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1. Introduction 

For volume nanoelectronics production using Extreme ultraviolet (EUV) lithography [1] to become a 

reality around the year 2011, advanced EUV research tools are required today. Microfield exposure 

tools have played a vital role in the early development of EUV lithography [2-4] concentrating on 

numerical apertures (NA) of 0.2 and smaller. Expected to enter production at the 32-nm node with 

NAs of 0.25, EUV can no longer rely on these early research tools to provide relevant learning. To 

overcome this problem, a new generation of microfield exposure tools, operating at an NA of 0.3 

have been developed [5-8]. Like their predecessors, these tools trade off field size and speed for 

greatly reduced complexity. One of these tools is implemented at Lawrence Berkeley National 

Laboratory’s Advanced Light Source synchrotron radiation facility. This tool gets around the 

problem of the intrinsically high coherence of the synchrotron source [9,10] by using an active 

illuminator scheme [11]. Here we describe recent printing results obtained from the Berkeley EUV 

exposure tool. Limited by the availability of ultra-high resolution chemically amplified resists, 

present resolution limits are approximately 32 nm for equal lines 

and spaces and 27 nm for semi-isolated lines.  

2. Predicted resolution limit 

The Berkeley exposure tool utilizes SEMATECH’s 

5×-reduction, 0.3-NA Micro-Exposure Tool (MET) optic 

[12,13]. The MET optic has a well-corrected field of view 

of 1×3 mm at the reticle plane (200×600 µm at the wafer 

plane). The CAD model shown in Fig. 1 depicts the major 

components of the exposure station as well as the EUV 

beam path (the system is described in detail in Ref. 5). 

With a NA of 0.3, the MET optic has a Rayleigh resolution 

From synchrotron 

Pupil 
scanner 

MET 
optic 

Wafer 
stage 

Reticle stage 

Pupil-fill monitor 

Fig. 1.  CAD model of the 
Berkeley MET exposure tool. 
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(k1 factor = 0.61) of 27 nm. As shown in Fig. 2, using the programmable coherence 

illuminator to generate resolution enhancing pupil fills, however, enables the k1 factor to be 

pushed significantly below the Rayleigh limit.  

3. Resist characterization 

Since printing operations began in February 2004, more 

than 140 resist and 12 masks have been tested by users 

from 15 different organizations. The system has already 

played a crucial role in enabling the development of 

high-resolution chemically amplified resists. In the past, 

the mainstay resist of EUV research in the US was 

Rohm and Haas EUV-2D, however, this resist has now 

been shown [6] to have a resolution limit of 

approximately 45 nm, in good agreement with previous 

predictions [15]. Using the Berkeley tool, superior resist 

formulations were quickly identified. Figure 3 shows 

printing results in Rohm and Haas MET-1K resist, 

demonstrating resolution down to 35 nm. 

 

 

 

 

 

 

 

 

Of the more than 140 resists tested in the Berkeley system, there have been two groups of 

clear stand-outs: one of these groups is MET-1K and its variants and the other group is 

experimental KRS resists provided by IBM [16]. Figure 4 shows a series of equal line space 

images ranging from 45 to 30 nm printed in experimental KRS resist under annular 

illumination 0.3 < σ < 0.7. Going to monopole illumination optimized for larger pitches, Fig. 

5 shows 35-nm equal lines and spaces as well as semi-isolate 28-nm features. 
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Fig. 2.  Modeling of the aerial 
image contrast transfer function for 
three different pupil fills. 
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Fig. 3.  Equal lines and spaces printed in 125-nm-thick layer of Rohm and Haas MET-1K resist under 
annular (0.3-0.7) illumination. 
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