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Abstract 

Local chromatin structure in heterochromatin regulates repeated DNA stability, 

nucleolus structure, and genome integrity 

by 

Jamy C. Peng 

Doctor of Philosophy in Molecular and Cell Biology 

University of California, Berkeley 

 

Professor Gary H. Karpen, Chair 

 

 Heterochromatin constitutes a significant portion of the genome in higher 

eukaryotes; approximately 30% in Drosophila and human. Heterochromatin 

contains a high repeat DNA content and a low density of protein-encoding genes. 

In contrast, euchromatin is composed mostly of unique sequences and contains 

the majority of single-copy genes. Genetic and cytological studies demonstrated 

that heterochromatin exhibits regulatory roles in chromosome organization, 

centromere function and telomere protection. 

As an epigenetically regulated structure, heterochromatin formation is not 

defined by any DNA sequence consensus. Heterochromatin is characterized by 

its association with nucleosomes containing methylated-lysine 9 of histone H3 

(H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, 

which methylates H3K9 and binds HP1. Heterochromatin formation and functions 

are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. 
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My thesis project investigates how heterochromatin formation and function 

impact nuclear architecture, repeated DNA organization, and genome stability in 

Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal 

DNA formation; most likely by restricting the access of repair machineries to 

repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA 

repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA 

damage in heterochromatin. Cells with compromised heterochromatin structure, 

due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display 

severe DNA damage in heterochromatin compared to wild type. In these mutant 

cells, accumulated DNA damage leads to chromosomal defects such as 

translocations, defective DNA repair response, and activation of the G2-M DNA 

repair and mitotic checkpoints that ensure cellular and animal viability.  

 My thesis research suggests that DNA replication, repair, and 

recombination mechanisms in heterochromatin differ from those in euchromatin. 

Remarkably, human euchromatin and fly heterochromatin share similar features; 

such as repeated DNA content, intron lengths and open reading frame sizes. 

Human cells likely stabilize their DNA content via mechanisms and factors similar 

to those in Drosophila heterochromatin. Furthermore, my thesis work raises 

implications for H3K9me and chromatin functions in complex-DNA genome 

stability, repeated DNA homogenization by molecular drive, and in genome 

reorganization through evolution.  
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Chapter one: General introduction 

 

Heterochromatin function and formation 

 The eukaryotic genome contains two types of cytologically and functionally 

distinct chromatin. Euchromatin predominantly replicates in early to mid S phase, 

is composed mostly of unique sequences, and contains the majority of single-

copy genes. Conversely, heterochromatin frequently replicates late in S phase, is 

highly enriched in repetitive sequences, and has a relatively low gene density 

(John, 1988). Emil Heitz initially defined heterochromatin as the part of the 

genome that remains compacted throughout the cell cycle, thereby postulating 

that it is consisted of inactive parts of the genome (Heitz, 1928). After gene 

mapping analyses assigned the vast majority of genes to euchromatin, 

heterochromatin’s reputation as ‘junk DNA’ was further cemented.  

 Genetic, genomic, and cytological studies in recent decades have since 

disputed the notion that heterochromatin is an inert, non-functional part of the 

genome. The ribosomal RNA (rRNA) genes, the most abundantly transcribed 

genes, are embedded in the X and Y pericentric heterochromatin of Drosophila. 

Detailed molecular studies showed that heterochromatin, being 30% of the 

Drosophila genome, contains many protein-encoding genes. The Y chromosome, 

which is entirely heterochromatic by the cytological definition, contains genes 

essential for male fertility (Yasuhara and Wakimoto, 2006). The Drosophila 

Heterochromatin Genome Project (DHGP) has successfully sequenced and 
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annotated 35% of Drosophila heterochromatin, identifying about 450 

heterochromatic genes (Hoskins et al., submitted; Smith et al., submitted).   

 Further analyses of heterochromatin demonstrated its roles in regulating 

chromosome organization, centromere function and telomere protection. 

Cytological and genetic studies showed that heterochromatin is essential for 

homologous achiasmatic (non-exchange) chromosomes to pair and segregate 

during meiosis (Dernburg et al., 1996b; Karpen et al., 1996). Heterochromatin 

also mediates long-range chromatin interactions that regulate gene expression. 

The bwD allele contains megabases of tandemly repeated simple sequences 

inserted within the coding region, resulting in epigenetic silencing of the bw locus 

in cis. Tight association of the bwD locus with the pericentric heterochromatin of 

the same chromosome (chr. 2) also trans-silences a wild-type bw allele on the 

homolog; the bw+ allele is abnormally associated with 2nd chromosome 

heterochromatin due to somatic pairing with bwD (Dernburg et al., 1996a). 

Heterochromatin structure at the mating type locus in S. pombe is needed for 

long-range (~20-kb) interactions of donor loci (mat2-P or mat3-M) with the 

expressed mat1 locus to facilitate mating type switching (Jia et al., 2004). 

Repositioning lymphoid-lineage genes to heterochromatin effects heritable gene 

silencing during T cell and B cell development (Brown et al., 1999). This is 

another example of heterochromatin function in cell differentiation during 

development. 

 Heterochromatin also helps maintain proper centromere and telomere 

functions. Heterochromatin protein 1 (HP1), a structural component of 
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heterochromatin, helps protect telomeres from the activity of DNA repair 

machineries that can cause chromosome fusions (de Lange, 2005). The cohesin 

protein complex maintains sister chromatid cohesion at pericentric 

heterochromatin and is essential for proper chromosome segregation. HP1 is 

required for cohesin recruitment to pericentric heterochromatin; HP1 loss causes 

premature sister chromatid separation, which ultimately leads to chromosome 

mis-segregation, aneuploidy and genome instability (Bernard et al., 2001).  

Heterochromatin has also been proposed to present a rigid structure around the 

centromere that facilitates biorientation of sister chromatid pairs on the mitotic 

spindle (Allshire, 2004).  

 Different chromatin states have been correlated with patterns of post-

translational histone modifications, including serine phosphorylation, lysine 

acetylation, and lysine and arginine methylation. For example, actively expressed 

genes contain H3K4me and hyper-acetylated histones. The H3K9me2 and me3 

modifications associated with ‘silent’ chromatin has become one standard 

characteristic of heterochromatin in most eukaryotes (Jenuwein and Allis, 2001).  

Recent studies have shown that RNA interference (RNAi) pathways and dsRNA 

are required for the initial recruitment of H3 Lys9 methyltransferases, and the 

establishment and maintenance of heterochromatin (Grewal and Moazed, 2003).  

Nuclear architecture 

 Interphase nuclei exhibit complex and dynamic organization of 

chromosomes and nuclear structures.  Individual chromosomes occupy distinct 

territories within the nucleus (Cremer and Cremer, 2001; Parada and Misteli, 
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2002). Drosophila and plant interphase chromosomes can display a Rabl 

arrangement, in which centromeres and telomeres cluster on opposite sides of 

the nucleus (Abranches et al., 1998; Hochstrasser et al., 1986). Mammalian 

chromosome positions can be characterized by radial distance (Figure 1-1a) and 

neighboring chromosomes, i.e. specific chromosomes tend to dwell next to 

specific chromosomes (Figure 1-1b) (Parada and Misteli, 2002). The relative 

positions of chromosomes within the nucleus depend upon their intrinsic 

properties, such as chromosome size and gene density, as well as the cell type, 

shape, cell cycle stage, and quiescent vs. senescent states.  Despite the many 

variables that can perturb such arrangements, chromosome positions are 

conserved evolutionarily amongst primate species (Cremer and Cremer, 2001; 

Mora et al., 2006; Tanabe et al., 2002).  Many publications describe the 

characteristics of chromosome territories, but no study has identified the 

mechanisms that regulate their formation or maintenance. This has led to the 

speculation that chromosomes passively arrange themselves according to 

polymer dynamics, metabolic states and the transcriptional profile of the cell. 

 Studying the formation of nuclear bodies can be equally perplexing. 

Examples of nuclear bodies are nucleol, Cajal and PML bodies, speckles, and 

paraspeckles. Each type of nuclear body contains different molecules (proteins, 

RNAs, and/or DNA) involved in a common function, and the nuclear bodies are 

thought to act as ‘factories’ that facilitate nuclear processes such as replication, 

splicing, and transcription (Figure 1-1c).  For example, ribosomal RNAs are 

transcribed, processed and assembled into ribosomes in the nucleolus (see 
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below).  Also, the small nuclear ribonucleoprotein particles (snRNPs) that 

function in RNA splicing are assembled in Cajal bodies (Carmo-Fonseca, 2002).   

.  Nuclear bodies are not constrained by membranous structures, unlike 

most cytoplasmic organelles, and their structural components exhibit highly 

dynamic, diffusion-based mobility to freely exchange with the nucleoplasm 

(Lamond and Spector, 2003). The diffusive mobility exhibited by these structural 

components lead to the false interpretation that nuclear body formation occurs 

anywhere in the nucleus and is passively regulated. In contrary, evidence 

suggests that nuclear body formation and behavior are function-dependent. 

Nuclear replication, splicing, and transcription ‘factories’ dwell in spaces in 

between chromosome territories, as interchromatin granule clusters (IGC). 

Speckles and paraspeckles often physically associate, most likely due to the 

functions, i.e. mRNA splicing and processing, shared by their structural proteins. 

PML bodies physically associate with telomeres in specific mammalian tissue 

culture cell types so PML bodies can maintain telomeric DNA lengths using a 

recombination mechanism termed alterrnative lengthening of telomeres (ALT) 

(Henson et al., 2002)  

 The nucleolus and its foundation, rDNA, are the best characterized of all 

nuclear bodies. The nucleolus is also the most prominent nuclear organelle since 

it occupies a large proportion of the nuclear volume.  Electron microscropy shows 

that the nucleolus is composed of three structural components: the fibrillar center 

(the innermost region), the dense fibrillar component, and the granular 

component. Ribosomal RNAs are transcribed in the fibrillar center, while rRNA 
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processing starts in the dense fibrillar component and completes in the granular 

component (Hernandez-Verdun, 2006).   

 Nucleolus structure is highly dynamic, and its size and morphology 

depend on cell types and cell cycle stages. The nucleolus also disassembles 

during mitosis and reassociates at the onset of telophase (Hernandez-Verdun, 

2006). How the nucleolar structural proteins coalesce at the site of rDNA is 

poorly understood.  Fluorescent recovery after photobleaching (FRAP) studies 

showed that individual nucleolar proteins rapidly exchange with the nucleoplasm 

in diffusive mobility.  A subset of these proteins move at slower speeds, 

suggesting that protein-protein, protein-RNA, or protein-DNA interactions likely 

delay their mobility (Phair and Misteli, 2000).  Single rDNA units inserted within 

euchromatin are able to seed nucleolus formation (Karpen et al., 1988).  

Ribosomal RNA transcriptional inhibition by RNA polymerase I inhibitor 

actinomycin D causes nucleolus structural disruption (Hadjiolova et al., 1995).  

These studies along with others (Hernandez-Verdun, 2006) suggest that the 

nucleolus forms by ‘self-assembly’ at rDNA in response to rRNA transcription and 

processing and ribosome assembly.   

 The nucleolus organizer region ribosomal RNA genes (NOR rDNA) are 

arranged as tandem repeats in most eukaryotes’ heterochromatin.  The numbers 

of rDNA units vary from strain to strain and from species to species. The 

variability of rDNA copies in D. melanogaster lies between 120 to 240 per 

chromosome and about 140 in S. cerevisiae (Long and Dawid, 1980). Only some 

units of the NOR rDNA are actively transcribed. Epigenetic regulation of rDNA 
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transcription is well documented in yeast, plant, and mammalian systems. For 

example, a mammalian nucleolar remodeling complex (NoRC) regulates rRNA 

expression by establishing and maintaining histone H4 deacetylation, H3K9 

dimethylation, and de novo DNA methylation at silenced rDNA transcription units 

(Santoro et al., 2002).  In contrast, local chromatin structure does not significantly 

impact Drosophila rRNA transcription regulation.  In Drosophila, selective rRNA 

units are silenced within the tandem repeats but do not correlate with histone 

modifications.  However, the rRNA units inserted with the R1 and R2 

retrotransposable elements are expressed 1/5 to 1/10 the level of those not 

disrupted (Ye and Eickbush, 2006).   

 A minimal number of actively transcribed rRNA units are needed for 

cellular and organismal viability; D. melanogaster requires at least 15% of the 

wild-type rDNA copy number, and S. cerevisiae requires 25 copies (Long and 

Dawid, 1980; Shermoen and Kiefer, 1975). To ensure their viability, both yeast 

and flies utilize the process of rDNA magnification to make sure individual cells 

contain enough rDNA content.  This process is likely mediated by unequal sister 

chromatid recombination (Hawley and Marcus, 1989). Ribosomal DNA 

recombination is also implicated in extrachromosomal (ecc) rDNA formation, 

especially in S. cerevisiae, where heterochromatin proteins such as SIR2 

regulate ecc rDNA formation (Blander and Guarente, 2004). Since the DNA 

repair mechanisms are involved in rDNA magnification and ecc rDNA formation, 

they function in rDNA and nucleolar structural maintenance, in addition to general 

DNA repair and maintenance of genome stability. 
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Figure 1-1  Interphase eukaryotic cells exhibit dynamic nuclear architecture 

a) Chromosomes in interphase cells occupy territories and exhibit spatial 

relationships. For example, chromosomes 19 tend to occupy the internal regions 

of the nucleus, while chromosomes 18 locate in the peripheral regions. Adapted 

from Parada and Misteli, 2002. 

b) Certain chromosomes tend to associate with specific chromosomes. One 

example is illustrated here: chromosomes 8 and 11 tend to dwell next to each 

other. Adapted from Parada and Misteli, 2002. 

c) The chart lists described subnuclear structures and their proposed functions. 
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Genome stability 

 One essential goal of the dividing cell is to ensure the faithful transmission 

of its genetic materials to its daughter cells.  This mission is rather difficult to 

accomplish because DNA damage occurs at frequencies from 1 in 1000 to 1 in a 

million basepairs everyday. The main causes of DNA damage are environmental 

factors or normal metabolic processes (Lodish et al., 2004).  Conservative 

estimates of molecular lesions would be 123 per cell per day in D. melanogaster 

(genome size of 122.7 million base pairs) and 3300 for human (3.3 x 109 base-

pair genome size). These many DNA lesions present a tremendous challenge for 

the cell, which must identify DNA damage, signal to halt cell cycle progression to 

allow sufficient time for repair processes, make sure the damage is indeed 

repaired, and then resume cell cycle progression.  

 DNA double-strand breaks (DSBs) are the most dangerous DNA lesions 

to the cell. DSBs are caused by environmental stress or stalled DNA replication 

forks. To combat them, the cell utilizes two main repair processes, homologous 

recombination (HR) and non-homologous end joining (NHEJ).  During HR repair, 

the MRN (MRX in S. cerevisiae) complex first recognizes the DSB and creates 

single-stranded (ss) DNAs around the DSB. The ssDNAs are bound and 

protected by Rad51 and Rad52, and the protein-DNA complex carries out 

homologous strand invasion into the unbroken sister chromatid and facilitates 

homologous sequence-dependent DNA synthesis. Resolution of the resultant 

four DNA strands and their covalent ligation complete the repair process. In 

contrast, during NHEJ repair, chromosome ends around the DSBs are 
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recognized and bound by the Ku70-Ku80 heterodimers without sequence 

specificity. The Ku proteins hold the two DNA strands in close proximity so ligase 

4 and its associated proteins can join the ends together (Figure 1-2) (van Attikum 

and Gasser, 2005). 

 In both of these repair processes, the chromatin structure around the DSB 

is important for the recruitment and retention of DNA repair machineries.  

Specifically, the phosphorylation of H2A variants—serine 139 of H2Ax in human 

and yeast (γH2Ax) and serine 137 of H2Av in fly (γH2Av)—is important for 

recruitment of cohesins (Unal et al., 2004) and ATP-dependent chromatin 

remodellers (Morrison et al., 2004; van Attikum et al., 2004). Cohesins around 

the DSBs either help Ku proteins keep the broken ends together for NHEJ repair 

or hold sister chromatids together for HR repair (Fritsch et al., 2004; van Attikum 

et al., 2004). The INO80 complex, an ATP-dependent chromatin remodeller, 

evicts nucleosomes around the DSB to facilitate exonuclease activity so ssDNAs 

can form to facilitate Rad51-Rad52-ssDNA complex acts during HR repair (van 

Attikum et al., 2004). 

 The phosphoinositol kinase ATM (ataxia telangiectasia mutated) and ATR 

(ATM related) are the main signaling factors responsive to DSBs. They 

phosphorylate various repair proteins and the H2A variants in S. cerevisiae and 

mammalian cells to facilitate recruitment to the DSB site. The ATM and ATR 

proteins also activate G1-S or G2-M cell cycle arrest if the repair machineries 

need more time to accomplish their task. The action of ATM/ATR leads to the 

downstream activation of checkpoint kinase 1 (Chk1) or checkpoint kinase 2 
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(Chk2) or both, which then delay cell cycle progression (Brodsky et al., 2004; 

Jaklevic and Su, 2004; Xu et al., 2001). Recent studies demonstrated that 

dephosphorylation of γH2Ax in regions distal to the DSB site are required to 

resume cell cycle progression after DNA repair completion (Keogh et al., 2006; 

Tsukuda et al., 2005).  

 The signaling mechanisms for DNA damage in Drosophila differ 

significantly from the yeast and mammalian cells.  mei-41 is the Drosophila 

homolog of ATR, and is the main factor responsive to DSBs (Brodsky et al., 

2000; Hari et al., 1995; Jaklevic and Su, 2004).  ATM in Drosophila (tefu), 

functions in telomere protection and apoptotic signaling by activating p53 in 

response to persistent, unrepaired DNA damage (Larocque et al., 2006). 

Surprisingly, p53 in Drosophila does not directly participate in DNA damage 

checkpoint response; it is the effector of apoptosis pathway (Song, 2005). These 

and other significant mechanistic divergences in Drosophila DNA repair can 

make it difficult to make use of knowledge from other model systems.  Despite 

such a risk, protein conservation exists in Drosophila and ultimately facilitates 

mechanistic study to benefit the field of DNA repair study. 
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Figure 1-2  Eukaryotic cells utilize two main pathways for DNA repair. 

The diagram outlines the mechanistic actions of the two main DNA repair 

pathways. Names in parenthesis are known Drosophila homologs. Adapted from 

(van Attikum and Gasser, 2005). 

Thesis Overview 

 My thesis project investigates how heterochromatin function and formation 

impact nuclear architecture, repeated DNA organization, and genome stability in 

Drosophila melanogaster. The fly is a multicellular organism with complex 

developmental timing and processes.  Experimentalists have studied this 
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organism for a hundred years and accumulated highly sophisticated genetic 

techniques that greatly benefit current and future scientific investigations.  

Knowledge about this organism has consistently contributed to our 

understanding of human cell functions and diseases (Bier, 2005; Bilen and 

Bonini, 2005).   

 Remarkably, human euchromatin shares more similarities with the fly 

heterochromatin than the fly euchromatin. Repeat DNA content and gene 

structures, such as intron length and overall open reading frame sizes, in fly 

heterochromatin more closely resemble those in human euchromatin.  The 

human euchromatin is also repeat-rich, making it difficult to completely sequence 

and annotate. The DHGP have made great efforts to sequence and annotate the 

Drosophila heterochromatin, thus making D. melanogaster’s heterochromatin the 

best understood heterochromatin in multicellular organisms. Knowledge gained 

from these studies will apply to investigations of other complex, repeat-rich 

genomes. 

 Drosophila genetic screens over the years accumulated a library of more 

than 100 mutations that perturb heterochromatin-mediated silencing; some of 

these mutations regulate heterochromatin function and formation (Donaldson et 

al., 2002; Grigliatti, 1991; Reuter and Spierer, 1992; Reuter et al., 1982).  

Knowledge about the molecular functions of these genes will increase 

understanding about heterochromatin (Reuter and Spierer, 1992).  For example, 

Su(var)3-9 H3 K9 methyltransferase regulates H3K9 methylation in 

heterochromatin. Su(var)3-9null mutant flies exhibit very few developmental 
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defects, suggesting that H3K9 methylation by Su(var)3-9 minimally regulates 

gene expression, unlike its counterparts in mouse (Peters et al., 2001). This 

mutation allowed me to conduct functional studies of heterochromatin without 

worries about indirect effects from transcriptional deregulation.   

 My thesis work focuses on heterochromatin function in genome stability. In 

the next chapaters I will discuss my demonstration that heterochromatin impacts 

nucleolar structure, repeated DNA organization, and genome stability. I showed 

that local chromatin structure inhibits extrachromosomal DNA formation from 

repeated DNAs by the repair machineries. This regulation maintains structural 

integrity of rDNA, thereby stabilizing nucleolus formation. Local chromatin 

structure inhibits DNA breaks in heterochromatin; cells with compromised 

heterochromatin structure—due to Su(var)3-9null or dcr-2 mutation—display 

severe DNA damage compared to wild type. Accumulated DNA damage is likely 

responsible for the shortened lifespan of the Su(var)3-9null animals. Increased 

DNA damage also leads to chromosomal defects such as translocations and 

aneuploidy, defective DNA repair response, and activation of the G2-M DNA 

repair and mitotic checkpoints that ensure cellular and organismal viability. 

Altogether I demonstrated how local chromatin structure in heterochromatin, 

beyond roles in transcriptional regulation, benefits the health and survival of a 

multicellular organism. The similarities shared by the Drosophila heterochromatin 

and mammalian euchromatin raises the intriguing probability that mammalian 

cells utilize chromatin structure to help stabilize their DNA contents. Further 

mechanistic investigations of how heterochromatin structure helps stabilize 
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Drosophila genome will contribute to our understanding of how human cells 

stabilize their genome. 
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Chapter Two: 

The histone H3K9 methylation and RNAi pathways regulate 

nucleolar and repeated DNA organization by inhibiting formation 

of extrachromosomal DNAs 

 

Introduction 

Nuclei and chromosomes maintain specific and dynamic architectures, 

which are required for many essential functions (Francastel et al., 2000). Nuclear 

bodies are involved in diverse biological processes and exhibit dynamic mobility, 

and individual chromosomes occupy distinct domains within interphase nuclei 

(Cremer and Cremer, 2001). Chromosomes in the metazoan interphase nucleus 

are comprised of two types of cytologically and functionally distinct chromatin, 

euchromatin and heterochromatin (John, 1988). Patterns of post-translational 

histone modifications associated with these domains are strongly correlated with 

functions such as gene regulation, chromosome inheritance, and replication 

timing (Martin and Zhang, 2005). For example, regions that display 

heterochromatin-mediated gene silencing are rich in histone H3K9 methylation 

and lack many histone acetylations, whereas histones in transcriptionally-active 

euchromatic regions are highly acetylated and methylated at H3K4 (Jenuwein 

and Allis, 2001). 

The first indication that chromosome organization can affect gene 

expression stems from the discovery of position effect variegation (PEV) in 

Drosophila by H.J. Muller (Muller, 1930). PEV describes the epigenetic 
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inactivation or silencing of a euchromatic gene that has been positioned close to 

or within heterochromatin, or a heterochromatic gene moved to distal 

chromosome locations. PEV is exquisitely sensitive to the dosage of genetic 

modifiers, known as suppressors and enhancers of variegation (Su(var)s and 

E(var)s) (Schotta et al., 2003). PEV modifiers regulate heterochromatin formation 

and functions. The Su(var)3-9 family encodes a histone methyltransferase 

(HMTase) that catalyzes H3K9 methylation, and Su(var)2-5 encodes the 

structural component Heterochromatin Protein1 (HP1). Methylated H3 K9 and 

Su(var)3-9 both bind to HP1, providing a molecular mechanism for maintaining 

the silenced epigenetic state(Jenuwein and Allis, 2001).  

Recent studies have shown that the RNA interference (RNAi) pathway 

and double-stranded (ds) RNAs are required for the initial recruitment of H3K9 

methyltransferase, and the establishment and maintenance of heterochromatin 

(Grewal and Moazed, 2003). In S. pombe, RNA-dependent RNA polymerase 

amplifies dsRNAs from repeated DNA elements that are initially transcribed by 

RNA polymerase II . Dicer 1 then processes dsRNAs into small interfering (si) 

RNAs.  The siRNAs are bound by the RITS (RNA-induced initiation of 

transcriptional gene silencing) complex, which contains Tas3, Ago1, and Chp1.  

The siRNA-RITS complex then interacts and directs the localization of clr4, the 

Su(var)3-9 homolog, to the repeated DNAs.  Once recruited there, clr4/Su(var)3-

9 methylates K9 residue of histone H3, thereby initiating heterochromatin 

formation (Cam and Grewal  2004 review).  Genetic analysis showed that some 

Drosophila RNAi mutants, piwi, aubergine, and spindle-E, act as Su(var)s that 
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influence silencing of tandem repeats (Pal-Bhadra et al., 2004).  These proteins 

were later found to regulate dsRNA cleavage during repeat-associated siRNA 

(rasiRNA) production (Aravin et al., 2004; Tomari et al., 2004). Other RNAi 

genes, such as argonaute-2 and dicer-2, seem to regulate siRNA but not 

rasiRNA production.   

 The nucleolus, the site of ribosome assembly, is an example of an 

essential nuclear organelle. The structural foundation of the nucleolus is the 

organizer region ribosomal DNAs (NOR rDNAs). The rDNAs are tandemly 

repeated sequences embedded in heterochromatin in most eukaryotes, and 

single rDNA genes can form mini-nucleoli via a self-assembly process (Karpen et 

al., 1988). The rRNA transcription is epigenetically in yeast, plant, and 

mammalian systems. A mammalian nucleolar remodeling complex (NoRC) 

regulates rRNA expression by by histone H4 deacetylation, H3K9 dimethylation, 

and de novo DNA methylation at rDNA (Santoro et al., 2002). In contrast, rRNA 

expression regulation in D. melanogaster does not correlate with its chromatin 

structure; the R1 and R2 retrotransposable elements inserted within the rDNA 

spacers influence rRNA expression (Ye and Eickbush, 2006). rDNA 

magnification occurs in yeast and flies with low rDNA content, and this process is 

likely mediated by unequal sister chromatid recombination(Hawley and Marcus, 

1989). Finally, mutations in a protein that regulates silencing in S. cerevisiae 

(SIR2) result in extrachromosomal (ecc) rDNA formation, which is thought to 

impact cell senescence and aging (Blander and Guarente, 2004).  
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It is surprising that rDNA produces the overwhelming majority of RNAs in 

the cell, despite its association with ‘silenced’ heterochromatin. This paradox 

suggests that the evolutionarily conserved positioning of NORs in 

heterochromatin may regulate important, unknown features of nucleolus 

formation. Here, I test the hypothesis that heterochromatin and associated 

proteins regulate the organization of nucleoli and repeated DNAs in Drosophila. 

Our results demonstrate that a subset of Su(var) proteins, including the Su(var)3-

9 HMTase, HP1, and the RNAi pathway, are required for the normal organization 

of nucleoli and satellite DNAs in the nucleus. Furthermore, these regulators of 

heterochromatin suppress eccDNA formation from repeated DNAs, which is 

mediated by non-homologous end-joining (NHEJ) or other recombination/repair 

pathways. 
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Results 

Multiple nucleoli are present in Su(var) mutant cells 

I used indirect immunofluorescence (IF) to examine nucleolar organization 

in whole-mount (three dimensional) imaginal disc tissues and polytene larval 

salivary glands from wild type and Su(var) mutant larvae (see Materials and 

Methods). Staining for fibrillarin, a component of the rRNA processing machinery 

(Tollervey et al., 1993), confirmed that wild type polytene and diploid cells contain 

single nucleoli (Figure 2-1). In contrast, salivary gland cells from animals 

homozygous for mutations in the Su(var)3-9 histone H3K9 methyltransferase or 

HP1/Su(var)2-5 genes contained between 1 and 12 nucleoli (Figure 2-1a, Table 

2-1). The average numbers of nucleoli in mutant cells (Su(var)3-9null = 2.7, 

Su(var)3-91699 = 5.0, HP1null = 2.8) were significantly higher than in wild type 

(avg=1, Table 2-1). Increases in nucleolar numbers was accompanied by a 

proportional increase in both nuclear and nucleolar volume, even though the ratio 

remained constant (data not shown). Irregularly-shaped, multi-lobed nucleoli 

were observed in 44% of Su(var)3-9null mutant diploid imaginal disc cells, versus 

only 10% in wild type cells (Figure 2-1b). For all experiments we chose to 

analyze Su(var)3-9null mutant flies whose parents are null mutants because 

maternal effects may exist in Su(var)3-9null mutant flies from heterozygous 

mothers carrying one wild type copy of Su(var)3-9.  

Fibrillarin staining in salivary glands of Su(TDA-PEV)1650 (Figure 2-1a) 

and Su(var)2-10/dPIAS mutant cells also displayed the multiple nucleoli 

phenotype, whereas mutations in seven other Su(var) loci and two Polycomb-
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Group (PcG) genes had no effect on nucleolar organization (Table 2-1). I 

conclude that many but not all regulators of gene silencing (4/13) are required for 

the formation of a normal, single nucleolus.  

 

Figure 2-1 Su(var) mutants contain multiple nucleoli.  

a) IF with antibodies against the nucleolus marker fibrillarin (red) in whole-mount 

salivary gland nuclei from wild type, Su(var)3-9null, Su(var)3-91699, HP1null and 

Su(TDA-PEV)1650 homozygous mutants. Wild type cells have one nucleolus, 

whereas the mutants display multiple nucleoli. Blue = DAPI. Scale bars are 

10µm.  

b) Fibrillarin IF in whole-mount imaginal disc and brain tissues from wild type and 

Su(var)3-9 mutants are shown. The single, wild type nucleolus (N=51) tended to 

be round, whereas nucleoli in the mutants were irregular (lobed) and larger. 

Quantitative analysis showed that 44% of Su(var)3-9null mutant nuclei contained 

lobed nucleoli (N=55), versus 10% for wild type (p<0.001). The scale bars are 

5µm. 
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Table 2-1: Effects of mutations on salivary gland nucleoli. 
 

    # Nucleoli 

Locus / Molecular 
Function Alleles Tested Refs. Mean ± SD Range 

c P 
values 

Wild type a   1±0 1 NA 

Su(var)3-9  
H3K9 

methyltransferase 

1699 (missense), 
6 and 17 (nulls) 

(Donaldson et 
al., 2002; 

Schotta et al., 
2002) 

2.7± 1.4 
N = 54 

1 to 9 
(null); 1 

to 12 
(1699) 

<0.001 

Su(var)2-5 / HP1 
chromodomain/ 
binds H3K9me 

transheterozygou
s 1009/1209 

(nulls) 

(Donaldson et 
al., 2002) 

2.8± 0.83 
N = 21 1 to 4 <0.001 

Su(var)2-10 / 
dPIAS  

Protein Inhibitor of 
Activated STAT / 

SUMOylation 

transheterozygou
s 02/Pex14A 

(nulls) 

(Hari et al., 
2001b) multiple b N.Db.  

Su(TDA-PEV) 1650 
? function 1650 (Donaldson et 

al., 2002) 
3.6± 1.6 
N = 35 1 to 8 <0.001 

Su(var)3-7  
zinc Finger/ DNA 

binding 
234 (Donaldson et 

al., 2002) 1 b 

 
 
 
 

 

l(3)73Ah  
ubiquitin ligase 1044 (Donaldson et 

al., 2002) 1 b   

Su(TDA-PEV) 1025 
? function 1025 (Donaldson et 

al., 2002) 1 b   

Su(TDA-PEV) 1260 
? function 1260 (Donaldson et 

al., 2002) 1 b   

Su(TDA-PEV) 1128 
? function 1128 (Donaldson et 

al., 2002) 1 b   

Su(var)4-20  
H4K20 

methyltransferase 

BG00814 and 
EY07422 P 
insertions 

(hypomorphic) 

(Schotta et al., 
2004) 1 b   

dSIR2 
NAD-dependent 

histone deacetylase 
17 (null) (Astrom et al., 

2003) 1 b   

Pc  
PcG complex 1 and 7 (nulls) 

(Gindhart-Jr and 
Kaufman, 1995; 

Tearle and 
Nusslein-

1 b   
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Volhard, 1987) 

Ph  
PcG complex 410 (null) (Hodgson et al., 

1997) 1 b   

Lig4  
DNA ligase 29 and 57 (nulls) (Romeijn and 

Ferro, 2004) 1 b   

Lig4; Su(var)3-9 
N.A. 

double 
transheterozygou

s mutant 
 1.7± 0.8 

N = 83 1 to 4 <0.001
d  

a heterozygous for Su(var) 

b evaluated qualitatively from multiple images 

c p values reflect comparisons of the mean # nucleoli in wild type versus 

 mutant  

 d p values reflect comparisons of the mean # nucleoli in the double mutant 

versus wild type, and separately versus Su(var)3-9null mutant 

Ectopic nucleoli in Su(var) mutants contain rDNA 

 Multiple, ectopic nucleoli associated with Su(var) mutations could result 

from dispersion or fission of nucleolar material initially formed around a single 

rDNA cluster, or from mislocalization of rDNA. These hypotheses were tested by 

evaluating the association of rDNA with ectopic nucleoli, using combined 

fibrillarin IF and rDNA FISH. Wild type polytene nuclei displayed single rDNA 

sites within each nucleolus, whereas nuclei from Su(var)3-9, HP1, and Su(TDA-

PEV)1650 mutants contained multiple, dispersed rDNA foci associated with 

ectopic nucleoli (Figure 2-2a). Similarly, 33% of Su(var)3-9null diploid disc cells 

contained multiple rDNA sites (average=1.44±0.72), compared to only 2% of wild 

type (average=1±0.1, Figures 2-2b and c). These results demonstrate that 
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ectopic nucleoli in Su(var) mutants are nucleated independently by mislocalized 

rDNA, including the multi-lobed nucleoli observed in mutant diploid cells.  

 

 

Figure 2-2 Su(var) mutants have dispersed rDNA foci, each of which forms an 

ectopic nucleolus.  

a) Fluorescence in situ hybridization (FISH) for rDNA (red) and IF for fibrillarin 

(green) were performed on whole-mount salivary glands from wild type, Su(var)3-
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9null, Su(var)3-91699, HP1null, and Su(TDA-PEV)1650 homozygous mutants. Blue 

= DAPI. There is a single site of rDNA in >98% of wild type nuclei, whereas the 

Su(var) mutant nuclei contain multiple rDNA foci, which are all surrounded by 

fibrillarin. Scale bars are 15µm.  

b) Combined rDNA FISH (red) and fibrillarin IF (green) analysis of whole-mount 

imaginal disc and brain tissues from wild type and Su(var)3-9null mutant larvae. 

Wild type nucleoli contain a single, compact rDNA focus, whereas Su(var)3-9null 

mutants frequently display multiple rDNA foci. Scale bars are 3µm.  

c) Quantitative analysis of the number of rDNA foci in wild type and Su(var)3-9null 

diploid nuclei. 98% of wild type cells (N=96) contain one rDNA signal, compared 

to 67% of Su(var)3-9 null nuclei, and the percent with 2, 3, and 4 rDNA signals 

was 24%, 7%, and 2%, respectively (average =1.44 ± 0.73 rDNA foci per mutant 

nucleus, N=53, p<0.001).  

Su(var)3-9 mutants disrupt the organization of other repeated DNAs 

The severe disruption of rDNA and nucleolar organization raised the 

possibility that the 3-dimensional spatial relationships of other heterochromatic 

DNAs are also affected by Su(var) mutations. FISH analysis on polytene nuclei 

was performed using probes to tandemly-repeated satellite DNAs (Figure 2-3a), 

which localize to the heterochromatic chromocenter (Spradling and Orr-Weaver, 

1987). An average of two sites were observed in wild type nuclei for satellites 

1.688 and 1.686, compared to 3 sites in Su(var)3-9null mutants (Figure 2-3b and 

c; p<0.001). Similar observations were made with satellites AACAC and AATAT 

(data not shown). Distances between signals for each satellite increased 
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significantly in Su(var)3-9null mutants (1.688 = 9-fold, 1.686 = 3-fold; Figure 2-3b 

and d; p<0.001). Notably, mislocalized satellite DNA and rDNA were not 

restricted to a specific nuclear compartment. I conclude that heterochromatic 

repeated DNAs become dispersed and disorganized in Su(var)3-9 mutants, as 

observed for rDNA and nucleoli.  
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Figure 2-3 Satellite DNA organization is disrupted in Su(var)3-9null mutant nuclei.  

a) Locations of rDNA and satellite DNAs in the Drosophila melanogaster genome 

(not to scale). The rDNA is located in the heterochromatin of the X and Y sex 
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chromosomes, the 1.688 satellite (359-bp repeats) is next to the X rDNA, and the 

1.686 satellite is in the heterochromatin of chromosomes 2 and 3.  

b) FISH was performed on whole-mount polytene salivary glands isolated from 

wild type and Su(var)3-9null mutants. In wild type nuclei, specific satellite DNAs 

are localized at single sites, and the different satellite signals are close to each 

other. In Su(var)3-9null mutant nuclei, individual satellite DNAs are dispersed to 

multiple sites and are not clustered with other satellites. Gray is DAPI, FISH 

probe colors correspond to the diagram in a. Scale bars are 15µm.  

c) The number of 1.688 and 1.686 foci were significantly higher in mutant nuclei 

compared to wild type (p<0.001). d) Distances between satellite signals were 

quantitated in 3-dimensional reconstructions. The intra-satellite distances in 

Su(var)3-9null mutant nuclei were significantly higher than in wild type (p<0.001).   

The RNAi pathway is also required for normal nucleolar organization 

 The targeting of H3K9me2 by the RNAi pathway (Grewal and Moazed, 

2003) and the presence of small RNAs homologous to the 1.688 satellite and 

other repeats (Aravin et al., 2003) led us to examine RNAi mutants for 

disorganized nucleoli. At least one mutant allele at all five RNAi loci examined 

displayed significantly increased nucleolus numbers, in comparison to wild type 

(p<0.01 for all except for hlsΔ215, p<0.08; Table 2-2, Figure 2-4a).  Combined 

fibrillarin IF and rDNA FISH in dcr-2L811 fsx mutant demonstrated that the mutant 

nuclei also contain dispersed rDNA loci (Figure 2-4b). 
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a                                  b 

  

Figure 2-4  The RNAi pathway is also required to maintain the structural integrity 

of repeated DNAs and the nucleolus.   

a) The histogram shows the average numbers of nucleoli in different RNAi 

mutants examined. At least one allele at all loci contained significantly more 

nucleoli than wild type (p<0.01). The hlsdel215 allele of SpnE had a mild phenotype 

(p = 0.083).   

b) Combined rDNA FISH (red) and fibrillarin IF (green) shows that dcr-2L811fsx 

polytene nuclei contain multiple rDNA foci and ectopic nucleoli. The nucleus is 

22um. 
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Table 2-2: Effects of mutations of RNAi genes on salivary gland nucleoli. 
 

    # Nucleoli 

Locus / Molecular 
Function Alleles Tested Refs. Mean ± SD Range 

bP 
values 

Wild type a   1±0 1 NA 

Ago2  
siRNA loading 51B (null) (Xu et al., 2004) 2.5± 1.3 

N = 79 1 to 5 0.001 

Aub  
RNAi complex QC42 (?) (Wilson et al., 

1996) 
1.1± 0.4 
N = 85 1 to 3 0.004 

hls / Spn-E  
RNA helicase (of 
RNAi complex) 

∆215 (null) and 1 
(hypomorph) 

(Gillespie and 
Berg, 1995; 

Gonzalez-Reyes 
et al., 1997) 

1.1± 0.3 
N = 40 and 

1.6± 0.8 
N = 78 

1 to 4 
0.083 
and  

<0.001 

piwi  
mRNA binding (of 

RNAi complex) 
06843 (null) (Lin and 

Spradling, 1997) 
1.8± 1.0 
N = 102 1 to 5 <0.001 

dcr-2 
RNA helicase (of 
RNAi complex) 

L811fsx 
(hypomorph) and 
P insertion (null) 

(Lee et al., 2004) 3.4± 1.9 
N = 60 1 to 6 <0.001 

a heterozygous for Su(var) 

b p values reflect comparisons of the mean # nucleoli in wild type versus 

mutant  

H3K9me2 levels at rDNA and satellite DNAs decrease significantly in 

Su(var)3-9 and dcr-2 mutants  

 Heterochromatic nucleosomes in a variety of organisms, including 

Drosophila, are enriched for the H3K9me2 modification. Thus, HP1 and 

Su(var)3-9 could control rDNA and nucleolar organization indirectly by regulating 

the flanking heterochromatin, or could act directly on rDNA chromatin. To 

address this question, we aimed to determine whether rDNA and satellite DNAs 

contained methylated H3K9, and if this modification was disrupted in Su(var)3-9 

mutants. Combined IF and FISH studies indicated that H3K9me2 partially 
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overlapped with rDNA in wild type diploid cells, and was significantly reduced in 

Su(var)3-9null mutants (Figure 2-5a).  H3K9me2 IF showed that H3K9me2 is 

mislocalized in dcr-2L811 fsx diploid nuclei when compared to wild type (Figure 2-

5a).  While H3K9me2 signals mostly localize to DAPI-bright regions 

(heterochromatin) in the wild type, their staining patterns in dcr-2 mutant nuclei 

are more broadly distributed.   

Quantitative Chromatin ImmunoPrecipitation (ChIP) showed that rDNA, 5S 

rDNA, and satellite DNAs were enriched for H3K9me2 in wild type diploid cells, 

and that this modification was not well represented at single copy gene controls 

(actin and HDAC3; Figure 2-5b). Moreover, the levels of H3K9me2 on all 

repeated DNAs decreased substantially in chromatin isolated from Su(var)3-9null 

mutant discs. The reductions in H3K9me2 levels varied among the different 

repeats and within the rDNA (6- to 226-fold, Figure 2-5b, top), most likely 

reflecting known redundancy in the HMTases responsible for this modification in 

flies (Schotta et al., 2002). ChIP analysis of dcr-2 mutant (dcr-2L811fsx) revealed 

significant H3K9me2 reduction in the rDNA; unlike Su(var)3-9 mutants, 

reductions were not observed for 5S rDNA and satellite 1.688 (p<0.05, Figure 2-

5c).  In sum, the ChIP and combined IF-FISH results suggest that the effects of 

Su(var)3-9 and the RNAi pathway on rDNA and nucleolar organization are 

mediated through the chromatin structure of the rDNA itself, rather than solely 

through the flanking heterochromatin. 

H3K4me2 and H3K9ac have been characterized as modifications 

associated with active or open chromatin. ChIP analysis showed that chromatin 
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associated with repeated DNAs contained low levels of H3K9ac (Figure 2-5d) 

and H3K4me2 (Figure 2-5e), which remained mostly unchanged in Su(var)3-9null 

mutants. Exceptions were significant increases in 5S rDNA H3K9ac levels in the 

mutants (p<0.03), and H3K4me2 decreases for the 1.688 satellite (p<0.04). 
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Figure 2-5 Analysis of histone modifications in chromatin containing repeated 

DNA in wild type, Su(var)3-9null, and dcr-2L811 fsx cells.  
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a) IF using antibodies that specifically bind H3K9me2 (red) in squashed diploid 

nuclei from wild type, Su(var)3-9null, and dcr-2L811 fsx animals. H3K9me2 localizes 

predominantly in DAPI-bright heterochromatin regions in wild type, but is mostly 

missing in Su(var)3-9null nuclei and becomes more broadly distributed in dcr-

2L811fsx nuclei. Scale bar is 3µm.   

b) Chromatin immunoprecipitation (ChIP) analysis of H3K9me2 levels in wild type 

and Su(var)3-9null mutant imaginal disc tissues. The graph shows H3K9me2 

levels for the repeated DNAs examined by PCR, standardized to actin and HDAC 

single copy controls (see Materials and Methods); values were averages of 5 

ChIP experiments. In wild type cells, the 1.688 satellite (359-bp repeats), 5S 

rDNA (in chromosome 2 euchromatin), and the rDNA on the sex chromosomes 

contain significant enrichment for H3K9me2, compared to input chromatin and 

controls. H3K9me2 levels in chromatin derived from Su(var)3-9null mutant tissues 

were significantly reduced (6- to 226-fold) compared to wild type.   

c) ChIP analysis reveals reduced H3K9me2 levels in dcr-2L811fsx chromatin 

compared to wild type (p<0.05), more so for rDNA than the 5S rDNA and satellite 

1.688. Values are averages of 4 PCR reactions from 2 ChIP experiments.  

d) and e) ChIP analysis of two modifications associated with ‘active’ or ‘open’ 

chromatin (H3K9ac and H3K4me2). Small enrichment for these modifications 

was observed on repeated DNAs in wild type chromatin, compared to input and 

single copy controls. For most of the repeated DNAs, levels were not significantly 

altered in Su(var)3-9null mutant chromatin (p>0.5 for all regions). H3K9ac levels 

were significantly increased in 5S rDNA in the mutants (p<0.05), and H3K4me2 
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was significantly decreased for the 1.688 satellite (p<0.05). Values are averages 

of 2 experiments. 

Su(var)3-9 and dcr-2L811 fsx mutations cause significant increases in the 

amount of extrachromosomal repeated DNA 

How do chromatin changes affect the organization of repeated DNAs and 

nucleoli? Loss of H3K9me2 could generate extrachromosomal (ecc) DNA 

through intra-chromatid recombination, or chromatin decondensation could cause 

dispersal of repeated DNAs in the nucleoplasm. To test these hypotheses, 

eccDNA was quantitated in mutant and wild type cells using ‘Hirt’ supernatants, 

which separates ecc from genomic DNAs (Hirt, 1967) (Materials and Methods). 

Wild type polytene tissues contained ecc 5S rDNA and satellite 1.688 DNA, as 

observed previously (Pont et al., 1987), but very low levels of ecc 18S/5.8S/28S 

rDNA (Figure 2-6a). The amounts of eccDNA increased dramatically in Su(var)3-

9null mutant tissues versus wild type for rDNA (46- to 78-fold) and satellite 1.688 

(20-fold) (Figure 2-6b; p<0.05 for all regions), which was not observed for the 

single copy genes actin and HDAC.  Similarly, the ecc rDNA increased in dcr-

2L811fsx mutants (13- to 29-fold, Figure 2-6c), consistent with ectopic nucleolus 

formation. For diploid cells, ecc repeated DNAs were ~2-fold higher in Su(var)3-9 

mutant tissues than in wild type (Figure 2-6d; p<0.05 for all regions). Lower levels 

of eccDNA in mutant diploid cells likely results from the absence of 

endoreplication and loss during mitosis (see Discussion). We conclude that loss 

of H3K9me2 from chromatin containing repeated DNAs results in eccDNA 
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formation, and that the increased ecc rDNA leads to the formation of ectopic 

nucleoli.  

 

Figure 2-6  Levels of extrachromosomal repeated DNAs are significantly 

increased in Su(var)3-9null and dcr-2L811 fsx mutant tissues compared to wild type.  

a) Extrachromosomal DNA was isolated from wild type and Su(var)3-9null mutant 

larvae, and PCR reactions, terminated at logarithmic phase of amplification, were 

performed to evaluate the amounts of eccDNA corresponding to specific 

sequences (see Materials and Methods). The gel shows an example of the PCR 

reactions for the specific regions examined. EccDNAs from the single-copy 

genes (actin and HDAC3) were not detected in either wild type or mutant larvae. 
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The asterisk indicates that the band in the 1.688 satellite lane corresponds to the 

primers, not the PCR products.  

b) Quantitation demonstrates that the amount of eccDNA for the 1.688 satellite 

and different regions of the rDNA are significantly higher in Su(var)3-9null mutants 

compared to wild type (20- to 78-fold enrichment); the increase for 5S rDNA was 

only 2-fold, because wild type larvae contain high levels of ecc 5S rDNA. The 

values were averages of 3 sample extractions.  

c) Ecc rDNA levels in dcr-2L811fsx mutant larvae are significantly higher than in 

wild type (13- to 29-fold increases), but eccDNA levels for 5S rDNA and satellite 

1.688 did not increase. 

d) Quantitation of PCR products indicates that the amount of eccDNA in 

Su(var)3-9null mutant diploid cells is about two-fold higher than in wild type. The 

values were averages of 3 sample extractions, and p values were <0.05 for the 

regions examined. 

The level of repeat-associated cohesins is reduced in Su(var)3-9null 

mutants, but a cohesin mutation does not increase extrachromosomal DNA 

formation 

 Sister chromatid cohesion (maintained by the protein complex cohesin) 

inhibits ecc rDNA formation in S. cerevisiae (Kobayashi and Ganley, 2005), and 

H3K9me2 and the HP1 homolog SWI6 are required for cohesin recruitment in S. 

pombe (Nonaka et al., 2002). Thus, recruitment of cohesin to pericentric 

heterochromatin by the H3K9me pathway could also regulate repeated DNA 

structural integrity in Drosophila. ChIP analysis showed that levels of the SMC1 
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cohesin subunit (Losada et al., 1998) were significantly reduced in chromatin 

containing repeated DNA in Su(var)3-9null mutants (16 to 29 % of wild type levels, 

Figure 2-7a).  However, the amount of eccDNA isolated from animals 

homozygous for the smc1exc461 mutation did not differ significantly from wild type 

(Figure 2-7b).  Therefore, I conclude that Su(var)3-9 and H3K9 methylation are 

required for cohesin recruitment at repeated DNAs in Drosophila, but cohesin is 

not essential for repressing eccDNA formation.   

 The reduction of cohesins at the repeated DNAs suggests that sister 

chromatid cohesion defects during mitosis may occur.  Cell cycle analysis of the 

Su(var)3-9null cells showed mitosis delay (Chapter 3) that reinforces this idea. I 

therefore hypothesize that the reduced amount of cohesins in the Su(var)3-9null 

cells may cause cell viability defects.  Progeny analysis of the cross of smc1exc46 , 

Su(var)3-917 / TM3 flies with the Su(var)3-96 / TM3 flies showed that smc1exc46 , 

Su(var)3-917 / Su(var)3-96 progeny are 75% viable compared to the smc1exc46 / 

Su(var)3-96 flies from the control cross (p value <0.01 by chi-square test).  This 

result indicates that cohesins are haplo-insufficient in the Su(var)3-9null 

background. 
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Figure 2-7  Cohesin protein, SMC1, does not regulate eccDNA formation.  Its 

mutant genetically interacts with Su(var)3-9null mutations.  

a) ChIP analysis shows reduced SMC1 levels at repeated DNAs in Su(var)3-9null 

chromatin, relative to wild type; fold reductions are shown above (p<0.05 for all 

repeated DNA except 5S rDNA). Values were averages of 4 PCR reactions from 

2 ChIP experiments.  

b) The amount of eccDNA from satellite 1.688 and rDNA in smc1exc46l mutant 

tissues do not differ significantly from wild type. 

c) Su(var)3-96 / TM3, Sb, Ser males were crossed with either smc1exc46 / TM3, Sb 

(control cross) or smc1exc46, Su(var)3-917 / TM3, Sb virgins.  The progeny were 

scored by the presence and absence of the Sb phenotype.  The smc1exc46 / 

Su(var)3-96 flies from the smc1exc46 / TM3, Sb mothers were 42% of total 

progeny, while the smc1exc46 , Su(var)3-917 / Su(var)3-96 flies from the smc1exc46, 

Su(var)3-917 / TM3, Sb mothers were 32 % of the total progeny.  Compared to 
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the control, the smc1exc46 , Su(var)3-917 / Su(var)3-96 flies have a 76 % viability (p 

value <0.01 by chi-square test). 

Ligase 4 and Spn-A/Rad51 mutations partially suppress the disorganized 

nucleolus phenotype observed in Su(var)3-9 mutants 

Extrachromosomal DNA formation likely arises from somatic 

recombination, as suggested by the observation that sir2-dependent ecc rDNA 

formation in S. cerevisiae requires the RAD52 complex (Blander and Guarente, 

2004; Lin and Keil, 1991).  Efforts to identify recombination proteins required for 

eccDNA formation in Drosophila have been unsuccessful (Cohen et al., 2003), 

and Drosophila RAD52 homologs have not been identified. A recent study 

identified Ligase IV, an essential regulator of non-homologous end joining 

(NHEJ), as necessary for eccDNA formation in mammals (Cohen et al., 2006). 

Cells from the Lig4null; Su(var)3-9null double mutant displayed an average of 1.7 

nucleoli (± 0.8; N = 83), which is significantly lower than the 2.7 nucleoli observed 

in Su(var)3-9null single mutants (Figure 2-8a, p<0.001). Thus, loss of Lig4 partially 

suppresses the formation of multiple nucleoli in Su(var)3-9 mutants. 

Homozygous mutations in the homologous recombination (HR) protein, Spn-A 

(Drosophila homolog of Rad51, a single-strand binding protein that facilitates 

homologous strand invasion during homologous recombination process), also 

partially suppresses ectopic nucleolus formation. The average nucleolus number 

in dcr-2L811 fsx ; Spn-A095/02 polytene nuclei is 1.77 (N=58) and significantly lower 

(Figure 2-8b, p<0.001) than the average 3.38 (N=60) nucleoli observed in dcr-

2L811 fsx mutant nuclei. Surprisingly, mus309 (the Drosophila homolog of Bloom 
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DNA helicase RecQ) in the HR pathway does not suppress ectopic nucleolus 

formation (Figure 2-8b). mus309 in Drosophila participates in synthesis-

dependent strand annealing (SDSS), part of the HR pathway (Adams et al., 

2003); therefore, eccDNA formation likely does not utilize the SDSS mechanism. 

In sum, I conclude that the NHEJ pathway and the HR pathway both participate 

in eccDNA formation in Drosophila (see Discussion). 

 

Figure 2-8 Ligase 4 and Rad51 (Spn-A) partially suppress ectopic nucleolus 

formation.  

a) Ligase 4 mutations partially suppress ectopic nucleolus formation in Su(var)3-

9 mutants.  Average nucleolus number of Lig4null; Su(var)3-9null polytene nuclei is 

1.7 (N=83), which is significantly lower (p<0.001) than the average 2.7 (N=54) 

nucleoli observed in Su(var)3-9null mutant nuclei.  

b) Spn-A (homolog of Rad51) mutations partially suppress ectopic nucleolus 
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formation in dcr-2L811 fsx mutants.  Average nucleolus number of dcr-2L811 fsx ; Spn-

A095/02 polytene nuclei is 1.77 (N=58), which is significantly lower (p<0.001) than 

the average 3.38 (N=60) nucleoli observed in dcr-2L811 fsx mutant nuclei.  The 

average nucleolus number of 3.71 (N=45) in dcr-2L811 fsx ; mus309D2/N1 polytene 

nuclei does not significantly differ from that in dcr-2L811 fsx mutant nuclei (p=0.35). 
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Discussion 

The H3K9 methylation and RNAi pathways regulate the organization of 

repeated DNAs and the nucleolus  

 Post-translational histone modifications have been correlated with 

regulation of gene expression (Martin and Zhang, 2005). However, recent 

discoveries of distinct patterns of centromeric histone modifications and the 

requirement of H3K9me2 in transcriptional elongation indicate that some 

combinations of modifications defy simple global interpretations (Sullivan and 

Karpen, 2004; Vakoc et al., 2005).  In addition, limited knowledge exists about 

the impact of chromatin structures on other nuclear functions, such as genome 

stability, and the 3-dimensional organization of sequences, chromosomes, and 

nuclear organelles. Here I have shown that the Su(var)3-9 H3K9 

methyltransferase, its binding partner HP1, and five components of the RNAi 

pathway are required for the normal organization of rDNA, satellite DNAs, and 

nucleoli in Drosophila. When animals lack these components, repeated DNAs 

and nucleoli become dispersed to multiple nuclear locations. ChIP and IF-FISH 

showed that H3K9me2 levels in chromatin associated with repeated DNAs are 

strongly reduced in Su(var)3-9 and dcr-2 mutant animals. Finally, I observed 

significantly increased amounts of extrachromosomal repeated DNAs in these 

mutants. I conclude that the H3K9 methylation and RNAi pathways directly 

regulate nuclear architecture, by affecting chromatin structure and repressing 

eccDNA formation of rDNA and satellites. 
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I observed that other genes involved in heterochromatin structure and 

function are also required to maintain the structural integrity of repeated DNA and 

nucleoli, specifically the dPIAS SUMO E3 ligase (Hari et al., 2001a; Jackson, 

2001) and Su(TDA-PEV)1650 (function unknown). Further studies are required to 

determine if these proteins impact the integrity of repeated DNA and nucleoli via 

H3K9 methylation or other pathways. Mutations in 9 out of 18 loci associated with 

gene silencing had no effect on nucleolar organization, including dSIR2 and two 

Polycomb group genes (Supplemental Table 1). Interestingly, loss of the SUV4-

20 H4K20 methyltransferase did not produce multiple nucleoli; this result 

demonstrates that H3K9 methylation is the primary histone modification 

responsible for maintaining repeated DNA integrity, and not H4K20 trimethylation 

by SUV4-20, which requires H3K9me2 (Schotta et al., 2004). In addition, 

Drosophila sir2 mutants did not contain multiple nucleoli, despite SIR2 repression 

of ecc rDNA formation in S. cerevisiae (Blander and Guarente, 2004).  In sum, 

rDNA organization and nucleolar architecture are regulated by some but not all 

proteins involved in heterochromatin structure and function.  

Differential effects of components of the H3K9 methylation and RNAi 

pathways 

Dicer-2 regulates H3K9me2 levels and eccDNA formation at some but not 

all repeated DNAs, in contrast to the broad impact of Su(var)3-9. For example, 

Su(var)3-9 mutants displayed increased levels of ecc rDNA, 5S rDNA, and 1.688 

satellite, whereas only ecc rDNA levels increased significantly in dcr-2 mutants 

The Drosophila dcr-2 locus has been shown to regulate siRNA production but not 
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an influential factor in miRNA production (Lee et al., 2004). In S. pombe, siRNAs 

recruit the RITS complex to repeated DNAs to establish heterochromatin 

structure (Moazed et al., 2006; Noma et al., 2004), and siRNAs are produced 

from rDNA repeats (Cam et al., 2005). These demonstrations point to the 

intriguing probability that dcr-2 and the siRNA mechanism preferentially direct 

Su(var)3-9 to methylate H3K9 at rDNA, leaving the rasiRNA mechanism to 

regulate Su(var)3-9 methyltransferase activity in other repeated DNAs, e.g., 5S 

rDNA and 1.688 satellite.  

The overall distributions of H3K9me2 observed with IF analysis differ 

between Su(var)3-9 and dcr-2 mutants. H3K9me2 levels were significantly 

reduced in Su(var)3-9 mutant nuclei, though visible amounts were retained in the 

heterochromatin (Figure 5a). In contrast, overall H3K9me2 levels were not 

reduced in dcr-2 mutant diploid cells, and instead were reduced at some repeats 

and mislocalized to a larger portion of the nucleus (Figure 5b). This observation 

is surprising, since H3K9me is not detectable in RNAi mutants in S. pombe (Cam 

et al., 2005). I conclude that the absence of dicer-2 alters the specificity of 

siRNA-mediated targeting of H3K9me2 in Drosophila. 

Impact of Su(var)3-9 and H3 K9 methylation on cells and animals  

 Mice deleted for both Suv3-9 genes exhibit genome instability and early 

embryonic lethality (Peters et al., 2001). In contrast, Drosophila Su(var)3-9null flies 

are viable and fertile, despite very low levels of H3K9me2. Residual amounts of 

this modification in the absence of Su(var)3-9 is likely due to the presence of a 

redundant H3K9-methyltransferase which has recently been identified (Mis et al., 
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2006; Schotta et al., 2002). Our studies show that the absence of Su(var)3-9 has 

dramatic effects on nuclear organization. The presence of fibrillarin around 

ectopic rDNAs suggests that transcription and processing of ribosomal RNA 

occur in ectopic nucleoli. Similarly, ectopically-integrated rDNA forms functional 

‘mini-nucleoli’ (Karpen et al., 1988) and rescues defects in X-Y pairing in male 

meiosis caused by endogenous rDNA deletion (McKee and Karpen, 1990). 

These observations suggest that increased nucleolar volumes and ecc rDNA do 

not cause significant growth abnormalities. However, more developmental or 

physiological phenotypes may yet be discovered. For example, we have 

observed that non-recombinant chromosomes display significantly increased 

levels of meiotic non-disjunction in Su(var)3-9null females (GHK, unpublished), 

consistent with previous studies demonstrating heterochromatin’s participation in 

achiasmate segregation (Dernburg et al., 1996b; Karpen et al., 1996).  

Another explanation for the absence of dramatic phenotypic abnormalities 

in Su(var)3-9null animals arises from our observation that diploid tissues display 

lower levels of ectopic nucleoli and eccDNA compared to polytene cells. 

EccDNAs lack functional centromeres and should be poorly transmitted in rapidly 

dividing diploid cells, but would be retained in the non-mitotic polytene cells. I 

propose that the levels of eccDNA and ectopic nucleoli in mitotic larval cells that 

give rise to most adult tissues are not high enough to affect viability and 

fecundity. Chapter 3 will discuss the role of the DNA damage repair checkpoint in 

the viability of Su(var)3-9 mutants. 
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A model for the regulation of nuclear architecture by the Su(var)3-9/H3K9 

methylation pathway 

Our findings demonstrate that chromatin structures regulated by Su(var)3-

9, HP1, the RNAi pathway, and H3K9 methylation are required to maintain the 

structural integrity of tandemly repeated, heterochromatic sequences (Figure 8). 

HP1 mutant cells display increased restriction enzyme accessibility in 

heterochromatin, consistent with chromatin decondensation and loss of gene 

silencing (Cartwright et al., 1999). H3K9 methylation, and perhaps other 

heterochromatic properties and components, generate a chromatin structure that 

normally restricts access of DNA repair proteins to repeated DNA substrates, or 

locally inhibits their activity  (Figure 9). Mutations affecting the NHEJ (Lig4) and 

HR (Rad51) pathways both partially suppress ectopic nucleolus formation in 

Su(var)3-9null mutants supporting a role for DNA repair in eccDNA formation. 

Finally, cohesins are significantly reduced at repeated DNA chromatin in 

Su(var)3-9null nuclei. However, complete loss of the SMC1 cohesin component 

did not lead to increases in eccDNA. This suggests that cohesins do not 

suppress eccDNA formation in Drosophila, contrary to observations in S. 

cerevisiae (Kobayashi and Ganley, 2005). 
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Figure 2-9 A model for regulation of nuclear architecture by the H3K9 

methylation and RNAi pathways. In wild type diploid and polytene nuclei, the 

majority of the heterochromatin contains H3K9me2, and a single nucleolus forms 

around the rDNA. Loss of H3K9me2 from repeated DNA, due to Su(var)3-9, HP1 

or RNAi mutations, causes chromatin decondensation and elevated 

recombination between repeated DNA copies. The recombination process, 

catalyzed by the NHEJ or HR DNA repair pathways, results in formation of 

extrachromosomal DNAs that localize throughout the nucleoplasm, causing 

dispersal of satellite DNAs (not shown) and, in the case of rDNA, the formation of 

ectopic nucleoli. Decondensation is proposed to be primarily responsible for the 

‘lobed’ structure of rDNA and nucleoli in diploid cells, with a minor contribution 
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from low levels of ecc rDNA formation (dotted line). In polytene cells, 

decondensation is likely to be a prerequisite for increased recombination, but the 

much higher levels of ecc rDNA is proposed to generate the majority of the 

ectopic nucleoli. 

Chromatin decondensation (e.g. ‘looping’) and increased recombination 

likely occur in both diploid and polytene cells in response to loss of H3K9 

methylation (Figure 2-9). The much larger increases in eccDNAs and ectopic 

nucleoli in polytene tissues probably reflect a stronger requirement for repressing 

DNA recombination or NHEJ. In highly endoreplicated nuclei, euchromatic 

sequences are present in thousands of copies, satellite sequences are replicated 

at most twice, and rDNA is replicated to intermediate levels (~250 copies) 

(Spradling and Orr-Weaver, 1987). This differential endoreplication results in 

stalled forks at euchromatin-heterochromatin junctions (Glaser et al., 1992), and 

presumably between the rDNA and adjacent sequences. Stalled forks and 

associated single-stranded DNA in S. cerevisiae have been shown to provide 

substrates for repeated eccDNA formation (Ivessa et al., 2000), and could play 

similar roles in polytene cells that lack Su(var)3-9 and H3K9 methylation. Diploid 

cells would not be expected to generate as much eccDNA and ectopic nucleoli 

as endoreplicating cells, because DNA copy numbers are much lower, and they 

would not contain as many stalled replication forks. Furthermore, diploid nuclei 

would not retain eccDNAs, since they are likely to be lost during cell division; 

maintenance of eccDNAs in polytene nuclei would be higher, since they are non-

mitotic. 
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Other examples of heterochromatic silencing mechanisms affecting 

recombination have been reported. Some combinations of Su(var) mutations 

increase meiotic recombination in Drosophila heterochromatin (Westphal and 

Reuter, 2002), and loss of gene silencing components in budding and fission 

yeasts increases both meiotic and somatic recombination in the rDNA (Cam et 

al., 2005; Kaeberlein et al., 1999).  Similarly, the G9a H3K9 methyltransferase 

regulates accessibility of the V(D)J recombination machinery during mouse 

lymphocyte development (Osipovich et al., 2004). In Chapter 2, I expanded on 

previous studies by demonstrating the impact of these mechanisms on nucleolar 

organization and the spatial arrangement of repeated sequences in the nucleus 

of a developing animal. In addition, these findings may have broader significance 

to genome stability; the extensive sequence homology inherent to repeated 

DNAs would presumably generate translocations and other chromosome 

aberrations in somatic and/or germ cells if exchange was not repressed by 

heterochromatic structures. In Chapter 3, I will report my efforts to follow up on 

the question whether H3K9 methylation in Drosophila heterochromatin impacts 

genome stability in general.    
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Materials and Methods 

Fly stocks 

All fly stocks were raised at 22 oC. Information regarding the fly strains are 

described in Table 1. We received the suv4-20, Pc, Ph, Lig4, aub, Spn-E1, and 

piwi flies from the Bloomington stock center, and the dcr-2 P element insertion 

from the Harvard fly center. The hls∆215 flies are from James Birchler, DCR2L811fsx 

from Richard Carthew, smc1exc461 from Scott Hawley, Ago251B from Fenbiao Gao, 

Su(var)3-9 null alleles 6 and 17 from Gunter Reuter, and dSir217 from Jasper 

Rine.  

Antibodies 

 The human anti-fibrillarin antibody (dilution 1:500 in IF) was a gift from 

Mike Pollard, and the rabbit anti-H3K9me2 antibody (dilution 1:100 in IF and 

1:1000 in ChIP) was provided by Thomas Jenuwein (Peters et al., 2003). Rabbit 

antibodies against H3K9-acetyl and H3K4me2 were purchased from Upstate. 

Rabbit antibodies against smc1 (1:1000 in ChIP) were a gift from Dale Dorsett 

(Dorsett et al., 2005). 

IF, FISH, and IF-FISH of whole-mount tissues and squashed tissues. 

 IF was performed as previously described (Hari et al., 2001a). FISH was 

performed as previously described (Dernburg et al., 1996b) using 100 ng of each 

probe. In combined IF-FISH experiments, IF was performed before the FISH 

treatment. FISH probes were made with nick translation and terminal labeling, 

using materials previously published (Karpen et al., 1988). 
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Volumetric, distance, and colocalization analysis 

 All images were captured using an Applied Precision Deltavision 

Workstation and deconvolved using the conservative algorithm with 8 iterations. 

SoftWorx software was used to measure colocalization and distances, which 

were normalized to nuclear diameter. The deconvolved, stacked images were 

converted to TIFF files and 3-dimensionally reconstructed, and volumes of nuclei 

(DAPI signals) and nucleoli (fibrillarin signals) were measured using Metamorph 

software. All statistical comparisons and p values were calculated using the two-

sample t test, assuming unequal variance. 

Chromatin Immunoprecipitation (ChIP) 

 Protocols were modified from Austin et al.(Austin et al., 1999) Brain and 

disc tissues were dissected from fifty 3rd instar larvae, then fixed in 1.8% 

paraformaldehyde/PBST for 10 minutes at room temperature. The tissues were 

washed twice in cold PBST, then one time in cold TE and RIPA lysis buffer. 

Sonication in a 1 ml volume was performed with a Branson Sonifier 450 (6 times 

with a 90 % duty cycle and a 5.5 power output; each cycle included a 2-minute 

rest interval) or the Bioruptor (Diagenode; 30 second on-off cycles for 12 minutes 

at high intensity). 300 µl of the sheared chromatin was used for IP. The input and 

IP’d DNAs were resuspended in 100µl, 1µl of which was used in 25-µl PCR 

reactions that were terminated at the logarithmic phase of amplification. Signals 

from the PCR products were captured using a BioRad Gel Doc workstation and 

analyzed with Quantity One software. Values were calculated as a percentage of 
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input. Real-time PCR was also performed to confirm our results. Primer 

sequences are available upon request. 

 All the individual H3K9me2 ChIP experiments showed the same trends of 

H3K9me2 level reduction in Su(var)3-9null chromatin (statistical analysis always 

showed significant reduction), although the absolute values differed. Both the 

cytology and ChIP results agreed that H3K9me2 levels are significantly lower in 

Su(var)3-9null chromatin. 

Hirt extrachromosomal DNA isolation and detection  

 Approximately 200 larvae were frozen in liquid nitrogen, ground with a 

mortar and pestle, resuspended in 500 µl Hirt lysis buffer (0.6% SDS; 10mM 

EDTA, pH 8)(Hirt, 1967), then incubated at room temperature for 10 to 20 

minutes. 125µl of 5M NaCl was added to the extract, which was incubated at 4oC 

overnight (8 to 20 hours). The larval extract was centrifuged at 14,000g and 4oC 

for 40 minutes. The supernatant was phenol-chloroform extracted 3 times and 

the Hirt DNA was ethanol-precipitated. To check for any genomic DNA 

contamination, the Hirt supernatant before pheno-chloroform extraction was 

methanol-acetic acid fixed on slides and examined by DAPI staining (Kuschak et 

al., 2001). The precipitated Hirt DNA was also examined by standard 

electrophoresis agarose gel and ethidium bromide staining. 200ng of Hirt DNA 

was used for each PCR reaction to probe for specific DNAs. Signals from the 

PCR products were captured and analyzed using a BioRad Gel Doc workstation 

and Quantity One software, as described above. For diploid tissues, 50 sets of 

brains and discs were dissected and lysed with 100µl Hirt lysis buffer. The Hirt 
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DNA isolated from diploid cells contains some genomic DNA, so the relative 

amount of eccDNAs in mutant and wild type tissues were quantitated by 

comparing the results from separate PCR reactions for Hirt DNA and genomic 

DNA preparations. 
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Chapter Three:  
 
Chromatin structure of heterochromatin maintains  
 
heterochromatin and genome stability 
 

Introduction 

 To ensure the faithful transmission of its genetic materials to the next 

generation, the cell must constantly repair high incidence of DNA damage that 

arises as a consequence of normal DNA metabolism. Double-strand DNA breaks 

(DSBs) are caused by environmental stress or stalled DNA replication forks, and 

they are the most dangerous DNA lesions. The cell utilizes two major processes 

to repair DSBs, homologous recombination (HR) and non-homologous end 

joining (NHEJ). Numerous human disorders, including ataxia telangiectasia, 

Bloom syndrome, and Cockayne syndrome, are caused by mutations of factors 

involved in DNA repair mechanisms. Patients suffering from these genetic 

disorders also exhibit much higher susceptibility to cancer and neurological 

defects (Subba Rao, 2007). 

 When the cell cannot rapidly repair DNA breaks, it activates the DNA 

damage checkpoint to delay cell cycle progression. The phosphoinositide 3-

kinases (PI(3)Ks) ATM (ataxia telengiectasia mutated) and ATR (ATM-related) 

are the key factors that trigger checkpoint responses to DNA damage. They 

activate checkpoint kinase 1 (Chk1, grp in Drosophila melanogaster) and/or 

checkpoint kinase 2 (Chk2, lok in D. melanogaster) to signal G1-S or G2-M cell 

cycle arrest (Brodsky et al., 2004; Jaklevic and Su, 2004; Xu et al., 2001). 
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Signaling for DNA repair in Drosophila is different than in yeast and mammalian 

cells. While ATM is considered more critical than ATR in DNA damage 

checkpoint signaling in yeast and mammals, ATR/mei-41 is the primary factor 

responsive to DNA breaks in Drosophila (Brodsky et al., 2000; Hari et al., 1995; 

Jaklevic and Su, 2004). ATM in Drosophila (tefu) functions in telomere protection 

and apoptotic signaling, where it activates p53 (Larocque et al., 2006). 

Surprisingly, p53 in Drosophila does not directly participate in the DNA damage 

checkpoint response as in yeast and mammalian cells; instead, it activates the 

apoptosis pathway in response to persistent DNA damage (Song, 2005).  

The chromatin structure in the vicinity of DSBs is important for the 

recruitment and retention of DNA repair complexes. A number of covalent 

histone modifications stabilize repair factor loadings onto damage sites during 

DNA repair processes (Karagiannis and El-Osta, 2006). The best characterized 

histone modification in this context is phosphorylation of the histone H2A variants 

H2Ax in humans and yeast (S139 phosphorylation = γH2Ax) and H2Av in flies 

(S137 phosphorylation = γH2Av). This phosphorylation is important to recruit and 

retain cohesins (Unal et al., 2004) and ATP-dependent chromatin remodellers 

(Morrison et al., 2004; van Attikum et al., 2004). Cohesins contribute to NHEJ by 

by keeping broken ends together during NHEJ repair, and they also contribute to 

homologous recombination by holding sister chromatids together (Fritsch et al., 

2004; van Attikum et al., 2004). The INO80 complex, an ATP-dependent 

chromatin remodeller, evicts nucleosomes around DSBs to facilitate the activities 

of the Rad51-Rad52-ssDNA complex during HR repair (van Attikum et al., 2004).  
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 H3K9 methylation is a characteristic mark of heterochromatin in most 

eukaryotes (Jenuwein and Allis, 2001). Several H3K9 methyltransferases have 

been identified in mammals: Suv39h 1 and 2 (Peters et al., 2001), G9a 

(Tachibana et al., 2002), SETB1 (Schultz et al., 2002), and RIZ1 (Kim et al., 

2003). G9a, SETB1, and RIZ1 mainly function in transcriptional silencing of 

euchromatic genes via H3K9 methylation, while the two Suv3-9 isoforms are 

responsible for euchromatic gene regulation in addition to H3K9 methylation in 

pericentric heterochromatin. Suv39h1/2 double knockout mice are born in sub-

Mendelian ratios due to prenatal inviability. Postnatal Suv39h1/2 double knockout 

mice develop systemic developmental defects—hypogonadism, B cell 

lymphomas, spermatogenesis failure, and meiotic chromosome segregation 

defects—that are indicative of global transcriptional mis-regulation (Peters et al., 

2001). Suv39H1 associates with the Rb protein to silence genes such as Cyclin 

E during cell cycle progression; this further confirms Suv3-9’s essential role in 

gene regulation in the mouse (Nielsen et al., 2001). 

 The Suv39h homologs are essential for the establishment and 

maintenance of heterochromatin in organisms from S. pombe to human. 

Drosophila Su(var)3-9 mutations are known suppressors of position effect 

variegation (PEV) (Schotta et al., 2002), which results from silencing of 

euchromatic genes positioned near or within heterochromatin (Muller, 1930). In 

contrast to Suv39h1/2 double knockout mice, Su(var)3-9null (Drosophila homolog 

of Suv39) flies do not exhibit dramatic developmental defects (Schotta et al., 
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2002).  Su(var)3-9null mutations allow functional studies of heterochromatin with 

minimal indirect effects from general transcriptional mis-regulation.   

 Heterochromatin structure involves H3K9me2, Su(var)3-9 and 

heterochromatin protein 1 (HP1) and is regulated by the RNAi pathway. In 

Chapter 2, I demonstrated that chromatin structure in heterochromatin inhibits 

the formation of extrachromosomal DNA, a process mediated by DNA repair 

mechanisms. This regulation maintains structural integrity of repeated DNAs and 

ribosomal DNA, thereby stabilizing nucleolus formation (Peng and Karpen, 

2007). Here I present additional evidence that H3K9me contributes in additional 

ways to heterochromatin stability and cellular survival. Su(var)3-9null mutant cells 

exhibit increased DNA damage in heterochromatin in the absence of induced 

damage, as well as a defective DNA repair response after radiation. Su(var)3-

9null adult animals live half the lifespan of wild type flies, likely due to accumulated 

DNA damage. The G2-M DNA repair and mitotic checkpoints are required to 

ensure the cellular and organismal viability of Su(var)3-9 mutants. Repeated 

DNAs constitute nearly half of the vertebrate genomes, similar to Drosophila 

heterochromatin. My works suggest that vertebrate genomes may protect their 

genomes by similar mechanisms. 
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Results 

Su(var)3-9null embryos exhibit mild developmental defects and shorter 

lifespan 

 Previous analysis showed that Drosophila Su(var)3-9null flies are viable 

and fertile despite containing very low levels of H3K9me2 (Schotta et al., 2002). 

In contrast, mice deleted for both Suv3-9 genes exhibit genome instability and 

prenatal lethality (Peters et al., 2001). These results suggest that there is greater 

redundancy among K9 HMTases in flies, or that mice are more sensitive to 

reductions in K9 methylation. To investigate the roles of the H3 K9 and RNAi 

pathways in cell and organismal viability and fertility, I first performed more 

detailed developmental analysis of Su(var)3-9null and dcr2 mutants. 

 Quantitative analysis of survival at various developmental stages showed 

significant differences between wild type, Su(var)3-9null and dcr-2L811 fsx animals 

(Figure 3-1a). dcr-2L811 fsx  mutant parents produced only 79% fertilized eggs, 

compared to 93.4% for Su(var)3-9 mutants and 98.5% for wild type. Once 

fertilized, homozygous Su(var)3-9null and dcr-2L811 fsx mutants displayed moderate 

lethality (72 and 70% hatching, respectively), compared to wild type (94% 

hatching). Once they hatched into larvae, Su(var)3-9null and dcr-2L811 fsx mutants 

developed with timing comparable to wild type, and they eclosed into adults at 

similar rates.  

 Despite normal rates of eclosion into adults, lifespan analysis showed that 

Su(var)3-9null adult flies live half as long as wild type (Figure 3-1b, p <0.001). 

Adult Drosophila animals contain predominantly non-replicative cells, other than 
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germline and intestinal stem cells.  We propose that elevated levels of DNA 

breaks (see below) compromise the mutant cells’ viability, leading to cellular 

degeneration and shortened lifespan of the organism (more in discussion).  

In conclusion, careful developmental analysis showed that Su(var)3-9null 

eggs derived from homozygous mutant mothers display mild infertility, moderate 

defects in embryogenesis . Eggs laid by dcr2 homozygous mutant mothers have 

high levels of infertility and moderately defective embryogenesis. For both 

mutants, larvae develop normally into adults, though Su(var)3-9null adults have 

half the lifespan of wild type. 

 

Figure 3-1  Survival analysis of wild type, Su(var)3-9null animals and dcr-2L811 fsx  

animals.  

a) Analysis of developmental stages of wild type, Su(var)3-9null and  
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dcr-2L811 fsx animals. The three genotypes laid comparable numbers of eggs. In all 

three assays, the p values comparing Su(var)3-9null to wild type are <0.001, and 

the p values comparing dcr-2L811 fsx to wild type are <0.01 by Student’s t test. All 

sample sizes are > 150. 

b) The graph shows lifespan analysis of wild type and Su(var)3-9null adult flies. 

The Su(var)3-9null flies live half the lifespan of wild type flies (p value is <0.001 by 

Student’s t test). 

Su(var)3-9null mutants display increased sensitivity to irradiation  

 The observation that Su(var)3-9 and dcr2 animals contain elevated levels 

of extrachromosomal circular repeated DNAs (Chapter 2) raised the possibility 

that loss of the H3K9 methylation or RNAi pathways results in increases in DNA 

damage and resultant recombination. To investigate whether the Su(var)3-9null 

cells can repair exogenous DNA damage as efficiently as wild type cells, diploid 

tissues were treated with 5 Gy of x-ray irradiation, allowed to recover for variable 

time periods, and mitotic indices were measured as a readout for recovery from 

DNA damage (Materials and Methods). Wild type cells subjected to 5 Gy of X-ray 

irradiation displayed similar mitotic indices up to 160 minutess post treatment, 

and a slight increase in mitotic index after 4 hours (Figure 3-2a), relative to 

unirradiated cells. Control, non-irradiated Su(var)3-9null cells exhibited a 3-fold 

increase in mitotic index at 160 minutes (Figure 3-2a) relative to wild-type and 

also showed a further 2-fold increase in the mitotic index after 5 Gy of irradiation 

and 4 hours of recovery time (p < 0.001; Figure 3-2a). This suggests that 

Su(var)3-9null mutant cells are more sensitive to radiation; mutant cells either 
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contain more damage after irradiation, or they cannot repair exogenous DSBs as 

efficiently as the wild type.  

 The impact of the increased radiation sensitivity on organismal health was 

evaluated by monitoring survival to adulthood after one X-ray irradiation 

treatment at doses of 0, 3, 6, and 12 Gy (Materials and Methods). Su(var)3-9null 

survival was significantly lower than wild type (p < 0.001, Figure 3-2b) at all 

doses tested. The X-ray dose corresponding to 50 % survival (LD50) is 3.75 Gy 

for wild type and 2.75 Gy for Su(var)3-9null mutants. These data show that the 

increased sensitivity to radiation displayed by Su(var)3-9null mutant cells lead to 

lower survival in response to exogenous DNA damage. 

 

Figure 3-2  Analysis of DSB repair response in wild type and Su(var)3-9null cells. 

a) The graph shows the mitotic indices of wild type and Su(var)3-9null cells in 

response to irradiation. All mitotic indices were normalized relative to non-

irradiated wild-type cells at each time point. After 5 Gy of X-ray treatment, the 

mitotic index of irradiated Su(var)3-9null cells was 2-fold higher than in non-

irradiated Su(var)3-9null cells (p value is <0.001 by Student’s t test). The mitotic 
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index of irradiated wild-type cells does not significantly differ from that of non-

irradiated wild-type cells. 

b) The semi-logarithmic graph shows the survival to adulthood of wild type and 

the Su(var)3-9null animals after embryos were treated with variable doses of IR. 

Survival of Su(var)3-9null animals was significantly less than for wild type (p value 

is <0.001 by chi-square test). The survival rates (# adult / # eggs laid) were 

normalized to the survival rates in the absence of irradiation. 

Uninduced DNA breaks are more prevalent in Su(var)3-9null mutants  

Phosphorylation of the histone variant H2Av (γH2Av) is often used as a 

reporter for DNA damage in fixed samples. Indirect immunofluorescence (IF) with 

antibodies that specifically recognize this histone modification was used to 

evaluate DNA damage levels in whole-mount (three dimensional) brain and 

imaginal disc tissues from wild type, Su(var)3-9null , and dcr-2L811 fsx mutant larvae 

(Materials and Methods). An average of 0.43 ± 0.48 % of wild type cells 

contained γH2Av signals. In contrast, 8.9 ± 2.9 % of the Su(var)3-9null mutant 

cells contained γH2Av signals, a 21-fold increase compared to wild type (Figure 

3-3a).    

Mutations in components of the RNA interference (RNAi) pathway caused 

loss of H3K9me2 mislocalization from repeated DNA and heterochromatin, 

correlating with eccDNA formation from ribosomal DNA but not other repeated 

DNAs (Chapter 2). We wanted to know whether RNAi mutants also contain 

elevated frequencies of DNA damage. Quantiative analysis of whole-mount 

diploid tissues showed a 4.7-fold increase in γH2Av-positive dcr-2L811 fsx cells 
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compared to wild type (p < 0.05 by Student’s t test, Figure 3-3a). This 

demonstrated that loss of the H3K9 methylation and RNAi pathways results in 

increased levels of DNA damage in the absence of irradiation; however 

frequencies are higher in Su(var)3-9null mutant compared to the hypomorphic dcr-

2 mutants.  

The Rad51 protein facilitates DNA repair of DSBs via homologous 

recombination. Analysis of Rad51 foci by IF showed an 11-fold increase in 

Rad51-positive Su(var)3-9null cells and a 3.5-fold increase in Rad51-positive dcr-

2L811 fsx  cells compared to the wild type (Figure 3-3b). IF using anti-γH2Av and  

anti-Rad51 antibody showed that nearly 76% of cells with γH2Av signals 

displayed colocalization of γH2Av and Rad51 (Figure 3-3c). This suggests that 

most of the increased DNA damage in mutants is due to double-stranded DNA 

breaks. The 24% of cells with only γH2Av signals may indicate the presence of 

other kinds of damage, which would not recruit Rad51, DSBS being repaired by 

NHEJ, or DSBs that have already been repaired. 

Given my previous demonstration that loss of the H3K9 methylation or 

RNAi pathways resulted in ecc repeated DNAs, I was interested to learn whether 

most of the DNA damage in the Su(var)3-9null cells occurs in heterochromatin. 

Assessment of damage frequencies in heterochromatin versus euchromatin is 

challenging, particularly in these mutants due to the reduction or mislocalization 

of the standard heterochromatin markers H3K9me2 and HP1. However, the AT-

rich components of heterochromatin in Drosophila interphase cells coalesce into 

regions characterized by intense DAPI staining. Analysis via this criterion 
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underestimates the actual % of DNA breaks occurring in heterochromatin, which 

is also present in the DAPI-weak region. Nevertheless, in the absence of HP1 or 

H3K9me2 staining, this criterion is the simplest and the broadest cytological 

visualization of heterochromatin.  

Quantitation of DSBs by immunofluorescence can be challenging due to 

both the sensitivity and specificity of the signals. To minimize these problems, I 

performed double labeling with antibodies to γH2Av and Rad51, and counted 

only foci staining with both antibodies as bona fide DSBs. Analysis showed 70 ± 

7.9 % of foci containing both γH2Av and Rad51 colocalized with DAPI-bright 

regions (Figure 3-3c) (Materials and Methods).   

I also used the TUNEL (TUNEL-mediated dUTP nick end labeling) assay 

to visualize and quantify the locations of damage in Su(var)3-9null diploid tissues.  

This assay uses TUNEL (terminal deoxynucleotidyl transferase), an enzyme that 

processively adds dNTPs to unprotected DNA ends, to mark sites of DNA 

damage. TUNEL-positive cells, 12.8% (S.D. 2%) of Su(var)3-9null cells (no signals 

were observed in wild-type cells), were divided into 3 categories (Figure 3-3d): 57 

± 15 % contained signals located in DAPI-bright/heterochromatin, 25 ± 14 % 

contained signals in the DAPI-weak regions, and 18 ± 18% contained signals in 

both DAPI- bright and weak regions (p value comparing DAPI-bright vs. DAPI-

weak is <0.008 by Student’s t test). Thus, at least 75% of TUNEL positive cells 

contain breaks in the heterochromatin (Figure 3-3e), comparable to frequencies 

observed with γH2Av-Rad51 staining. 
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Reduced H3K9me due to Su(var)3-9null mutations led to ribosomal DNA 

(rDNA) instability, resulting in extrachromosomal rDNA that can seed ectopic 

nucleolus formation (Chapter 2). We hypothesized that the increased DNA 

breaks may preferentially occur in rDNA. To test this, I performed combined 

rDNA FISH and γH2Av IF on whole-mount diploid tissues from wild type and 

Su(var)3-9null mutants. Surprisingly, there was no significant colocalization 

between the rDNA and γH2Av signals in the Su(var)3-9null diploid cells (data not 

shown), indicating that the increased DNA breaks do not occur in rDNA, or that 

DNA breaks within rDNA do not recruit γH2Av. An alternative explanation is that 

DNA repair occurs very efficiently in rDNA, in contrast to those in the flanking 

heterochromatin.  

In conclusion, these data show that at least 70% of the elevated 

frequencies of endogenous DNA breaks in Su(var)3-9null mutant cells are in the 

heterochromatin. More direct molecular assessment, such as ChIP-array 

analysis, is required to determine whether all breaks occur in heterochromatin in 

Su(var)3-9 mutants, and to assess the frequencies of damage in different classes 

of repeated sequences. 
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Figure 3-3 DNA damage in heterochromatin increases in Su(var)3-9null diploid 

tissues in the absence of radiation. 

a) γH2Av (red) IF in whole-mount brain tissues from wild type, Su(var)3-9null, and 

dcr-2L811 fsx mutants are shown.  The number of cells containing γH2Av is 21-fold 

(p < 0.01 by Student’s t test) higher in Su(var)3-9null nuclei and 4.7-fold higher in 
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dcr-2L811 fsx nuclei (p < 0.05 by Student’s t test) compared to wild type.  Each 

image is an optical section. The scale bar is 15 um. 

b) Rad51 (green) IF in whole-mount diploid tissues from wild type and Su(var)3-

9null mutants are shown. The number of cells containing Rad51  is 11-fold higher 

in Su(var)3-9null nuclei (p <0.01 by Student’s t test) and 3.5-fold higher in dcr-2L811 

fsx nuclei (p<0.01 by Student’s t test) compared to wild type. Each image is an 

optical section. The scale bar is 8 um.  

c) γH2Av (green) and Rad51 (red) IF in wild-type and Su(var)3-9null diploid nuclei 

are shown. An average of 76 % (S.D. 3.1 %) of the γH2Av foci inside Su(var)3-

9null nuclei colocalize with Rad51 foci. Within this group, an average of 70 % 

(S.D. 7.9 %) of the γH2Av /Rad51-positive Su(var)3-9null cells contain foci in 

DAPI-bright regions, while 30% (S.D. 7.9 %) of foci locate within DAPI-weak 

regions (N=167; p value comparing DAPI-bright vs. DAPI-weak is <0.001 by 

Student’s t test). Each image is an optical section. Cells are 3um wide. 

d) TUNEL signals (red) in diploid tissues from wild type and Su(var)3-9null 

mutants are shown. The TUNEL signals were detected in 12.8% (S.D. 2%) of 

Su(var)3-9null cells but not detected in wild type cells. TUNEL signals in Su(var)3-

9null cells were assessed for colocalization with the DAPI-bright or DAPI-weak 

regions Each image is an optical section.  The scale bar is 8 um.  

e) Analysis showed that 75 % of TUNEL foci colocalize with the DAPI-bright 

regions. 
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γH2Av signals, signifying DNA breaks, increase in Su(var)3-9null oocytes 

and nurse cells, especially in heterochromatin 

Classical genetic studies have shown that reciprocal meiotic 

recombination (crossing-over) occurs an average of once per euchromatic arm 

per nucleus, and does not occur in heterochromatin (Mehrotra and McKim, 2006; 

Stern, 1936). The significant increase in DNA damage and DSBs in the 

heterochromatin in Su(var)3-9 mutant somatic cells suggests that similar 

changes may occur in mutant meiotic cells. The germarium is the part of the 

Drosophila ovary that contains developing oocytes and nurse cells, which share 

the same cytoplasm and expression of Spo11 (the Drosophila homolog is mei-

W68 (McKim and Hayashi-Hagihara, 1998)), which actively produce DSBs. 

Some DSBs in the oocytes will undergo meiotic recombination during prophase I. 

IF analysis showed a dramatic increase in γH2Av signals in Su(var)3-9null 

mutant germaria compared to wild type (Figure 3-4a). Compared to wild-type 

nurse cells, wild-type oocytes have 2-fold increase in γH2Av signal volumes (p 

value < 0.05 by Student’s t test). Su(var)3-9null nurse cells display a 3-fold 

increase in the volume of γH2Av signals compared to wild type nurse cells (p 

value < 0.001 by Student’s t test), and Su(var)3-9null oocytes exhibit a 4-fold 

increase compared to wild-type oocytes (p value <0.001 by Student’s t test) and 

a 6-fold increase compared to Su(var)3-9null nurse cells (p value < 0.001 by 

Student’s t test).  
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Does the increased DNA damage in Su(var)3-9null mutant oocytes and 

nurse cells occur in heterochromatin, as observed for diploid cells? The 

heterochromatic regions in oocytes and nurse cells do not coalesce into clearly-

definable regions, and HP1 is mislocalized in Su(var)3-9null cells due to severely 

reduced H3K9me. Therefore, to test this hypothesis, I performed combined 

γH2Av IF and FISH with satellite DNA probes in whole-mount wild type and 

Su(var)3-9null mutant germaria. The probes included the 1.688, AACAC, AATAT, 

dodeca, AATAG, 1.686, and AAGAG satellites, which correspond to 

approximately 34 megabases of the heterochromatin (Materials and Methods), 

less than half of the total amount of heterochromatic DNA. γH2Av IF and satellite 

FISH signals overlapped in 21 % (S.D. 9.6 %, n=151) of Su(var)3-9null oocytes 

and nurse cells, and was never observed in wild type cells (Figure 3-4c; p value 

<0.001 by Student’s t test). These data show that a significant proportion of the 

elevated levels of DNA breaks in Su(var)3-9null mutant oocytes and nurse cells 

occur in heterochromatin. We conclude that H3K9 methylation by Su(var)3-9 is 

important for maintaining the structural integrity of heterochromatin in mitotic and 

meiotic cells. 
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Figure 3-4 Heterochromatic DNA damage increases in Su(var)3-9null mutant 

oocytes and nurse cells.  

a) γH2Av (red) and C(3)G (green) IF in whole-mount germaria from wild type and 

Su(var)3-9null mutants. C(3)G is part of the synaptonemal complex and is used to 
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distinguish oocytes from nurse cells, both of which contain DSBs. Each image is 

an optical section. The scale bar is 7 um. 

b) The graph shows the relative γH2Av signals/nuclear volume in nurse cells and 

oocytes from wild type and Su(var)3-9null mutants. Compared to wild-type nurse 

cells, wild-type oocytes have 2-fold increase in γH2Av signal volumes (p value < 

0.05 by Student’s t test). Su(var)3-9null nurse cells display a 3-fold increase in the 

volume of γH2Av signals compared to wild type nurse cells (p value < 0.001 by 

Student’s t test), and Su(var)3-9null oocytes exhibit a 4-fold increase compared to 

wild-type oocytes (p value <0.001 by Student’s t test) and a 6-fold increase 

compared to Su(var)3-9null nurse cells (p value < 0.001 by Student’s t test). 

c) Combined γH2Av IF (red) and satellite FISH(green) in wild-type and Su(var)3-

9null oocytes are shown. C(3)G (grey) IF is used to mark oocytes. An average 

21.3 % (S.D. 9.6 %, n=151) of Su(var)3-9null oocytes and nurse cells contain 

overlap between γH2Av and satellite signals (p value <0.001 by Student’s t test). 

Each image is an optical section. Cells are 5um wide. 

Su(var)3-9null cells contain elevated frequencies of aberrant mitotic 

chromosome morphologies and chromosome rearrangements  

Persistent DNA damage could lead to structural defects such as 

chromosomal rearrangements and aneuploidy. To test this hypothesis, I 

visualized wild type and Su(var)3-9null mitotic chromosomes by DAPI-staining.  All 

wild-type mitotic chromosomes exhibited banding patterns characteristic of 

heterochromatin. In contrast, a subset of the Su(var)3-9null mitotic chromosomes 
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exhibit defects such as hypo-condensation (Figure 3-5a, 2nd panel) and extra 

DAPI-bright bands (Figure 3-5a, 3rd panel). 

I used FISH paints that hybridize to the euchromatic regions of three 

Drosophila chromosomes (X, 2 and 3) to determine if Su(var)3-9null cells contain 

increased frequencies of rearranged chromosomes compared to wild type cells 

(Materials and Methods). The first panel of Figure 3-5b shows an example of the 

chromosome paints on wild-type mitotic chromosomes. The third chromosomes 

are pseudocolored in red, the 2nd chromosomes in green, and the X 

chromosomes in blue. I could not make paints specific for the Y and fourth 

chromosomes due to their high repeat content.  

Quantitative analysis of the painted chromosomes showed that 1.1% of 

Su(var)3-9null mitotic chromosomes exhibit structural defects such as deletions, 

duplications, and translocations (Figure 3-5c). The 2nd panel in Figure 5B shows 

a deletion of one third chromosome arm, and the 3rd panel shows a translocation 

between the X and third chromosomes. 
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Figure 3-5 Su(var)3-9null chromosomes exhibit morphology defects and 

rearrangements. 

a) DAPI staining of mitotic chromosomes from wild type and the Su(var)3-9null 

mutant are shown. Structural defects in Su(var)3-9null mitotic chromosomes are 

indicated by white arrows. Each image is an optical section. The scale bar is 

2um. 

b) Chromosome painting of mitotic chromosomes from wild type and Su(var)3-

9null mutants. The third chromosomes are in red, the second chromosomes are 

green, and the X chromosomes are blue. The fourth chromosomes and the Y 

chromosome are only stained by DAPI.  Structural defects in Su(var)3-9null mitotic 

chromosomes, such as deletions and translocations, are indicated by white 

arrows. Each image is an optical section. The scale bar is 2um. 
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c) Quantitation showed that 1.1 % of the Su(var)3-9null mitotic chromosomes 

exhibited structural defects, compared to 0% for wild type. The p value is 0.025 

by chi square test.  

G2 and mitotic checkpoints are activated in Su(var)3-9null cells 

Su(var)3-9 mutants are mostly viable and fertile (Figure 3-1) despite 

significantly elevated levels of DNA breaks (Figure 3-3), . I hypothesized that 

repair checkpoints are activated in mutant cells that delay cell cycle progression 

until the damage is repaired. To test this hypothesis, I compared the distributions 

of cell cycle stages in wild type and Su(var)3-9null cells. Diploid tissues were 

squashed into single-cell layers on slides, and IF was performed with antibodies 

to the cell cycle markers PCNA (S phase), Cyclin A (Cyc A, S phase, G2 and 

mitosis), and PH3 (H3 phosphorylated at serine 10, mitosis), and TUNEL staining 

was used to identify apoptotic cells (Materials and Methods). The percent of 

PCNA-positive cells were the same in wild type and mutant animals, indicating 

that there was no delay or arrest in S phase (Figure 3-6a). Therefore, although 

CycA expression begins in S phase and ends in mitosis, G2 cells could be 

identified as Cyc A-positive but PH3-negative, 

The cell cycle analysis showed that a larger proportion of Su(var)3-9null 

mutant cells are in G2 and mitosis, and undergo apoptosis, in comparison to wild 

type cells (Figure 3-6a). Compared to the 7.2 % of wild-type cells that are in G2, 

47.3 % of the Su(var)3-9null cells are in G2, representing a 6.6-fold increase. 

1.2% of the Su(var)3-9null cells are in mitosis, a 4-fold increase compared to wild 

type (0.3%). The apoptotic cells increase from 0.09 % in wild type to 0.96 % in 
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the Su(var)3-9null cells, a 10.7-fold increase. I conclude that loss of Su(var)3-9 

results in significant increases in G2 and mitotic arrest or delay, as well as 

elevated apoptosis.  It is important to note that although the fold increases for 

mitotic and apoptotic cells are large, the actual % of cells is low (~1% each). 

Nearly half the mutant cells are in G2, suggesting that the major response is 

activation of the G2 DNA repair checkpoint.  

PCNA staining identifies cells in S phase, G2 cells are Cyc A-positive but 

PH3-negative, and mitotic cells are PH3-positive but CycA negative. Apoptotic 

cells were identified by TUNEL staining (Materials and Methods). CycA 

expression begins in S phase and ends in mitosis, so it is not exclusive to G2. 

However, since cells in S phase are proportionally the same in wild type and the 

Su(var)3-9null mutant (Figure 3-6a), we can effectively compare the relative 

amount of CycA-positive but PH3-negative cells between wild type and mutant. 

To investigate whether activation of cell cycle checkpoints and apoptosis 

are required for the viability of Su(var)3-9null mutants, I analyzed double mutant 

combinations between Su(var)3-9null and mutations that compromise DNA 

damage checkpoint activation. Drosophila homologs of ATR, checkpoint kinase 1 

(chk1), and checkpoint kinase 2 (chk2) are mei-41, grp, and lok.  They activate 

G1-S and G2-M arrest in response to DNA damage. Double mutants of Su(var)3-

9null with cell cycle checkpoint mutations showed sub-viability (synthetic lethality) 

ranging from 50% to 64.6% (Figure 3-6b). Overall, mutations in mei-41, grp, or 

lok cause ~50% lethality of Su(var)3-9null double mutants.  
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The p5311-1B-1, Su(var)3-9null double mutant exhibited 100 % viability 

(Figure 3-6b and c), suggesting that the apoptosis pathway, governed by p53, 

does not impact the viability of Su(var)3-9null animals. Even though apoptotic cells 

increase by 10-fold in the Su(var)3-9null mutant, their actual number amounts to 

0.86 % (S.D. 0.29 %), suggesting that the G2 and mitotic checkpoints enable 

repair of the majority of DNA breaks. The apoptotic pathway is only activated 

upon persistent damage, which likely results in the observed mitotic 

chromosomal defects (Figure 4).  

The relative amount of CycA-positive and PH3-negative cells in the 

grp06034; Su(var)3-9null and the lokp6; Su(var)3-9null mutants showed that their G2 

contents are comparable to the wild type (p < 0.05 by students’ t test). These 

data showed that the DNA damage checkpoint is responsible for the G2 delay or 

arrest observed in the Su(var)3-9null mutant, and that the checkpoint is important 

for the mutant’s viability.  
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Figure 3-6  The G2, mitotic, and apoptotic checkpoints are activated in the 

Su(var)3-9null cells.  Mutations in the DNA damage checkpoint genetically interact 

with the Su(var)3-9null mutations. 

a) The histograms show cell cycle stage analysis of wild type and Su(var)3-9null 

cells; the number above each bar is the actual % of cells. Compared to wild type, 

the increase in G2 (CycA-PH3), mitotic (PH3), and apoptotic %’s in the Su(var)3-

9null cells is 6.6-fold (47.3%/7.2% = 6.6), 4-fold (1.2%/0.3% = 4), and 10.7-fold 

(0.96%/0.09% = 10.7) (p values are <0.001 by Student’s t test).  

b) The chart lists the viability of the double mutants of the Su(var)3-9null mutation 

with mutations in the DNA damage checkpoint pathways. Compared to control 
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crosses, all double mutants are sub-viable, except p53; Su(var)3-9 double null 

mutant. The p values are calculated by the chi-square test.   

c) and d) are the graph and chart showing the %’s of G2 cells in wild type, 

Su(var)3-9null mutants, the grp06034; Su(var)3-9null double mutants, and the lokp6; 

Su(var)3-9null double mutants. The percentage of cells in G2 in the grp06034; 

Su(var)3-9null and lokp6; Su(var)3-9null mutants are comparable to wild type (p < 

0.05 by students’ t test). 

Both the DNA damage pathway and cohesin defects in the Su(var)3-9null 

mutant cells activate the mitotic checkpoint, which is critical for the mutant 

animal’s viability 

To investigate whether the mitotic checkpoint and apoptosis activation 

impact organismal survival of the Su(var)3-9null mutant, I analyzed the viability of 

the Su(var)3-9null animals containing mutations in rod, ZW10 (Drosophila 

homolog is mit(1)15), and p53. As part of the outer kinetochore, the rod-ZW10 

complex activates the mitotic checkpoint, which monitors kinetochore to 

microtubule attachment and regulates the metaphase to anaphase transition. grp 

and lok have also been shown to regulate the metaphase-anaphase transition 

during mitosis (Royou et al., 2005; Xu and Du, 2003).  

Difference in the viability of rodEY04576; Su(var)3-9null and mit(1)155; 

Su(var)3-9null mutants (51.7 % vs 0 %, Figure 3-7a) is most likely caused by the 

nature of these mitotic checkpoint mutations. The available rodEY04576 mutation is 

hypomorphic, and the mit(1)155 mutation is amorphic. Regardless, 0% viability of 

the mit(1)155; Su(var)3-9null  mutant reflects the essential function of the mitotic 
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checkpoint for Su(var)3-9null survival. Previously demonstrated cohesin reduction 

from heterochromatin of the Su(var)3-9null mutant cells (Peng and Karpen, 2007) 

and the sub-viability (76.4 %) of the smc1exc46/+ ; Su(var)3-9null animals (Figure 3-

7a, p<0.0013) further confirms that cohesin defects do occur in the Su(var)3-9null 

organism. Therefore, the mitotic checkpoint is activated in the Su(var)3-9null  cells 

by sister chromatid cohesion defects and the DNA damage checkpoint to 

inactivation of the repair checkpoint that feeds into the mitotic checkpoint (via 

chk1 and chk2, Figure 3-7b and c).  

The grp and the lok mutations almost entirely suppress the mitotic index 

increase in Su(var)3-9null mutants (Figure 3-7b and c), confirming that chk1 and 

chk2 regulate the mitotic checkpoint (Royou et al., 2005; Xu and Du, 2003). This 

result also suggests that increased DNA breaks in addition to sister cohesin 

defects in the Su(var)3-9null cells activate mitotic arrests via chk1 and chk2, which 

are epistatic to rod-ZW10. In all, the G2 and mitotic checkpoints are essential for 

the viability of the Su(var)3-9null mutant animals. 
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Figure 3-7 Mutations in the mitotic checkpoint genetically interact with Su(var)3-

9null mutations, while p53null mutation does not. 

a) The chart lists the viability of the double mutants of Su(var)3-9null mutation with 

mutations in the mitotic checkpoint. Compared to control crosses, all double 

mutants are sub-viable. The p values are calculated by the chi-square test.   

b) and c) are the graph and chart showing the mitotic indices in wild type, 

Su(var)3-9null mutants, grp06034; Su(var)3-9null mutants, and lokp6; Su(var)3-9null 

mutant. Mitotic indices in grp06034; lokp6; Su(var)3-9null  and Su(var)3-9null double 

mutants are comparable to wild type (p < 0.05 by students’ t test). 
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Discussion  

The H3K9 methylation and RNAi pathways stabilize heterochromatin   

Here I have demonstrated that Su(var)3-9 mutants are more sensitive to 

exogenous DNA damage induced by radiation, in terms of both elevated levels of 

mitotic arrest and organismal viability (Figure 3-2). This observation suggests 

that the H3K9 methylation pathway serves to ‘protect’ heterochromatin from 

exogenous damage, either by reducing the frequencies of induced breaks, or by 

facilitating DNA repair. However, even in the absence of radiation, the frequency 

of DNA damage increases ~ 20-fold, with majority of the DNA breaks in 

heterochromatin, in somatic cells from Su(var)3-9null and  dcr-2L811 fsx mutants 

(Figure 3-3). In addition, Su(var)3-9 mutants display elevated γH2Av signals, 

indicative of DNA breaks, in oocytes and nurse cells (Figure 3-4), demonstrating 

a role for the Su(var)3-9 and RNAi pathway in meiosis and the germ line. These 

observations suggest that the H3K9 methylation and RNAi pathways are required 

for other aspects of DNA repair in heterochromatin, in addition to protection from 

exogenous damage.  

Two non-mutually exclusive scenarios may contribute to the observed 

phenotypes in this chapter. Specifically, altered heterochromatin structure, due to 

Su(var)3-9null or RNAi mutations, could lead to increased endogenous DNA 

breaks or a defective DNA damage response. The main causes of DSBs and 

other types of DNA damage are environmental stresses and defective DNA 

replication, which can lead to stalled and/or collapsed replication forks. The latter 

is more likely to contribute to the increased ‘endogenous’ DNA damage 
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frequency in Su(var)3-9null mutant cells. This leads to the question how altered 

heterochromatin structure would impact replication to cause DSBs. 

Heterochromatin replication occurs in late S phase, and SuUR (suppressor of 

underreplication) is the only factor identified to directly regulate late replication 

timing of heterochromatin (Belyaeva et al., 1998). The SuUR and orc2 (origin 

recognition complex 2, which also interacts with HP1) mutants have been shown 

to function as Su(var)’s (Belyaeva et al., 1998; Pak et al., 1997), suggesting that 

replication components and heterochromatin replication timing are involved in 

heterochromatin establishment and maintenance (Wallace and Orr-Weaver, 

2005). This conclusion leads me to propose that H3K9me2 reduction in 

heterochromatin likely causes mis-coordination of replisomes and/or replication 

origin firing in heterochromatin, leading to timing deregulation, collapsed 

replication forks, and DSB formation. 

An alternative explanation is that H3K9 methylation by Su(var)3-9 is 

required for DNA damage recognition and/or repair in heterochromatin . In this 

model, reduced H3K9 methylation in heterochromatin causes inefficient damage 

recognition and impairs subsequent DNA repair processes, resulting in the 

retention of damage. Chromatin conformational changes play a central role in 

damage recognition, repair machinery recruitment and retention, and cell cycle 

checkpoint responses (Karagiannis and El-Osta, 2006; Keogh et al., 2006; van 

Attikum and Gasser, 2005). For example, chromatin surrounding individual DSBs 

expands immediately after DNA breaks; this process is independent of H2AX and 

ATM and occurs in both euchromatin and heterochromatin. These data and 
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others suggest a rapid energy-dependent chromatin decondensation, an event 

that allows subsequent access of repair machineries to DSB sites for efficient 

repair (Kruhlak et al., 2006). It is possible that chromatin structural changes in 

response to DNA damage in heterochromatin require H3K9me.  

 H3K9me may also function in the DNA damage response in 

heterochromatin via recruitment of cohesins. Our previous study demonstrated 

that reduced H3K9me decreases the levels of cohesins in heterochromatin (Peng 

and Karpen, 2007). Cohesins are essential for both HR and NHEJ repair 

processes, thus reduced cohesins in heterochromatin may contribute to an 

ineffective DNA damage response.  

 These proposed functions for H3K9me in DNA repair differ from other 

histone modifications, which mainly help the loading and activation of DNA repair 

factors and cell cycle checkpoint regulators. γH2Ax has been shown to help 

recruit and retain DNA repair factors, cohesins and chromatin remodeling 

complexes at DSBs (Karagiannis and El-Osta, 2006; van Attikum and Gasser, 

2005). Other histone modifications implicated in assisting cell cycle regulators 

and DNA repair factors loading are phosphorylation, acetylation, and methylation 

of histone H4 residues, H3K79 methylation, H2BK123 ubiquitination, and 

H2AS129 phosphorylation (Karagiannis and El-Osta, 2006). 

 H3K9 methylation does not appear to be directly involved in repair factor 

loading and cell cycle regulator activation. Cytological assays using TUNEL and 

γH2Av / Rad51 IF yielded similar quantitative results (Figure 3-3), demonstrating 

efficient γH2Av foci formation and recruitment of repair machineries in Su(var)3-
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9null mutant cells. In addition, cell cycle checkpoints are activated in the Su(var)3-

9null mutant cells and are essential for organismal viability (Figures 3-6 and 3-7).  

Genomes with complex DNA organization and high repeat contents, such as 

Drosophila heterochromatin and vertebrate genomes, present challenges for the 

cell especially during DNA replication, repair, and recombination. Repeated DNA 

sequences can form secondary structures, such as hairpins, that are difficult for 

the replisomes to physically overcome while maintaining faithful DNA replication. 

Replication across repeated seqeuences can result in sequence expansion, or 

duplications, as well as replication fork stalling that can produce DSBs. 

Recombination between allelic repeats may cause unequal exchange to alter 

repeat lengths and exchange between non-homologus chromosomes to form 

dicentric chromosomes and aneuploidy (Pearson et al., 2005). Simple repeat 

expansions cause two dozen hereditary disorders in humans, including fragile X 

syndrome, myotonic dystrophy, Huntington's disease, various spinocerebellar 

ataxias, and others (Mirkin, 2006). The cell must devise some mechanisms to 

prevent or repair DNA repeat-associated damages, such as single-strand 

annealing repair (SSAR). In SSAR of tandemly repeated DNA sequences, two 

single-strand homologues, generated from opposite sides of a DSB, can anneal 

in a Rad51-independent fashion to facilitate recombination repair (Lambert et al., 

1999; Weinstock et al., 2006). However, SSAR inevitably results in deletions of 

sequencers between the two single-strand homologues. Our data strongly 

suggest that DNA repair mechanisms, and/or the response to damage, differ 

between heterochromatin and euchromatin. For example, cells may preferentially 
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repair breaks in heterochromatin by SSAR instead of NHEJ or HR, and H3K9 

methylation may be involved in repair pathway choices.  

Cell cycle checkpoint responses to DNA damage ensures the viability of 

Su(var)3-9null flies 

In response to DNA damage, the cell delays cell cycle progression to 

allow sufficient time for repair. Here we showed that Su(var)3-9null mutants 

activate cell cycle arrests in G2 and mitosis in response to increased frequencies 

of DNA damage in heterochromatin. The analysis of Rad51 foci suggests that the 

majority of the damage in somatic cells is DSBs (Figure 3-3). In support of this 

conclusion, other types of DNA lesions, such as single-stranded DNA breaks, 

should activate the S phase checkpoint. However, there was no difference in the 

percent of cells in S phase in Su(var)3-9 mutants versus wild type (Figure 6A), 

suggesting that the S phase checkpoint is not activated and that most if not all of 

the damage is in the form of DSBs.  

 Mutations in the DNA damage checkpoint (mei-4129D, grp06034, and lokP6) 

suppress the G2 arrest in the Su(var)3-9null mutant cells (Figure 3-6c), confirming 

that the DNA damage checkpoint pathway is responsible for the G2 arrest. These 

mutations exhibit synthetic lethality with the Su(var)3-9null mutation, further 

cementing the essential role of the DNA damage checkpoint for the viability of 

the Su(var)3-9null mutant animals. Thus, I conclude that the viability Su(var)3-9 

mutants, despite significant increases in DNA damage, is ensured by a G2 cell 

cycle arrest, which allows the damage to be repaired efficiently. The incomplete 
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synthetic lethality of the double mutants (~ 50 %, Figure 3-6b) reflects the 

redundant nature of the checkpoint proteins.  

 Cohesin reduction in heterochromatin in Su(var)3-9null mutants (Peng and 

Karpen, 2007) is likely to cause sister chromatid cohesin defects that trigger the 

mitotic checkpoint. Subsequent analysis revealed that smc1exc46, Su(var)3-

917/Su(var)3-96 (one wild-type copy of smc1 in the Su(var)3-9null mutant) double 

mutant animals exhibit 25% lethality (Figure 7A), demonstrating that cohesin 

reduction impacts Su(var)3-9null viability. Mitotic checkpoint activation in the 

Su(var)3-9null cells (Figure 3-6a) is reduced by mutations in chk1 (grp) or chk2 

(lok) (Figure 3-7b and c), thus confirming past studies that grp and lok regulate 

the metaphase-anaphase transition during mitosis, in addition to their roles in the 

DNA repair checkpoint (Royou et al., 2005; Xu and Du, 2003). This is a 

conserved function at least for chk1, whose mammalian homolog participates in 

mitotic checkpoint signaling (Zachos et al., 2007). 

A significant percentage of damaged cells, when stuck in a prolonged G2-

M arrest, can escape the G2 arrest and progress into mitosis without DNA repair 

(Deckbar et al., 2007). Such an escape occurs within some of the Su(var)3-9null 

cells, activating the mitotic checkpoint or creating chromosomal morphological 

defects shown in Figure 3-5. If still left unrepaired, these cells then activate the 

apoptosis pathway, leading to the 10-fold increase (to 0.86% of total cells) in 

apoptotic cells observed in the Su(var)3-9null mutants (Figure 3-6a). The 0% 

viability of the mit(1)155; Su(var)3-9null (mit(1)15 is ZW10 homolog in Drosophila) 

double mutant signifies the critical role of the mitotic checkpoint in Su(var)3-9null 
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survival (Figure 3-7b and c), that the mitotic checkpoint is likely more important 

than the G2 repair checkpoint. It is important to note that the mitotic checkpoint is 

likely activated by both cohesin defects and persistent DNA damage into mitosis.   

 A wealth of evidence, however mostly indirect, supports the proposal that 

accumulated DNA damage compromises the transcription of non-mitotic cells, 

leading to cellular degeneration and age-related deterioration of animals, 

especially in the nervous system (Abner and McKinnon, 2004; Ahel et al., 2006). 

Adult fruitflies consist of almost all non-mitotic cells, except the germline and 

intestinal stem cells. Ectopic expression of human superoxide dismutase 1 

(SOD1, neutralizing reactive oxygen species that creates DSBs) in the 

motorneurons of adult flies can increase lifespan by 40% (Parkes et al., 1998). 

Therefore, the ability to combat DNA damaging agents is a major determinant of 

adult fruitfly lifespan. We hypothesize that increased DNA damage exhibited by 

the Su(var)3-9null mutant cells ultimately contribute to shortened lifespan (Figure 

3-1b). 

Instability of repeated DNA contributes to cancer progression 

 ‘Fragile’ sites exist in human chromosomes, which are vulnerable to 

breakage and can produce chromosomal rearrangements found in malignant 

cancers (Le Beau et al., 1984; Yunis and Soreng, 1984). Fragile sites can also 

cause replication timing deregulation, eventually leading to gene amplification 

and aneuploidy (Debatisse et al., 1998). How these fragile sites arise is not 

entirely clear, but indirect evidence suggests one contributing factor is the high 
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repetitive content of mammalian chromosomes. (Flores-Rozas and Kolodner, 

2000).  

 Mammalian genomes are composed of highly complex DNA structures. 

More than 40% of the human euchromatic genome consists of repeated DNAs, 

and about 1% of the genome contains protein-encoding genes (Lander et al., 

2001). Unregulated recombination of repeated sequences lend ample 

opportunities for chromosomal rearrangements, which participates in 

uncontrolled cell growth and tumorigenesis. Supporting this hypothesis is the 

findings that recurrent chromosomal rearrangements are observed in virtually all 

tumor types (Mitelman et al., 2007). 

 The Alu repeats, consisting of 11 % of the human genome, and 

heterochromatin on human chromosome 1 (band 1q12) are well-studied 

examples of repeated DNAs implicated in human diseases and cancer formation. 

Alu repeats can recombine to cause recurrent gene mutations that result in 

human diseases such as breast cancer (BRCA1 deletion), glioma brain tumors 

(RB1 deletion), and familial hypercholesterolemia (LDL receptor deletion) 

(Kolomietz et al., 2002). Like many repeated sequences in Drosophila and 

humans, the chromatin associated with Alu repeats are enriched with H3K9me 

(Kondo and Issa, 2003), whose function is not entirely clear. As part of 

constitutive heterochromatin in human cells, band 1q12 contains a fragile site 

that causes chromosome translocations which have been implicated in cancers 

of breast tissue, lymphoid, skin, reproductive organs, and endothelial tract (Rupa 

et al., 1995). Results from comparative genome hybridization (CGH) of cancer 
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samples suggests that satellite 2 DNA demethylation within 1q12 leads to high 

incidence of chromosomal translocations (Wong et al., 2001). 

 Our study here shows that chromatin alterations contribute to 

consequences beyond deregulation of gene expression. Reduced H3K9 

methylation in Drosophila results in eleveated levels of DNA damage, 

chromosomal rearrangements and cell cycle checkpoint activation. Therefore, 

the structure of heterochromatin, regulated by H3K9 methylation, helps maintain 

genome stability and organismal survival. Intriguingly, Drosophila’s 

heterochromatin, not euchromatin, resembles the mammalian genomes in their 

complex DNA organization. Mammalian systems may employ similar 

mechanisms to regulate the stability of repeated DNAs, which consist of almost 

half of the genome.  
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Materials and Methods 

Fly stocks 

All fly stocks were raised at 22 oC. We received the grp06034, rodEY04576, 

mit(1)155, and p5311-1B-1 flies form the Bloomington stock center. The lokP6 flies 

are from Michael Brodsky, dcr2L811fsx from Richard Carthew, smc1exc461 from 

Scott Hawley, Su(var)3-9 null alleles 6 and 17 from Gunter Reuter, and mei-4129D 

flies from Tin Tin Su,. Fly crosses were performed using standard genetic 

techniques. Some double mutants were made by meiotic recombination: one, 

rodEY04576, Su(var)3-9null; two, p5311-1B-1, Su(var)3-9null; three, smc1exc46, Su(var)3-

917 flies. These flies were scored by PCR reactions, using template DNA from 

single flies that primers that distinguish wild type from mutated DNA sequences.  

Fly developmental stage analysis 

% fertilization 

Flies were allowed to lay eggs on soft agars containing yeast paste for 4 

hours at 25 oC. After eggs were incubated for 6 hours at 25 oC, all the eggs were 

fixed using the standard method. Nuclei in the fixed eggs were visualized by 

DAPI staining. The %’s of unfertilized eggs were calculated by the formula: (total 

number of eggs – the number of eggs containing one- or two- nuclei)/total 

number of eggs X 100%. 

% hatched eggs 

 Flies were allowed to lay eggs on soft agars containing yeast paste 

overnight at 25 oC, and the numbers of eggs laid were counted afterwards. The 

eggs were allowed to incubate at 25 oC for more than 30 hours, and the numbers 
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of unhatched eggs were counted afterwards. The %’s of hatched eggs were 

calculated by the formula: (number of eggs laid – number of unhatched 

eggs)/number of eggs laid X 100 %. 

% eclosion 

Flies were allowed to lay eggs overnight in a bottle containing fly food at 

25 oC. The bottles were incubated at 25 oC for 2 weeks. The %’s of eclosion were 

calculated by the formula: number of hatched pupa cases/total number of pupae 

X 100 %.  

Fly lifespan analysis 

 More than 120 flies from each genotype, after one day of eclosion, were 

incubated at 25 oC  and passed onto new vials every other day. Each vial 

contains approximately 20 flies. Dead flies were counted every other day. When 

all flies died, the total number of flies was summed from the numbers of dead 

flies. The %’s of viability were calculated by dividing the number of flies alive at 

specific time periods by the total number of flies. 

Antibodies  

Rabbit antibody against γH2Av (1:250 dilution) was purchased from 

Rockland. The rabbit anti-Rad51 antibody (1:100 dilution after direct labeling) 

was a generous gift from Jim Kadonaga. The anti-Rad51 antibody was directly 

labeled as previously described (Oegema et al., 2001). The mouse anti-C(3)G 

antibody (1:500 dilution) was a generous gift from Scott Hawley. The rabbit anti-

PCNA antibody (1:100 dilution) was a generous gift from Daryl Henderson. The 

rabbit anti-PH3 (1:1000 dilution) was purchased from Upstate. The anti-CycA 
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mouse monoclonal antibody (1:20 dilution) was purchased from the 

Developmental Studies Hybridoma Bank. Alexa dye-conjugated secondary 

antibodies were purchased from Invitrogen and used at 1:500 dilution. 

IF, FISH, and IF-FISH of whole-mount tissues and squashed tissues. 

IF was performed as previously described (Hari et al., 2001a). Germarium 

was fixed as previously described (D. Gilliland et al., 2005), except ovaries were 

dissected within 24 hours of mating. FISH was performed as previously 

described (Dernburg et al., 1996b) using 100 ng of each probe. In combined IF-

FISH experiments, IF was performed before the FISH treatment. FISH probes 

targeting Drosophila satellite DNAs were made from aminoallyl-dUTP end-

labeling of oligonucleotides using TUNEL with, followed by dye conjugation.  

TUNEL assay 

 Whole-mount tissues were fixed with 4 % paraformaldehyde in PBS and 

0.2 % of TritonX-100, washed and permeabilized overnight with PBS and 0.2 % 

of Triton-X-100. Tissues were incubated with TUNEL buffer (1x TUNEL buffer 

from Roche, 2.5mM CoCl2, 0.2% TritonX-100) for 10 min, then in TUNEL buffer 

plus dNTPs (final concentrations of 10 uM of dATP, dCTP, and dGTP, 3.3uM 

dTTP, and 6.6uM DIG-dUTP) and enzyme (20U/ml final concentration) for 3 

hours at 37 oC. Afterwards, DIG signals were detected via standard IF procedure 

using rhodamine-labeled anti-DIG antibody. To analyze % cells in apoptosis, 

brain and imaginal disc tissues were squashed onto slides into single cell layer 

using standard technique. The slides were washed extensively with PBS and 0.2 

% of Triton-X-100, incubated with TUNEL buffer plus dNTPs (final concentrations 
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of 10 uM of dATP, dCTP, and dGTP, 3.3uM dTTP, and 6.6uM DIG-dUTP) and 

enzyme (20U/ml final concentration) for 2 hours at 37 oC. Afterwards, DIG signals 

were detected via standard IF procedure using rhodamine-labeled anti-DIG 

antibody. 

Microscopy, volumetric and colocalization analysis 

 All images were captured using an Applied Precision Deltavision 

Workstation and deconvolved by the SoftWorx software, using the conservative 

algorithm with 5 to 8 iterations. The SoftWorx-deconvolved images were 

converted to TIFF files and then into stack images for volumetric analysis with 

the Metamorph 7.0 software.  

 For foci localization and colocalization studies, optical sections of 

deconvolved images were enhanced contrast and counted in relation to its 

localization to DAPI-bright vs. DAPI-weak regions. DAPI signals were not 

enhanced contrast.  DAPI-bright regions were regions that contain contiguous 

(>5 pixels) bright DAPI signals; representative DAPI images are shown in Figure 

3-3. 

Statistical comparisons and p values were calculated by the chi-squre test 

or the two-sample t test, assuming unequal variance. 

Chromosome paints 

FISH paints were made by degenerate PCR using templates described 

below. The PCR products were digested with 4-base restriction enzymes, AluI, 

HaeIII, MseI, MspI, RsaI, and Sau3AI. From that, the DNA’s were end-labeled 

with TUNEL using aminoallyl-dUTPs followed by dye conjugation. Templates for 
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chromosomes 2 and 3 were bacterial artificial chromosomes (BACs) containing 

Drosophila sequences. The BACS were placed by the Berkeley Drosophila 

Genome Project to lie in the genomic tiling path, spaced in 500kb intervals, and 

of low repeat content. Templates for chromosome X were provided by Abby 

Dernburg, who micro-dissected polytene chromosome X and amplified them via 

degenerate PCR as a PhD student. 

 FISH using chromosome paints were done as the following. Acid-

squashed slides were treated in ethanol series, incubated in 0.005 % pepsin in 

10mM HCl for 1 minute, rinsed in PBS, and treated in ethanol series to dry. The 

slides were treated with 2X SSCT (0.1 % Tween-20) for 5 minutes, 50 % 

formamide in 2X SSCT for 5 minutes, and 70 % formamide in 2X SSCT for 5 

minutes. Slides were incubated in fresh 70 % formamide in 2X SSCT at 37 oC for 

more than 1.5 hours; solutions need be changed at least 3 times during this 

period. Chromosomes on the slides, incubated in 70 % formamide and 2X SSCT, 

were denatured on the hot plate of a PCR machine that increases temperature 

from 22 to 74 oC within 1.5 minutes, stays at 74 oC for 1.5 minutes, and 

decreases temperature from 74 to 22 oC within 1.5 minutes. The slides were then 

treated with ethanol series to dry, and the denatured probes (in probe mix 50% 

formamide, 10% dextran sulfate, 2X SSCT, 1ug Cot-1 DNA) were added onto 

chromosomes to allow hybridization overnight. After the incubation, the 

coverslips were removed, and the slides were washed with 50% formamide, 2X 

SSCT at 37 oC for 4 times, at 30 minutes each time.  
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DSB repair response assay 

 Dissected brain and imaginal disc tissues incubated in PBS were 

irradiated with 5 Gy of x-ray, allowed to incubate at room temperature at various 

lengths of time, then acid squashed onto slides. Mitotic chromosomes were 

scored by PH3-positive signals. 

 For survival assay, flies were allowed to lay eggs in vials containing fly 

food overnight at 25 oC. For each genotype and each x-ray dose, 5 to 7 vials 

were prepared. The numbers of eggs laid within each vial was counted, and then 

the embryos were treated with 0, 3, 6, 12 Gy of x-ray. Afterwards, the embryos 

were incubated at 25 oC for 2 weeks, and the number of eclosed adults in each 

vial was counted. The %’s of eclosion were calculated by the formula: (number of 

eclosed adults/number eggs laid) X 100 %. The %’s of survival were calculated 

by the formula: (% eclosion at each dose/% eclosion at 0 Gy) X 100 %. 

Cell Cycle analysis 

 Brain and imaginal discs were fixed in 4 % paraformaldehyde and 

PBS for 5 minutes, washed with PBS 4 times for 5 minutes each. The fixed 

tissues were incubated in Collagenase solution (0.04 % Collagenase type IV, 

Sigma, in PBS) for 10 minutes, squashed onto slides using RainX-treated 

coverslips, and frozen in liquid nitrogen. After coverslips are removed, the slides 

were allowed to warm for less than 30 seconds, fixed in 4 % paraformaldehyde 

and PBS for 5 minutes, washed with PBS 4 times for 5 minutes each. IF of cell 

cycle markers were performed using methods described, except no TritonX100 

was used for CycA IF. Images were captured by an Applied Precision Deltavision 
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Workstation and converted to TIFF images. The Metamorph 7.0 software was 

used to score cells positive for cell cycle markers or TUNEL signals. For each 

genotype and each marker, >3000 cells from at least 3 animals were analyzed.  
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Chapter Four: General discussion and future directions 

 

General summary 

 Like many PhD students, I began my projects with a goal that differed 

from the ultimate subject of my thesis. I wanted to identify regulators of nuclear 

architecture, using the attractive genetic system in Drosophila melanogaster and 

unique tools, such as the minichromosome γ878, available in the lab of my 

advisor Gary Karpen. While I was conducting a genetic screen to isolate the 

identity of mutations that perturb the reporter yellow+ expression on γ878, I was 

also using immunofluorescence (IF) to examine subnuclear structures in known 

Su(var) mutants. This assay revealed that some Su(var) mutants, such as those 

of Su(var)3-9 and Heterochromoatin Protein 1 (HP1), exhibited nucleolus 

structural instability.  

 This serendipitous discovery directed my efforts to an otherwise little 

studied function of histone modifications and chromatin structure, especially in 

heterochromatin. I decided to pursue the thesis that heterochromatin structure—

which forms around histone H3 K9 methylation (H3K9me), Su(var)3-9, and 

heterochromatin protein 1 (HP1), and is regulated by the RNA interference 

(RNAi) process—is essential for the maintenance of heterochromatin sequences 

and genome stability. I have discovered that compromised heterochromatin 

structure leads to the following: elevated DNA damage in heterochromatin and 

activation of repair and mitotic checkpoints, extrachromosomal DNA (eccDNA) 
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formation from repeated DNAs, ectopic nucleolus formation from ecc ribosomal 

DNA (rDNA) and nuclear organization disruption.  

 Findings from my thesis project suggest the idea that the repeated DNAs 

in heterochromatin require special mechanisms and components to maintain 

their integrity. There are still many questions that need to be addressed in the 

future to provide a mechanistic understanding of the roles of the RNAi and H3K9 

methylation pathways in maintaining the stability of heterochromatic DNAs. Why 

does the cell need to safeguard heterochromatin stability? How does the cell 

accomplish this task? Does DNA damage recognition and repair differ between 

euchromatin and heterochromatin? Since mammalian euchromatin is 

interspersed with many repeated DNAs like Drosophila heterochromatin, does it 

utilize similar mechanisms and components to stabilize their repeated DNAs? In 

this chapter I will summarize our current understanding about these issues and 

outline future directions.    

Functional significance: why does the cell contain heterochromatin? 

High repeat content in nearly 30 % of the Drosophila genome begs the 

question about whether the presence of heterochromatin is under evolutionary 

selection. Functional analyses in higher eukaryotes revealed that 

heterochromatin regulates centromere function, telomere protection, meiotic 

chromosome pairing, and gene regulation during development (detailed in 

Chapter 1). From the functional standpoint, heterochromatin behaves like a 

subnuclear organelle. Like the nucleolus, heterochromatin formation is based on 
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DNA and is epigenetically regulated, but its persistence through evolution likely 

depends on its many functions. 

 The cell has evolved mechanisms to stabilize heterochromatin for reasons 

that remain unclear. One example is the recent discoveries of repeat-associated 

small interfering RNA (rasiRNA) molecules, a demonstration that the cell uses 

the RNA interference (RNAi) pathway to safeguard repeated DNAs (Theurkauf et 

al., 2006). Specifically, rasiRNAs in the germline help regulate expression of 

retrotransposons and the Stellate focus, which is composed of repeated Stellate 

transcription units (Aravin et al., 2004; Tomari et al., 2004; Vagin et al., 2006). 

Further analyses of mutations in the rasiRNA pathway (armitage (armi), 

aubergine (aub), and spindle-E (spn-E)) showed that embryonic axis 

specification is disrupted (Cook et al., 2004), and germline-specific accumulation 

of γH2Av foci, indicative of increased DNA damage (Klattenhoff et al., 2007). 

Mutations in the DNA damage checkpoint (mei-41/ATR and lok/chk2) are able to 

suppress γH2Av foci accumulation, but not retrotransposon and Stellate 

deregulation in the rasiRNA mutants (Klattenhoff et al., 2007). These data 

suggest that the rasiRNA pathway influences multiple processes within the 

germline, and one is to maintain genome integrity.  

 My thesis extends beyond the work from Theurkauf’s group, 

demonstrating that the cell utilizes the RNAi and H3K9 methylation pathways to 

maintain heterochromatin stability. H3K9me reduction from heterochromatin, due 

to mutations in the H3K9 methyltransferase Su(var)3-9 or the RNAi pathway, 

caused a significant increase the the frequency of DNA damage in 
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heterochromatin. This defect strongly correlates with the following observations: 

DNA breaks occur in heterochromatin of the Su(var)3-9null meiotic cells, the 

mutant cells are sensitivity to exogenous DNA damage, the mutant mitotic 

chromosomes exhibit morphological defects and rearrangements, and the DNA 

damage checkpoint and mitotic checkpoints are essential for Su(var)3-9null 

survival (Chapter 3). These results demonstrate the importance of 

heterochromatin in cellular functions and survival. However, they do not address 

the reason(s) why heterochromatin integrity is needed for cellular survival. One 

explanation for the importance of heterochromatin integrity is that unchecked 

DNA damage in heterochromatin causes chromosome structural defects and 

aneuploidy (Figure 4, Chapter 3) that are detrimental to the cell. As explained 

above, the described regulatory functions and perhaps other undiscovered 

functions of heterochromatin may also require safeguarding the structural 

integrity of heterochromatin.   

Su(var)3-9, HP1, H3K9 methylation, and RNA interference (RNAi) in 

heterochromatin 

 As an epigenetically regulated structure, heterochromatin does not contain 

any DNA sequence consensus that defines its formation. Rather, repeated DNA 

sequences in heterochromatin are associated with nucleosomes containing 

H3K9me (dimethylation in Schizosaccharomyces pombe and D. melanogaster 

but trimethylation in vertebrates). It is unclear how repeated DNAs accumulate 

and come to associate with H3K9me-nucleosomes. Ectopic transgene insertion 

to establish a high density of repeated DNAs within euchromatin can ‘attract’ HP1 
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and H3K9 methylation (Janicki et al., 2004), suggesting that a high density of 

repeats is sufficient for ‘heterochromatinization.’ This process is likely RNAi-

mediated and directed by double-strand RNAs (dsRNAs) transcribed from these 

repeats (Grewal and Jia, 2007; Moazed et al., 2006). 

How repeated DNAs accumulate within heterochromatin through 

evolutionary time is not known and difficult to investigate. In lower eukaryotes, 

the heterochromatic regions are centromeres, telomeres, mating type loci, and 

rDNA, all of which perform clearly defined functions. In higher eukaryotes, 

heterochromatin as a whole exhibits functions described above and in Chapter 1. 

But why do higher eukaryotes need tens to hundreds of megabases of repeated 

DNA sequences to accomplish these tasks? Moreover, did heterochromatin-

specific functions derive before repeated DNA accumulation, or vice versa? 

These may be questions untestable by conventional techniques. Nonetheless, 

comparative genomic and epigenomic studies of heterochromatin in closely-

related species may yield illuminating information.  

 Investigations of heterochromatin and RNAi mechanisms in S. pombe help 

elucidate how repeated DNA sequences come to associate with H3K9me-

nucleosomes and HP1. RNAs transcribed from repeated DNAs form double-

stranded RNAs (dsRNAs) that are processed by dicer to produce small 

interfering RNAs (siRNAs). These siRNAs recruit the RITS (RNA-induced 

transcriptional gene silencing) complex to heterochromatic regions, where the 

RITS complex recruits Su(var)3-9/clr4 (Su(var)3-9 from now on), which 

methylates H3K9 residues and establishes heterochromatin (Grewal and Jia, 
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2007; Moazed et al., 2006). Intriguingly, recruitment of the RITS complex to 

heterochromatin also requires Su(var)3-9 binding (Noma et al., 2004), 

demonstrating a cooperative relationship that is essential for both Su(var)3-9 and 

the RITS complex. To maintain heterochromatin structure, HP1 recruits more 

Su(var)3-9 proteins to heterochromatin by its physical associations with both the 

H3K9me residue and the Su(var)3-9 protein (Nakayama et al., 2001). Both 

establishment and maintenance processes provide specificity for Su(var)3-9 to 

act as the enzymatic component for heterochromatin identity. These findings also 

highlight the importance of Su(var)3-9 activity.  

While it establishes and maintains heterochromatic regions, the cell must 

also restrict heterochromatin from spreading into the flanking euchromatin; 

without this active confinement, heterochromatin-mediated silencing would 

disrupt gene expression. The euchromatin-heterochromatin junction is likely also 

epigenetically regulated. Chromatin immunoprecipitation-PCR (ChIP-PCR) 

analysis of chromatin surrounding the centromeres and the mating type locus in 

S. pombe showed inverse distribution patterns of H3K4me and H3K9me in 

heterochromatin and the flanking euchromatin. Enriched H3K9me and Swi6/HP1 

in heterochromatin sharply decrease at the euchromatin-heterochromatin 

junction, while the reverse is true for H3K4me. Deletion of the IR-L and IR-R 

repeats, which are boundary elements that flank the mating type locus, results in 

heterochromatin spreading into the neighboring euchromatin (Noma et al., 2001).  

Multiple mechanistic models explain how the cell may modulate chromatin 

changes at the heterochromatin-euchromatin junction to restrict heterochromatin 
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spreading, and recent studies focused on two opposing scenarios. One model 

states that nucleosome replacement at the heterochromatin-euchromatin junction 

defines the boundary. The alternative model proposes that histone lysine-

demethylases serve to define this boundary.  

 In essence, the two models describe alternative mechanisms by which the 

cell continually counteracts H3K4 and H3K9 methyltransferase activities from 

euchromatin and heterochromatin. Proponents of the nucleosome replacement 

model took notice of the observations in Saccharomyces cerevisiae and D. 

melanogaster that nucleosome turnover is consistently higher at boundary-

associated DNA elements compared to the surrounding DNA regions (Dion et al., 

2007; Mito et al., 2007). In support of the alternative model, mutations of lysine 

demethylases disrupt heterochromatin status. The homologs of the first identified 

lysine demethylase hLSD1 (Shi et al., 2004) are enriched in the heterochromatin 

boundary elements in S. pombe (Lan et al., 2007) and mutations disrupt 

heterochromatin-mediated silencing in Drosophila (Rudolph et al., 2007). 

Intriguingly, hLSD1 has been shown to demethylate both H3K4 (Shi et al., 2004) 

and H3K9 (Metzger et al., 2005); its specificity seems to be regulated by hLSD1’s 

binding partners. Mutation of LSD1 in S. pombe, Splsd1, causes H3K9me2 

spreading at the boundary elements, demonstrating its in vivo H3K9 demethylase 

activity (Lan et al., 2007). However, null mutations of Drosophila LSD1 (Su(var)3-

3) decreases H3K9me2 at the boundary elements, further supporting the in vitro 

demonstration that Su(var)3-3 is a H3K4 demethylase (Rudolph et al., 2007). 
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These differences reveal additional complexity in lysine demethylase regulation 

that can impact heterochromatin status. 

Investigations of heterochromatin formation mainly focus on its epigenetic 

regulation, because H3K9 methylation strongly correlates with heterochromatin 

functions. Another reason is the accepted view that H3K9 methylation is a more 

‘permanent’ feature of heterochromatin and epigenetically silenced regions, 

because no demethylase had been proven to exist until 2004 (Shi et al., 2004). 

The demonstrations that different mechanisms can remove H3K9 methylation 

from chromatin revealed the plasticity of H3K9 methylation and heterochromatin.  

The plasticity inherent to heterochromatin manifests not only 

epigenetically but is also reflected in sequence changes. Comparative sequence 

analysis of heterochromatic and euchromatic gene counterparts in Arabidopsis, 

D. melanogaster and D. pseudoobscura suggest dramatic structural 

reorganization of genes that move between euchromatin and heterochromatin 

during evolution. Specifically, as euchromatic genes moved into heterochromatin, 

they accumulated transposable elements (TEs) in their introns and flanking 

regions, in addition to increased A-T content in the coding sequences (Carvalho 

and Clark, 2005; Lippman et al., 2004; Yasuhara et al., 2005). Also, repeated 

DNA sequences undergo homogenization, in which variant sequences become 

more similar, over evolutionary time (Elder and Turner, 1995). The alpha repeats 

in nonhomologous chromosomes in both human and chimpanzees have been 

shown to undergo homogenization (Jorgensen et al., 1992), suggesting that 

unequal crossover and/or gene conversion occurs between similar sequences on 
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nonhomologous chromosomes.   Unequal exchange between non-homologous 

chromosomes can result in dicentric chromosome formation and aneuploidy, or 

neocentromere formation from the alphoid repeats (Wevrick and Willard, 1989). 

However, homogenization can occur without reciprocal exchange, for example 

via gene conversion, which would not result in rearrangements and aneuploidy.  

These observations suggest that heterochromatin is not recombinationally 

‘silent’, at least over evolutionary timescales, despite the absence of reciprocal 

recombination during meiosis. Combined with the results presented in my thesis, 

I propose that DNA breaks in heterochromatin and euchromatin may be 

processed differently to avoid problems that arise when repeats recombine. For 

example, both the exchange of information among repeats observed during 

evolution, the absence of reciprocal recombination during meiosis, and the 

cellular and organismal defects that result from loss of heterochromatin pathways 

can be accommodated by imagining that chromatin structure in heterochromatin 

reduces the probability of homologous recombination between repeats and 

increases the utilization of NHEJ and gene conversion pathways. Factors that 

can influence gene structural changes and repeat homogenization are DNA 

replication, recombination and repair, all of which are likely regulated by 

chromatin structure. 

My thesis works point to the intriguing possibility that chromatin structural 

variations caused by chromatin remodeling deregulation affect DNA 

recombination and replication, thereby contributing to regional sequence 

alterations and genome reorganization. This can be a component of speciation 
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mechanisms and the evolution of complex-DNA genomes, in which coding 

sequences constitute a very small percentage of sequence while repeated DNAs 

constitute the majority of the genome. Further investigations into whether and 

how chromatin structural variations contribute to genome reorganization will 

greatly benefit our understanding about mechanisms that affect genome 

plasticity.  

Future directions: H3K9methylation functions in heterochromatin stability 

 My thesis investigated the consequences of reduced H3K9me content on 

the stability of heterochromatic regions and nuclear architecture. However, this 

project provided little understanding about the mechanisms by which H3K9me 

regulates genome stability. For example, we now know that increased 

extrachromosomal DNA (eccDNA) formation in the Su(var)3-9null and the RNAi 

mutants (Chapter 2) is likely a consequence of DNA damage in heterochromatin 

(Chapter 3). Yet little is known about how these defects occur, and how reduced 

H3K9me levels lead to increased DNA damage in heterochromatin. Here I will 

propose potential functions of H3K9me in maintaining genome stability and 

outline projects to investigate these functions. 

 The H3K9me-based chromatin potentially exhibits these functions in 

maintaining genome stability: ‘protecting’ DNA from damaging agents, 

coordinating replisome firings and replication timing, and affecting the DNA 

damage response (Chapter 3). These proposed functions are not mutually 

exclusive, and the DNA damage response can encompass processes that 

include chromatin decondensation around double-strand break (DSB) sites and 
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coordination of DNA repair factor loading (Chapter 3). Here I separate H3K9me’s 

proposed function in the DNA damage response from its ‘protection’ of 

heterochromatin from damaging agents.  

 The observed DNA damage in the Su(var)3-9 and dcr-2 mutant cells is 

likely not caused by the failure of chromatin’s ‘protecting’ ability; no DNA 

damaging agent was used to cause the high incidence of DNA breaks (Figure 2, 

Chapter 3). However, this potential function by H3K9me in general genome 

stability cannot be excluded. Heterochromatin has been shown to allow less 

access to DNases than euchromatin (Cartwright et al., 1999), presumably due to 

certain physical rigidity which may also reduce access by damaging agents to 

DNA. To investigate this problem, one can compare DNA damage frequency, by 

quantitative analysis of terminal deoxytidyltransferase (TUNEL) and γH2Av 

signals, in DAPI-bright regions of wild type vs. the Su(var)3-9null mutant after 

exposing them to exogenous DNA damaging reagents. If H3K9me chromatin 

serves a ‘protecting’ function, DNA damage frequencies in wild-type DAPI-bright 

regions would be significantly less than that in the Su(var)3-9null DAPI-bright 

regions. It is important to point out that fewer observed DNA breaks in DAPI-

bright regions can also be caused by lower DNA repair efficiency in 

heterochromatin; time-course experiments monitoring DNA break repair,  

indicated by foci disappearance, can rule out this possibility. 

 Comparing replication timing and stalled replication forks in repeated 

DNAs and/or heterochromatin of wild type and the Su(var)3-9null mutant will 

elucidate whether H3K9me chromatin impacts these processes. Replication 
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timing can be monitored via pulse-chase-pulse incorporation of iododeoxyuridine 

(IdU) and chlorodeoxyuridine (CldU) followed by immunofluorescence (IF) 

analysis as previously described (Sullivan and Karpen, 2001). Two-dimensional 

DNA electrophoresis followed by Southern blotting to target specific 

heterochromatic DNAs can be used to visualize and quantitate stalled replication 

forks for comparative analysis. If H3K9me chromatin regulates replication timing, 

heterochromatin replication, which normally occurs in late S phase, would initiate 

during early and mid S phase and stalled replication forks would increase in the 

Su(var)3-9null mutant cells. 

 Response to DNA damage includes processes and components involved 

in damage recognition, repair, and cell cycle checkpoints. H3K9 chromatin may 

be involved in damage recognition and repair coordination. For example, DSBs in 

repeated DNAs are preferentially repaired by non-homologous end-joining 

(NHEJ) or single-strand annealing repair (SSAR), in which two single-strand 

homologues generated from opposite sides of a DSB to facilitate recombination 

repair (Lambert et al., 1999; Weinstock et al., 2006).  H3K9 chromatin may help 

the cell recognize that the DSBs lie within repeated DNAs and therefore require 

SSAR or NHEJ instead of conventional homologous recombination (HR). One 

may investigate the decision-making process, to choose HR, NHEJ, or SSAR for 

heterochromatin repair, by comparing the dynamics of repair factor recruitment 

(using cytological or biochemical assays) to induced DSBs (described below) in 

wild type and the Su(var)3-9null mutant cells. 
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 Investigation of damage recognition is more difficult because no factors 

have been identified that specifically function in DNA damage recognition. 

Instead one can monitor physiological events, such as chromatin decondensation 

and γH2Av recruitment, both of which take place less than 30 seconds after DNA 

breaks occur. To do that, site-specific endonucleases are utilized to induce DSBs 

in heterochromatin and the dynamics of γH2Av foci formation and chromatin 

decondensation—using FISH probes covering the endonuclease sites and 

quantitate the area of FISH probe coverage before and after endonuclease 

induction—can be compared between wild type and the Su(var)3-9null mutant 

cells. For example, endogenous sites for I-Cre endouclease within the ribosomal 

DNA (rDNA) transcription unit have been identified and shown to induce DSBs 

that can cause X-Y translocations and increased recombination rates between 

the sex chromosomes (Maggert and Golic, 2005). It will be very interesting to find 

out whether DSBs produced by I-Cre in rDNA of wild type and Su(var)3-9null 

mutants are repaired with equal efficiency. This system and other similar systems 

can also be used to compare the dynamics and efficiency of different repair 

processes in heterochromatin of wild type and Su(var)3-9null cells. 

 These experiments will yield extremely useful information about the 

functions of H3K9 chromatin in replication control, DNA damage protection, 

damage recognition, and coordination of different DNA repair processes. 

Information from these experiments will also provide a foundation for 

understanding the specific biological processes that H3K9me may function for 

maintaining the human genome.  
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Future directions: H3K9 methylation in human genome stability 

 The majority of published studies about chromatin modifications focus on 

its regulatory functions in transcription. Current epigenomic characterizations of 

different cancer types also put great emphasis on epigenetic regulation of 

transcription, showing dramatic chromatin alterations of oncogenic or tumor 

suppressor genes whose transcriptional deregulation contribute to cancer 

progression (Egger et al., 2004; Esteller, 2007). Well-studied examples of these 

genes are p16INK4a, p73, Rb, and BRCA1 (Esteller, 2007). My thesis works 

strengthened the idea that chromatin structure contributes to genome stability in 

addition to regulating genes that control cell growth, and that local chromatin 

structure can impact genome structural integrity and the DNA damage response. 

Specifically, I showed that hetero schromatin with reduced H3K9me levels exhibit 

increased damage that causes chromosome structural defects, such as 

translocations, deletions and duplications, events that can lead to uncontrolled 

cell growth and eventual tumorigenesis. 

Drosophila heterochromatin, not euchromatin, resembles the mammalian 

genomes in their complex DNA organization. Mammalian systems may employ 

mechanisms similar to Drosophila heterochromatin to regulate the stability of 

repeated DNAs. Human Alu repeats and heterochromatin on human 

chromosome 1 (band 1q12) both contain ‘fragile’ sites, which can produce 

chromosomal rearrangements found in malignant cancers (Le Beau et al., 1984; 

Yunis and Soreng, 1984). Vulnerability in these DNA elements is also highly 

correlated with their chromatin composition (Kondo and Issa, 2003; Wong et al., 
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2001). Understanding how H3K9me helps stabilize Drosophila heterochromatin 

would help direct efforts to elucidating how mammalian systems stabilize their 

genomes, especially repeated DNA elements.  

 Investigations of H3K9me functions in mammalian systems will pose more 

technical difficulties than Drosophila studies because all mammalian H3K9 

methyltransferases identified thus far, Suv39h 1 and 2, G9a, SETB1, and RIZ1, 

function in transcriptional silencing in both euchromatin and heterochromatin 

(Kim et al., 2003; Peters et al., 2001; Schultz et al., 2002; Tachibana et al., 

2002). Mouse knockouts of G9a and Suv39h1 and 2 exhibit either embryonic 

lethality or severe developmental defects. Suv39h1’s regulatory function of 

developmental genes is an evolutionarily conserved function; morpholino 

knockdown of Suv39h1 in zebrafish larvae causes severe developmental defects 

(Rai et al., 2006). These results suggest that loss of function assays of H3K9me 

in human cells, by H3K9 methyltransferase knock-down, would not be able to 

rule out indirect effects from H3K9me-mediated transcriptional regulation. 

 Suv39h1 and 2 knock-down experiments in human cells, via siRNA 

treatment, are nevertheless a worthwhile approach because of two important 

reasons. Human tissue culture cells do not require developmental gene 

regulation that is essential for the mouse and zebrafish animals. Secondly, 

Suv39h1 and 2 knock-down is a very rapid technique to test the question 

whether human heterochromatin or euchromatin exhibit higher DNA damage 

frequencies due to H3K9me reduction. Analysis of damage in heterochromatin 

can make use of internal controls, comparing DSB frequencies in euchromatin, 
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heterochromatin with regular H3K9me content, and heterochromatin with 

reduced H3K9me content in siRNA-treated cells, which will facilitate quantitation. 

Positive results from this experiment would be very encouraging and also lay the 

groundwork for more carefully designed assays to characterize H3K9me 

functions in human genome stability and cancer.  

 In summary, I have shown that H3K9me in heterochromatin of D. 

melanogaster is important for genome stability, repeated DNA integrity, and 

nuclear architecture. Further experiments will be needed to elucidate the 

mechanisms involved in H3K9me-based stabilization of genomes with complex 

DNA organization. 
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