developemental tools can be further simplified by relying on 

synchrotron radiation as the EUV source instead of developmental stand-alone EUV sources. 

Although this approach does not provide any relevant EUV source learning, it does faclitate 

concentration on imaging and resist issues. The poor match between the intrinsic coherence 

properties of synchrotron radiation [9,10] and that required for lithographic imaging can readlily 

be dealt with using an active illuminator scheme [11]. 

In this paper we describe the latest results from the 0.3-NA EUV microfield exposure 

station at Lawrence Berkeley National Laboratory’s Advanced Light Source synchrotron 

radiation facility. This static microfield exposure station utilizes SEMATECH’s 5×-reduction, 

0.3-NA Micro-Exposure Tool (MET) optic [12,13]. The MET optic has a well-corrected field of 

view of 1×3 mm at the reticle plane (200×600 mm at the wafer plane). At an operrational 

resolution limit of approximately 30 to 35 nm, the latest printing results indicate that EUV 

performance is currently resist limited.  

2. System overview 

Figure 1 shows a CAD model depicting the major components of the exposure station along with 

the EUV beam path. The MET optic is a centrally-obscured (30% of the pupil radius) two-

bounce system. The mask and wafer planes are tilted enabling the use of reflective masks. Using 

effectively coherent undulator radiation as the source, the system relies on a scanning illuminator 

[6, 14] to provide lithographically relevant coherence (pupil fill). The illuminator can generate 

arbitrary pupil fills covering a range up to 1.2 σ in x and 0.8 σ in y. Also, the central obscuration 
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alone can be illuminated, enabling frequency doubling from the mask to the wafer. For a detailed 

description of the exposure tool see Refs. 5 and 6. 

3. Tool characterization 

Because the above-described tool is, among other roles, intended for use in the development of 

EUV resist and mask processes, it is important to characterize the system performance and 

stability. For this task we choose to use one of the best performing EUV resists tested to date: 

Rohm and Hass MET-1K resist (XP3454C). This resist has been extensively characterized and 

reported on [6,15,16] over the past year and has been shown to have significantly better 

resolution then the previous generation of EUV resists such as Rohm and Haas EUV-2D. 

Fine and stable focus control is crucial to obtaining useful data from the exposure tool. 

Figure 2 demonstrates the Berkeley tool capabilities in this area by showing a series of 40-nm 

lines and space images through focus in 30-nm steps. The illumination used for these prints was 

annular 0.3 < σ < 0.7. The stable focus control is evident in the images themselves as well as in 

the extracted line-edge roughness (LER) and CD data [17]. 

Die-to-die performance serves as another mechanism for evaluating tool stability. Figure 3 

shows CD and LER results from 100 identically exposed die (same dose and focus) on a single 

wafer. Figure 3(a) shows the measured CD for features coded as 60-nm across all 100 die. The 

error bars correspond to the variation observed from repeated measurements of the same die as 

well as line-to-line variations within a single image. The measured die-to-die rms CD variation is 

1.2 nm. Assuming this CD variation to result from dose instability, this corresponds to a rms die-

to-die dose variation of 1.5%, based on the previously measured CD sensitivity to dose. Figure 

3(b) shows the LER from these same prints where we see the die-to-die variation to be 
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significantly smaller than the observed line-to-line variation depicted by the error bars. The 

results again indicate stable tool performance. 

Flare remains a significant concern for EUV systems. Because the flare was not directly 

measured in the assembled MET optic, it is important to lithographically verify the predicted 

values. Although MET-1K is well suited for high-resolution work, its relatively low cross-linking 

threshold makes it unsuitable for characterization of flare. Not requiring high-resolution printing, 

flare tests can be implemented using Rohm and Haas EUV-2D resist. Figure 4 shows a direct 

comparison of the predicted and measured flare as a function of feature size. We find excellent 

agreement validating the predicted value of 7% flare in a 500-nm line within a 200×600-µm 

field. A more detailed description of the flare measurement can be found in the literature [18]. 

4. Resist-limited resolution 

In the tool characterization section above there is no discussion of resolution limit. This is due to 

the fact that the achieved resolution is presently resist limited as opposed to tool limited. In this 

section we present data supporting this conclusion and present data from the highest resolving 

EUV resist tested in our system. Figure 5 shows the Prolith [19] calculated aerial-image image-

log slope (ILS) and contrast as a function of feature size for equal lines and spaces. The Prolith 

model incorporates the latest wavefront data combining interferometric measurements obtained 

during alignment of the optic [20] and lithographic measurements of the latest state of the low 

order astigmatism and spherical error [21,22]. The illumination is assumed to be annular 0.3 < σ 

< 0.7. For both the ILS and contrast we actually see the values to improve as the feature size 

shrinks from 35 to 25 nm. Figure 6 shows a series of equal line space images ranging from 45 to 

25 nm printed in experimental KRS resist provided by IBM [23]. Although not as well 

characterized at EUV as MET-1K, EUV exposure tests consistently show KRS resist to slightly 
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outperform MET-1K, making it the highest resolving resist tested in our system. Contrary to the 

results in Fig. 5, it is evident that the imaging performance degrades rapidly for sizes below 35 

nm, indicating a resist limit as opposed to an aerial-image limit. 

 Another way to assess a resist limited performance state is to probe printing performance 

as a function of aerial-image quality. Having a programmable pupil-fill illuminator, the Berkeley 

system is capable of producing large changes in aerial image quality at fixed feature sizes (Fig. 

7). Comparing 35-nm imaging performance, we see that implementing monopole illumination to 

drive the aerial-image contrast up from approximately 50% to nearly 70% (y-monopole 

illumination), we can observe improved imaging performance. Performing the same comparison 

on 30-nm features, we see virtually no improvement in printing performance (pictures not 

shown) when going from 50% contrast to nearly 80% contrast (45°-monopole). 

 Given the resist limitations, it is evident that the optimal illumination choice for 

resolution enhancement on vertical features among the illumination types studied in Fig. 7 is y 

monopole because it provides the most contrast gain in the regime where the resist can still 

respond. Figure 8 shows a series of images recorded in KRS resist under y-monopole 

illumination, demonstrating resolving capabilities down to 32.5 nm for equal lines and spaces 

and 28 nm for semi-isolated lines. 

5. Summary 

Detailed characterization of the MET exposure tool at Berkeley indicates that the system is 

operating to specification. Printing results indicate that EUV performance is presently resist 

limited. The best resolving resist tested to date is capable of approximately 32.5-nm nested 

resolution and 28-nm isolated line resolution. 
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List of Figures 

Fig. 1.  Model depicting the major exposure station components and the EUV beam path 

(the system is described in detail in Ref. 6). 

Fig. 2.  Through-focus (30-nm steps) series of 40-nm lines and spaces in MET-1K resist 

under annular illumination. Also shown is a plot of the measured line-edge roughness (LER) and 

feature size through focus. The smooth behavior of the through-focus data is an indication of the 

good focus control performance. 
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Fig. 3.  Die-to-die reproducibility of CD (a) and LER (b) on 60-nm coded lines and 

spaces printed in MET-1K resist. 

Fig. 4.  Direct comparison of measured and predicted flare in the MET optic. 

Lithographic measurement performed using the Kirk method. 

Fig. 5.  Prolith calculated aerial-image inage-log slope (ILS) and contrast as a function of 

feature size for equal lines and spaces. The model incorporates the latest wavefront data 

combining interferometric measurements obtained during alignment of the optic and lithographic 

measurements of the latest state of the low order astigmatism and spherical error. The 

illumination is annular 0.3-0.7. 

Fig. 6.  Equal line space images ranging from 45 to 25 nm printed in experimental KRS 

resist provided by IBM. Contrary to the results in Fig. 5, it is evident that the imaging 

performance degrades rapidly for sizes below 35 nm, indicating a resist limit as opposed to an 

aerial-image limit. 

Fig. 7.  Computed aerial-image contrast as a function of CD for three different pupil fills. 

Comparing 35-nm imaging performance, we see that implementing monopole illumination to 

drive the aerial-image contrast up from approximately 50% to nearly 70% (y-monopole 

illumination), we can observe improved imaging performance. Performing the same comparison 

on 30-nm features, we see virtually no improvement in printing performance (pictures not 

shown) when going from 50% contrast to nearly 80% contrast (45°-monopole). 

Fig. 8.  Images recorded in KRS resist under y-monopole illumination. (a) 35-nm lines 

and spaces, (b) 32.5-nm lines and spaces, (c) coded 27.5-nm lines 110-nm pitch, actual printed 

size in resist is 28.3-nm.
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Fig. 1.  Model depicting the major exposure station components and the 
EUV beam path (the system is described in detail in Ref. 6). 
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Fig. 2.  Through-focus (30-nm steps) series of 40-nm lines and 
spaces in MET-1K resist under annular illumination. Also shown 
is a plot of the measured line-edge roughness (LER) and feature 
size through focus. The smooth behavior of the through-focus 
data is an indication of the good focus control performance. 
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Fig. 3.  Die-to-die reproducibility of CD (a) and LER (b) on 
60-nm coded lines and spaces printed in MET-1K resist. 
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Fig. 4.  Direct comparison of measured and predicted flare in the MET 
optic. Lithographic measurement performed using the Kirk method. 
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spherical error. The illumination is annular 0.3-0.7. 

Naulleau et al. 



 14

 

 

 

 

 

Fig. 6.  Equal line space images ranging from 45 to 25 nm printed in experimental 
KRS resist provided by IBM. Contrary to the results in Fig. 5, it is evident that the 
imaging performance degrades rapidly for sizes below 35 nm, indicating a resist limit 
as opposed to an aerial-image limit. 
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Fig. 7.  Computed aerial-image contrast as a function of CD for three different pupil 
fills. Comparing 35-nm imaging performance, we see that implementing monopole 
illumination to drive the aerial-image contrast up from approximately 50% to nearly 
70% (y-monopole illumination), we can observe improved imaging performance. 
Performing the same comparison on 30-nm features, we see virtually no improvement 
in printing performance (pictures not shown) when going from 50% contrast to nearly 
80% contrast (45°-monopole). 
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Fig. 8.  Images recorded in KRS resist under y-monopole illumination. (a) 35-nm lines and 
spaces, (b) 32.5-nm lines and spaces, (c) coded 27.5-nm lines 110-nm pitch, actual printed 
size in resist is 28.3-nm. 


