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Abstract. Three dimensional cell culture models offer new opportuni-
ties for development of computational techniques for segmentation and
localization. These assays have a unique signature of a clump of cells that
correspond to a functioning colony. Often the nuclear compartment is la-
beled and then imaged with fluorescent microscopy to provide context
for protein localization. These colonies are first delineated from back-
ground using the level set method. Within each colony, nuclear regions
are then bounded by their center of mass through radial voting, and a
local neighborhood for each nucleus is established through Voronoi tessel-
lation. Finally, the level set method is applied again within each Voronoi
region to delineate the nuclear compartment. The paper concludes with
the application of the proposed method to a dataset of experimental data
demonstrating a stable solution when iterative radial voting and level set
methods are used synergistically.

1 Introduction

Current protocol for most biological imaging assays is limited to monolayer
cell culture models; however, in the body, cells exist in more complex three-
dimensional arrangements, in intimate association with each other and compo-
nents of their microenvironment. These arrangements are critical to the function
and maintenance of the differentiated state. The primary rationale for extend-
ing a subset of these protocols to 3D cell culture models is that they provide
much more faithful replicates of cell behavior in vivo than is possible using
2D substrata. While the information these cultures can provide is undoubtedly
more valuable, the experiments are much harder to set up, and require more
advanced quantitative tools for phenotypic characterization. Furthermore, effi-
cient and robust computational requirements for these experiments have been
a rate limiting issue due to a more complex phenotypic signature. A sample of
these 3D colonies, at one focal plane, are shown in Figure 1. For a certain class
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of studies, three dimensional cell culture models fill a gap between monolayer
and in vivo models [1]. Although the former may be appropriate as an initial
step toward discovery and certain aspects of biological studies, the later is more
expensive and time-consuming, and as a result cannot scale for high-throughput
studies targeting different end points. However, 3D assays introduce significant
computational challenges: (i) subcellular compartments often overlap, (ii) stain-
ing/labeling may not be uniform, and (iii) that the scale of labeled compartment
may have a large variation.

Fig. 1. A slice of a three dimensional cell culture assay indicating variation in size and
intensity and overlapping compartments.

The first step in most biological imaging assays is to label a subcellular
compartment (e.g., nuclear) and to provide context for quantifying protein lo-
calization. Labeling the subcellular compartment corresponds to segmentation.
Research in the segmentation of subcellular structures spans from traditional ad
hoc methods of modeling intensity distribution to geometric techniques [2,3] and
surface evolution methods. A key observation is that nuclear regions are often
convex and form positive curvature maxima when they overlap each other. This
feature was used earlier in 2D segmentation of nuclear regions [3]. However, this
method is only applicable to monolayer cell model systems where background is
clearly delineated. Our approach is based on constraining the solution to provide
seeds corresponding to the nuclear regions and then breaking up local regions
based on additional intensity and geometric constraints. The seeding is based
on radial voting, where gradient information is projected inward to infer a local
center of mass. Once these seeds are established, Voronoi tessellation provides
the local neighborhood where each nucleus resides. This local neighborhood is
further partitioned based on its intensity distribution using the level set methods.

Organization of the paper is as follows. Section 2 summarized previous meth-
ods. Section 3 provides a detailed description of the proposed method. Section
4 provides examples and results on the application of the proposed methods on
real data. Section 5 concludes the paper.



2 Previous research

The difficulties in localization of subcellular compartments are often due to vari-
ations in scale, noise, and topology. Other complexities originate from miss-
ing data and perceptual boundaries between neighboring compartments. Pre-
vious methods for extraction of nuclear compartments have relied on either
global thresholding or adaptive (localized) thresholding followed by the wa-
tershed method for separating adjacent regions. Other methods have relied on
model-based techniques leveraging inherent geometric properties for subcellular
compartments [2, 3]. These methods rely on the notion that the nuclear regions
are often convex and, when adjacent compartments overlap, they form folds
corresponding to curvature maxima, which can be used for grouping and parti-
tioning. Still other techniques have used level set implementation of the active
contour models for segmentation and delineation [4].

While geometric methods offer robust model-based constraints for bounding
the solution to the segmentation problem, level set methods offer numerically
stable solutions to the active contour problems. By limiting and bounding the
active contour model to a small nuclear region and its immediate background, a
more stable solution is produced, which ensures that (1) overlapping compart-
ments are not merged together, (2) potential leakage in the curve evolution is
localized to a small neighborhood, and (3) an improved segmentation can be
generated as a result of localized statistics of the region bounding one nucleus.

3 Approach

Specific steps in delineation of nuclei in a mammosphere system are shown in
Figure 2. With the 2D image as an input, the colonies are first segmented by
applying the active contour model. Then, within each colony, the location of the
centroid of each nucleus is estimated through iterative radial voting. With the
estimated seeds for nuclei, each nucleus is then bounded in a voronoi tessellation,
which is further refined by active contour evolution.

Fig. 2. Steps in delineation of nuclear regions in a mammosphere structure.



3.1 Colony segmentation with the active contour model

The active contour model has been used extensively in the medical and biological
imaging communities, and many variations of it are currently supported through
ITK from Kitware, Inc. The level set formulation of the active contour model
offers a natural and numerically robust implementation of curve evolution equa-
tions within the Eulerian formulation. The ITK image library offers several 2D
and 3D implementations of curve evolution within the level set framework. The
most basic model includes a constant external motion coupled with geometric
smoothing. This model essentially behaves like a region-growing method, subject
to the continuity of evolving contours while simultaneously handling topologi-
cal changes. Another model within the ITK library, known as geodesic active
contours [5], aims to unify parametric and level set geometric models. This ap-
proach formulates the level set concept within an optimization framework. In
addition, the ITK library includes a number of level set formulations of active
contours that incorporate prior shape models, which can facilitate segmenta-
tion of known patterns. Our implementation corresponds to the Mumford-Shah
function as modeled by Chan and Vese [6] to segment objects whose boundaries
are not necessarily defined by a gradient, thus reducing the leakage experienced
by some gradient-based curve evolution functions. The deriving energy functions
are governed by forces that are computed from the interior and exterior of evolv-
ing boundaries. A brief overview follows. The energy functional F (c1, c2, C) is
defined by

F (c1, c2, C) = µ · Length(C)
+ v · Area(inside(C))
+ λ1

∫

inside(C)
|u0(x, y) − c1|

2dxdy

+ λ2

∫

outside(C)
|u0(x, y) − c2|

2dxdy

(1)

where u0 corresponds to the image, c1 and c2 are the foreground and background
intensity, and µ ≥ 0, v ≥ 0, λ1, λ2 ≥ 0 are fixed parameters. The level set
formulation of this model is given by considering C ⊂ Ω as the zero level set of a
Lipschitz function φ : Ω → R, in which Ω is a bounded open subset of R

2. Using
the Heaviside function H , and the one-dimensional Dirac measure δ0, defined by

H(z) =

{

1, if z ≥ 0
0, if z < 0

δ0(z) =
dH(z)

dz

The energy form can now be written as

Fε(c1, c2, φ) = µ
∫

δε(φ(x, y))| 5 φ(x, y)|dxdy

+ v
∫

Hε(φ(x, y))dxdy

+ λ1

∫

|u0(x, y) − c1|
2Hε(φ(x, y))dxdy

+ λ2

∫

|u0(x, y) − c2|
2(1 − Hε(φ(x, y)))dxdy.

(2)

If φ is fixed then c1 and c2 can be expressed as:

c1(φ) =

∫

Ω
u0(x, y)Hε(φ(x, y))dxdy
∫

Ω
Hε(φ(x, y))dxdy



c2(φ) =

∫

Ω
u0(x, y)(1 − Hε(φ(x, y)))dxdy
∫

Ω
(1 − Hε(φ(x, y)))dxdy

(3)

And by keeping c1 and c2 fixed, the Euler-Lagrange equation for φ can be written
as

∂φ

∂t
= δε

[

µdiv

(

5φ

| 5 φ|

)

− v − λ1(u0 − c1)
2 + λ2(u0 − c2)

2

]

(4)

In our implementation, we have used the regularization of H , introduced by [6]:

H2,ε(z) =
1

2

(

1 +
2

π
arctan

(z

ε

)

)

(5)

While in some cases thresholding may be sufficient for colony segmentation, we
have opted to use the active contour model since it is fast (about 1.8 seconds
for an image of 512-by-512 with 5 colonies), avoids ad hoc parameter setting,
and will be reused for nuclear segmentation. Examples are included in a later
section.

3.2 Detection of the nuclear organelle with iterative scalar voting

Nuclear regions are convex and often radially symmetric, as shown in Figure
1. Complexities arise as a result of nonuniform staining, overlapping nuclei,
and variations in size. The underlying theme is to model the nuclear detection
through perceptual grouping; thus making the detection more invariant to noise
and variation in size. Voting along gradient direction provides a hypothesis pro-
file for saliency, i.e. an approximate center of mass. The voting kernel is designed
in such a way that encodes for a specific saliency and refined at each iteration
step. The shape and evolution of these kernels, inferring center of mass, is shown
in Figure 3. Detection of radial symmetry is iterative, where gradient magnitude
is projected along the radial direction according to a kernel function. The kernel
function is smooth and its topography becomes more focused and dense at each
consecutive iteration, as shown in Figure 3 and the details of the algorithm can
be found in earlier papers. To illustrate the behavior of iterative voting, Figure
4 shows intermediate steps that lead toward final results for overlapping 2D ob-
jects that are generated synthetically. The voting landscape corresponds to the
spatial clustering that is initially diffuse and is subsequently refined and focused
into distinct regions. Two examples of 2D voting are shown in Figure 5, where
each nucleus in a mammosphere has been detected.

3.3 Nuclear segmentation

The voting results are used as vertices to generate a local neighborhood through
Voronoi tessellation, as shown in Figures 6a-b. This local neighborhood is then
used to constrain the nuclear segmentation within a small region. The actual
nuclear segmentation is performed with the active contour model described ear-
lier [6], and two results are shown in Figure 6c-d.



(a) (b) (c) (d) (e)

Fig. 3. Kernel topography: (a-e) Evolving kernel for the detection of radial symmetries
(shown at a fixed orientation) has a trapezoidal active area with Gaussian distribution
along both axes.

(a) (b)

(c) (d)

Fig. 4. Detection of radial symmetries for a mammosphere with multiple overlapping
nuclei: (a) original image; and (b-d) voting landscape at several intermediate steps
indicating convergence to a localized region.



(a) (b)

Fig. 5. Examples of voted nuclei from two mammospheres indicates robust performance
in the presence of variation in size and contrast.

(a) (b)

(c) (d)

Fig. 6. Steps in refined segmentation: (a-b) Voronoi tessellation of voted regions, (c-d)
refined segmentation within Voronoi regions



4 Experimental results

The proposed approach was implemented and applied to 74 images correspond-
ing to 152 colonies of three-dimensional cell culture models. On average, each
colony consisted of 16 cells, and the proposed segmentation algorithm had a
5% error in delineation due to excessive overlap between adjacent nuclei and
nonuniform staining of nuclear regions. Figure 7 shows several experimental re-
sults corresponding to noisy images, overlapping subcellular compartments, and
variation in intensities. Nuclear detection through the voting method indicates
high confidence, with only one cell to have been missed in the second image.
This is due to the fact that only a small part of the cell is visible at this focal
plane. The voting results serve as vertices to initiate Voronoi tessellation and a
more detailed segmentation of the nuclear region. In the absence of voting and
tessellation, nuclear segmentation within the colony is shown in Figure 8 for
comparative analysis. Finally, Figure 9 shows an example of the entire process
from colony delineation to nuclear segmentation.

5 Conclusion

We have shown that traditional active contours are not appropriate for segmen-
tation of the nuclear regions; however, by constraining the active contour model
to a local region, an improved solution can be realized. These local regions are
estimated based on the fact that the nuclear regions are round and an estimate
to their centers of mass can be generated through iterative spatial voting. The
voted landscape can then be used to establish a local neighborhood through
Voronoi tessellation where the active contour model delineates nuclear regions
from their immediate background.
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(a) (b) (c)

Fig. 7. Several examples of low and high quality data: (a)The voting results; (b) cor-
responding Voronoi tessellation; and (c) final segmentation through level set method.



(a) (b)

Fig. 8. Comparison of segmentation in the absence of a local neighborhood established
through Voronoi tessellation: (a) nuclear segmentation with the proposed method; and
(b) segmentation results with only level set method applied within the colony.

Fig. 9. Multi-colony detection and delineation of each nucleus within the colony.


