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Summary of Full Report 

Introduction 

The need for low-cost, high-energy density, durable, secondary batteries 

continues to rise with the demands of the electronics and automobile industries.  A room-

temperature version of the (high-temperature) ‘Zebra Cell’ may provide an interesting 

technology for portable electronics and transportation.  Sodium-based batteries have 

received attention as an alternative to the lithium-based batteries due to several factors 

including the absence of dendrite formation during sodium deposition and the abundance 

of sodium. 

This work focused on (i) the development of room-temperature ionic liquids (IL) 

for use in electrochemical devices, including batteries, (ii) development and evaluation of 

secondary sodium batteries using room-temperature ILs, and (iii) advancing the 

fundamental understanding of the electrochemical processes involving ILs and battery 

technology.  Several objectives were accomplished during this program. 

New ionic liquids have been synthesized and investigated for the purpose of 

optimizing the following properties: low-cost (simple and high yield synthetic route), 

safe, low operating temperature, low viscosity, high stability (especially to reduction), 

and excellent battery performance. In this study, non-imidazolium ionic liquids were 

investigated because of their low cost and structural versatility. Quaternary ammonium 

salts (Quats) are less harmful and easier to make than other ILs. 

The chloroaluminate ILs of the following seven Quats have been synthesized and 

investigated.   
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Figure 1 Quaternary ammonium salts (Quats): (A) Benzyltrimethylammonium chloride 
(BTMACl); (B) Benzyltriethylammonium chloride (BTEACl); (C) 
Benzyltributylammonium chloride (BTBACl); (D) Benzylethyldimethylammonium 
chloride (BEDMACl); (E) Benzyldimethylpropylammonium chloride (BDMPACl); (F) 
Benzyldimethylisopropylammonium chloride (BDMIPACl); (G) 
Benzyldiethylmethylammonium chloride (BDEMACl). 

 

Based on systematic studies with these and previous ILs, it has been shown that 

the melting points and other physical properties are highly dependent on two critical 

properties: asymmetry and molecular weight. The optimum IL needs to as asymmetric as 

possible, and low molecular weight. 

The electrochemical stability of the cation in acetonitrile has also been 

investigated.  For select cations, these results were then compared to those obtained from 

the IL.  In a neutral IL, sodium plating or IL reduction limits the negative potential.  The 

stability of the cation (and resulting IL potential window) was found to be dependent on 

the ability of the quaternary ammonium constituents to act as leaving groups. 

A plausible mechanism for the role of the ‘acid additives’, which catalytically 

enable the deposition of sodium metal from the ILs, has been found and described for the 

first time.  It has been widely known for over 12 years that sodium can be 
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electrodeposited from ILs.  Previously, there have been several guesses as to the role of 

the catalyst, however, no ‘acceptable’ mechanism has been found. In this work, we 

provide experimental evidence supporting the catalytic mechanism. Previously, reports 

have focused on the electrochemical stability of the organic cation and formation of a 

surface insulation layer. 

In this work, we show that although the neutral ILs contain sodium ions (via NaCl 

neutralization), the sodium is effectively ion-paired and not available for deposition. The 

detailed conductivity studies have shown that sodium ions do not contribute to IL 

conductivity, and the addition of sodium tetrachloroaluminate decreases the conductivity. 

The addition of trace amounts of (normally) non-ionizing catalysts dramatically improves 

the conductivity by acting as a Lewis acid toward the chloride base in the IL.  This 

understanding allowed us to identify five new molecules that can be used as ‘additives’.   

The ILs synthesized here and those made elsewhere were used in the evaluation 

of the battery half-cells.  The ILs were neutralized with a two-fold excess of NaCl to 

provide the widest potential window and to provide a supply of sodium ions for the anode 

couple (sodium metal/sodium ion).  The best coulombic efficiency with the 

benzyldimethylethylammonium chloroaluminate IL was 92.4 % at 50ºC and the lowest 

self-discharge current was 3.96 μA/cm2 at 25ºC.  This result is a substantial improvement 

over previous work.  The IL made from benzyltriethylammonium chloroaluminate also 

had a coulombic efficiency over 91%.  The self-discharge current for a sodium electrode 

in this ionic liquid was 18 μA/cm2. 

Finally, preliminary investigations of Li-Na alloys have been carried out in the IL.  

The deposition of a Li-Na alloy could prevent dendritic growth allowing for the use of a 
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metallic anode.  Such an anode could have a charge density ten times greater than that 

found in the current lithium intercalation anodes while allowing for the use of currently 

available lithium cathodes. 

A summary of the results is presented below and a detailed description is 

presented in the full report. 

 

Summary of Results 

In chapter 1, quaternary ammonium salts have been studied as ionic liquids for 

electrochemical applications, including sodium batteries.  Mixtures of 

benzyltrialkylammonium chlorides with chloroaluminate formed ionic liquids near room 

temperature.  The maximum coulombic efficiency for the reduction and re-oxidation of 

sodium ions with benzyltriethylammonium chloride ionic liquid was over 91%.  The self-

discharge current for a sodium electrode in this ionic liquid was 32.7 and 18 μA/cm2 by 

chronopotentiometry at tungsten electrodes at 6.37 and 2.55 mA/cm2, respectively.  

These are comparable to values in 1-methyl-3-propylimidazolium chloride melt.  Issues 

with coulombic efficiencies and the self-discharge currents are discussed. 

 In chapter 2, benzyl-substituted quaternary ammonium ions were used to form 

room-temperature ionic liquids with chloroaluminate ions.  Asymmetric benzyl-

substituted ammonium chlorides were mixed with AlCl3 to form acidic room-temperature 

ionic liquids.  The asymmetric ammonium structures significantly lowered the melting 

point of the ionic liquid.  It is shown that the melting point and viscosity are a function of 

the symmetry of the quaternary ammonium ion and its molecular weight.  Asymmetry 
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and low molecular weight favor lower viscosity and melting point, and higher 

conductivity. 

These liquids were neutralized with NaCl and tested as electrolytes for sodium 

batteries in chapter 3.  The neutralized ionic liquid of benzyldimethylethylammonium 

chloride has a low self-discharge current (3.96 μA/cm2) at room temperature on a 

platinum electrode substrate.  The best coulombic efficiency with this IL was 92.4 % at 

50ºC. 

 Ionic liquids are an ionically conductive medium that can provide a wide potential 

window for the study of electrochemical processes.  In chapter 4, we observed that the 

degree of ionization of the ions depends on the charge density of the ions with significant 

ion pairing possible.  Previously, it was shown that sodium ions can only be reduced to 

sodium metal if an acidic additive (e.g. SOCl2) is added to the liquid.  It is shown here 

that the additive increases the degree of dissociation of the Na+ from its counter ion in the 

liquid, making it available for electrodeposition.  The observed increase in ionic 

conductivity provided by the SOCl2 supports this proposed mechanism.  It is believed 

that the additive coordinates with chloride in the liquid, to provide greater freedom for 

the Na+ ion.  In addition, conditions were found for the reduction of sodium ions to 

sodium metal without the use of an additive. 

 In chapter 5, the electrochemical stability of ten organic cations, which can be 

used in ionic liquids (IL), was investigated as solutes in acetonitrile (ACN).  Figure 2 

shows the structures of the ten cations investigated.  The stability of three of the salts, 

BenMe2EtNCl (salt III), 1-butyl-2-methyl pyrrolidium chloride (salt VI), and its  
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Figure 2 I: Me3MeClNCl; II: 1-methyl-3-propylimidazolium chloride; III: 
benzylethyldimethylammonium chloride; IV: butylethyldimethylammonium chloride; V: 
ethyldimethylpropylammonium chloride; VI: butylmethylpyrrolidinium chloride; VII: 
butyldimethylpropylammonium chloride; VIII triethylmethylammonium chloride; IX 
tributylmethylammonium chloride; X benzyldimethylpropylammonium chloride. 
 

structural isomer, BuMe2ProNCl (salt VII) were also compared in chloroaluminate ILs.  

The chloroaluminate ILs of salts VI and VII are investigated for the first time. The NaCl 

neutralized ILs of VI and VII have melting points of 43.2 and 3.7°C, respectively.  The 

benzyl substituted cation, salt III, was more easily reduced in ACN or as the neutral, 

chloroaluminate IL, than the alkyl substituted cation, salt VII, due to the better leaving 

ability of the benzyl group.  Mass spectroscopy measurements before and after 

electrolysis on the benzyl-substituted solutions confirmed that reduction involves the loss 

of an alkyl group.  In ACN, salt VI was found to be the most difficult to reduce (1 

mA/cm2 at -2.09 V) due to its cyclic structure.  However, in the chloroaluminate IL, the 

pyrrolidinium cation was more easily reduced than salt III or its isomer, salt VII, resulting 

in an insoluble black deposit.  This is consistent with the mass spectrometry data, which 

did not show formation of low molecular weight products, as in the reduction of salts III 
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and VII.  The IL of salt VII was the most stable in the presence of sodium. Sodium ions 

could be reduced and reoxidized with a maximum coulombic efficiency of 94.1% versus 

87.2% for salt VI.  Reduction of the pyrrolidinium cation produces insoluble products, 

most likely through opening of the cyclic ring, and an inferior medium for sodium ion 

reduction compared to the benzyl and butyl-substituted cations, even though reduction of 

the cation occurs at a more negative potential in acetonitrile. 

In chapter 6, the deposition of Li-Na alloys from an ionic liquid medium has been 

demonstrated and evaluated with respect to dendrite growth, oxidation potential, and 

stability.  Dendrite-free growth was observed at all current densities (ranging from 1 

mA/cm2 to 10 mA/cm2).   The maximum coulombic efficiency for the re-oxidation of the 

Li-Na alloy was found to be 91%.  The conductivity of the ionic liquid medium 

containing the alloy salts was 364 μS/cm2 to 466 μS/cm2. 

The ability of five different compounds to facilitate reduction of sodium from a 

chloroaluminate IL was investigated in chapter 7.  PCl6
- and 18-Crown-6 act to disrupt 

the Na+ and AlCl4
- ion pairs producing reducible sodium ions.  The addition of the small 

chlorinated compounds, CH2Cl2, CDCl3 or CCl4, resulted in the efficient reduction and 

reoxidation of sodium.  It is believed that the electronegative chlorine atoms are oriented 

near the positive sodium cation, weakening its attraction to AlCl4
-.  For the five 

compounds tested, the highest coulombic efficiencies were measured after the addition of 

CDCl3 (90.5%) and CCl4 (88.2%).  The addition of CDCl3 was found to substantially 

increase the conductivity of the IL. 
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I. Introduction 

I-1. Background 

The need for low-cost, high-energy density, durable, secondary batteries 

continues to rise with the demands of the electronics and automobile industries.  Sodium-

based batteries have received attention as an alternative to the lithium-based batteries due 

to several factors.  Formation of lithium dendrites during deposition has required the use 

of a separator that lowers the coulombic efficiency.2,3  A wide separation between the 

electrodes results in high resistance and low current density.  On the other hand, sodium 

electrodeposits evenly on the surface of electrodes.  The low atomic weight of sodium 

could also lead to a system with a high-energy density.  Furthermore, sodium is an 

abundant element in nature.  

The “Zebra” Cell, a rechargeable sodium battery, has demonstrated encouraging 

results with a specific energy greater than 130 Wh/Kg.4  This secondary cell operates at 

~250ºC and uses a molten chloroaluminate inorganic salt, NaCl: aluminum chloride 

(AlCl3), as the electrolyte.  At this operating temperature, the Zebra cell contains molten 

sodium (melting point 98ºC) as the anode and a solid-state separator between liquid Na 

and the electrolyte.  Under typical operating conditions an appreciable voltage drop (ca. 

350 mV) results from the use of the separator.5  However, direct contact between sodium 

and the electrolyte results in a chemical reaction (Equation I-1.1) that produces aluminum 

and NaCl. 

 

3Na+ NaAlCl4 → Al + 4 NaCl       (I-1.1) 

 

 16



 

 The separator and high operating temperature are obstacles to making the “Zebra” 

cell practical.  To overcome these obstacles, room temperature ionic liquids could 

potentially function as the electrolyte in place of NaAlCl4 in the Zebra cell. 

Dialkylimidazolium chloride: aluminum chloride has widely been investigated for this 

purpose.  The 1-methyl-3-ethylimidazolium chloride (MEIC) forms a liquid phase when 

mixed with aluminum chloride at ambient temperature over a wide range of 

compositions.6  1-methyl-3-proplyimidazolium chloride (MPIC) and methanesulfonyl 

chloride (MSC) have demonstrated encouraging results for sodium-based batteries.7 

 In this study, we are investigating ionic liquids based on quaternary ammonium 

salts.  Previously several salts were mixed with aluminum chloride to form ionic liquids, 

including methyltriethylammonium chloride, methyltributylammonium chloride, and 

benzyltrimethylammonium chloride (BTMACl).8  The properties of these liquids, in 

particular the electrochemical stability (available electrochemical window), are similar to 

the imidazolium salts.  For the BTMACl: AlCl3 ionic liquid a coulombic efficiency for 

the sodium couple of greater than 90% was achieved.  However, the melting point for this 

liquid is 56°C leading to an operating temperature approximately 40°C above room 

temperature.  

 

I-2. Motivation 

The purpose of our study is to identify ionic liquids that give a low operating 

temperature, low viscosity, high stability (especially to reduction), and high battery 

performance.  In this study, non-imidazolium ionic liquids are being investigated because 
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of their low cost and versatility.  Quaternary ammonium salts (Quats) are less harmful 

and easier to make than alkylimidazolium chloride or MSC.  Also, there are numerous 

ammonium salts that can be made by modifying alkyl branches. 

Systematic modification of the alkyl branches can be useful in understanding a 

variety of the ionic liquid properties.  The alkyl groups present determine the melting 

point of the ionic liquid.  The stability and viscosity of the ionic liquid is impacted by the 

size and electron releasing nature of the pendant groups.  These properties impact the 

stability of sodium in the melt and the rate at which sodium can be plated and removed. 

To reversibly produce sodium in both imidazolium and Quat salts an additive is 

necessary, such as SOCl2 or HCl.9,10  Understanding the role these additives play in 

catalyzing the reduction of sodium could lead to new additives and modifications of the 

Quat that result in improved electrolyte performance.   

Utilizing the Quat-based ionic liquids several electrode materials (gold, platinum, 

tungsten) are being investigated to determine the best electrode material.  In order to 

study the stability of sodium in the melt, self-discharge tests are carried out for the 

materials that show reversible sodium deposition. 

 

II. Technical approach 

The half-cell reactions and overall cell reaction for sodium batteries are as 

follows. 
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Charge  Discharged 

Anode: 2Na  2Na+  +  2e-        (II.1) 

Cathode: MCl2  +  2e-  M  +  2Cl-       (II.2) 

Overall: MCl2  +  2Na  2NaCl  +  M      (II.3) 

 

Where M could be a transition metal, such as Cu,11 Fe,1,11 and Ni.12  These 

cathodes gave cell potentials from 2.3 V to 3.3 V in a MEIC: AlCl3 melt.  It has been 

shown that the substrate for the anode reaction (Na/Na+) can play an important role 

because the sodium must nucleate on the surface (desired reaction) and the melt can be 

electro-decomposed (undesired reaction).  In this study, Pt and W have primarily been 

used as electrodes. 

 

II-1. Measurements 

Six methods are being used to evaluate the ionic liquids.  These are melting point, 

viscosity, density, conductivity versus temperature, coulombic efficiency, and Na/Na+ 

(anode) self-discharge current.  Ionic liquids with melting points below room temperature 

are desired due to the large range of possible battery operating temperatures.  Both 

viscosity and temperature are measured at room temperature utilizing a calibrated 

viscosimeter and Gay-Lussac bottles, respectively.  Conductivity is a function of 

temperature and inversely related to the viscosity of the melt.  Coulombic efficiency of 

the Na/Na+ couple is measured by chronopotentiometry (CE).  The coulombic efficiency 

is the ratio of oxidation charge to reduction charge.  Therefore, the coulombic efficiency 
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shows the percentage of Na, which can be utilized after it has been electroplated on a 

substrate. 

 

Coulombic efficiency of (Na/Na+) = (oxidation charge / reduction charge)  (II-1.1) 

 

The self-discharge current is useful in quantifying the stability of plated sodium.  

An open circuit period between plating and stripping of Na is used to evaluate sodium in 

contact with the ionic liquid.  The amount of charge recovered is measured as a function 

of open circuit time and expressed as an equivalent current density.  Self-discharge 

current (A/cm2) is obtained from the slope of the charge versus open circuit time curve.  

 

II-2. Quaternary Ammonium Chloride Salts (Quat+Cl-) 

Equations II-2.1 and II-2.2 show the acid-base reactions between the quaternary 

ammonium chloride salts and AlCl3.  The Lewis acid, AlCl3, forms AlCl4
− (Lewis 

neutral) and Al2Cl7
− (Lewis acid) when mixed with the Quat, as shown in Equation II-2.1 

and II-2.2.  Neutralization of the Al2Cl7
− occurs by reacting Al2Cl7

− with a Lewis base, 

Cl- from NaCl or Quat+ Cl-, to produce neutral AlCl4
− ions (Equation II-2.3).13 

 

Quat+Cl-  + AlCl3 → Quat+ + AlCl4
-      (II-2.1) 

AlCl4
- + AlCl3 → Al2Cl7

-       (II-2.2) 

Basic melts  Neutral melts  Acidic melts: 

AlCl4
- + Cl-         AlCl4

-       AlCl4
- + Al2Cl7

-    (II-2.3) 
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The acidity of the melt is defined using the mole fraction of AlCl3, N = 

nAlCl3/(nAlCl3 + mQuat).  For example, neutral melts containing equal moles of AlCl3 

and Quat (N = 0.5) contain only the AlCl4
− ions.  Acidic melts contain an excess of 

AlCl3, N > 0.5, and form AlCl4
− and Al2Cl7

− anions.  Melts containing a excess of Quat, 

N < 0.5, are basic and contain AlCl4
− and Cl− anions. 

Neutral melts have the widest electrochemical window (~ 4.5 V).  The Al2Cl7
- 

anion is easily reduced to Al in acidic melts, and Cl− is easily oxidized to chlorine in 

basic melts.  Alkali chlorides can be used to buffer acidic melts and provide neutral 

conditions.13  Excess NaCl converts Al2Cl7
− to AlCl4

− while also providing the sodium 

source for the battery.  Excess NaCl buffers the melt be providing a source of chloride. 

Quat+ is believed not to be involved in the electrochemical reaction.  It does however 

limit the potential window by being reduced near the Na/Na+ redox couple.  The Quat has 

a crucial role in determining the melting point of ionic liquids.  Its interaction with 

aluminum chloride anions (AlCl4
− or Al2Cl7

−) is the main ionic interaction that affects the 

melting point. 

Many short-chain alkyl-chain salts do not have low operating temperatures.  For 

long alkyl-chain Quats, where the number of carbons > 20, the Quats are liquids, but very 

viscous.  Having a moderate operating condition will reduce the overall energy necessary 

to run the battery and therefore lead to higher overall system efficiencies.  In this report, 

we discuss the properties and structures of Quats for room temperature operation. 

Figure II-2.1 shows several Quats that have been investigated in this study.  These 

Quats were selected because of their unique aliphatic alkyl chains.  The physical 

properties of the melts formed using these Quats will direct the synthesis of new Quats. 
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Figure II-2.1. Quaternary ammonium salts (Quats): (A) Benzyltrimethylammonium 
chloride (BTMACl); (B) Benzyltriethylammonium chloride (BTEACl); (C) 
Benzyltributylammonium chloride (BTBACl); (D) Benzylethyldimethylammonium 
chloride (BEDMACl); (E) Benzyldimethylpropylammonium chloride (BDMPACl); (F) 
Benzyldimethylisopropylammonium chloride (BDMIPACl); (G) 
Benzyldiethylmethylammonium chloride (BDEMACl). 

 
 

Four of the Quats (BEDMACl, BDMPACl, BDMIPACl, and BDEMACl) desired 

for investigation could not be purchased.  Therefore, they must be made in the lab by way 

of a substitution nucleophilic bimolecular (SN2).  An example of this type of reaction can 

be seen below in Figure II-2.2 with the making of BEDMACl.  In this reaction 

ethyldimethlyamine is reacted with benzylchloride dissolved in Acetonitrile. 

Cl

+ N N

Cl

 

Figure II-2.2. Reaction of an amine and alkyl-chloride to make a Quat. 
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II-3. Additives 

It is necessary to add HCl (g) or SOCl2 to the neutral ionic liquid to activate the 

Na/Na+ redox process.9  Without an additive, Na+ reduction has not been observed 

previously.  Identifying the role of the additives is another important aspect in selecting 

and understanding the quaternary ammonium salts.  In this study we propose the role that 

the additive plays in catalyzing the reduction of sodium metal in the Quat: AlCl3 melts. 

 

III. Results and Discussion 

This work focused on (i) the development of room-temperature ionic liquids (IL) 

for use in electrochemical devices, including batteries, (ii) development and evaluation of 

secondary sodium batteries using room-temperature ILs, and (iii) advancing the 

fundamental understanding of the electrochemical processes involving ILs and battery 

technology.  The following 7 chapters discuss in detail the results obtained throughout the 

course of this study. 

 

III-1. Electrochemical Investigation of Novel Electrolytes for Ambient 

Temperature Sodium Batteries 

 
Chapter 1 shows the early work with melts formed using the commercially 

available Quats.  The melts formed each had melting points higher than room 

temperature.  The electrochemical properties of the melts as battery electrolytes are 

discussed.  From this work, we identified how the Quat might be modified in order to 

lower the melting point of the resulting liquid. 
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Results 

Figure III-1.1 shows the structure of the Quats used in this study.  These Quats 

were selected because of their unique aliphatic alkyl chains (e.g. short chain, long chain, 

a benzyl (aromatic resonance)).  Acidic melts were formed and later neutralized with 

NaCl to form the buffered, neutral melt.  Acidic melts higher than N = 0.6 were difficult 

to buffer.  It is not clear why melts with high acidity (N > 0.6) are more difficult to 

neutralize than those closer to N = 0.5.  Thus, N = 0.55 was chosen as a moderate 

composition used as the starting composition for the melting point studies.  The melting 

points of the ionic liquids formed from the Quats in Fig. III-1.1 and AlCl3 are shown in 

Table III-1.1. 

The positive charge on the ammonium ion is delocalized by alkyl substituents. 

Longer alkyl chains release more electron density to the positive center than shorter alkyl 

chains.  However, the charge delocalizing ability of the benzyl group is greater than the 

alkyl branches.  Thus, BTMA+ has weaker ionic strength with chloride ions compared to 

the MTEACl and MTBACl in Table III-1.1.  Even though the BTMACl:AlCl3 melting 

point is above room temperature, the melting point of the BTMACl melt is lower than the 

melting point of Na (98°C) making it potentially interesting for battery usage.  In an 

attempt to lower the melting point, longer alkyl chains were used on the Quat to increase 

the charge delocalization. 

The melting point of benzyltriethylammonium chloride (BTEACl) was greater 

than benzyltributylammonium chloride (BTBACl).  However, the melting point of the 

BTEACl melt is higher than that of the BTMACl melt due to charge delocalization.  This 

result implies that there are other contributions to the melting point, such as, the 
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symmetry of the ions.14  A higher degree of symmetry increases the melting points of 

salts because of the ease of crystallization.  Also, when compared to the ethyl and butyl 

groups found in MTEACl and MTBACl, the benzyl group is more effective in disrupting 

symmetry. 

 

 (A)    (B)    (C) 

 

(D)                                                          (E) 

Figure III-1.1 Quaternary ammonium salts (Quats): (A) methyltriethylammonium 
chloride, (MTEACl); (B) methyltributylammonium chloride, (MTBACl); (C) BTMACl; 
(D) BTEACl; (E) BTBACl. 
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 MTEACl MTBACl BTMACl BTEACl BTBACl 

Melting Point (°C) 

of Acidic Melt 
278.2 105.2 55.6 66.4 40.6 

Melting Point (°C) 

of Neutralized Melt 
-- -- 65.3 66.0 42.7 

Table III-1.1 Melting point of ionic liquids (55 mole % of AlCl3 and 45 mole % Quat). 
 

The addition of sodium chloride to neutralize the three acidic melts in Table III-

1.1, does not greatly impact the melting points.  In this case the chloride ions from NaCl 

convert Al2Cl7
- to AlCl4

-.  The change in concentration by the amount of sodium chloride 

and change caused by it was not great enough to show an effect on the melting points. 

However, we are conducting further analysis and measurements about the nature of ions 

in ionic liquids. 

Figure III-1.2 shows the temperature dependence of the conductivity for the 

BTMACl:AlCl3 ionic liquid.  For operating temperatures of 65°C to 82°C, the values 

range from 2.5 to 5 mS/cm, which is lower than that of 1-methyl-3-ethylimidazolium 

chloride (35 mS/cm at room temperature).9  The conductivity increases with the acidity of 

the melts.  As shown in Equation II-2.3, the fraction of Al2Cl7
-
 ions also increases with 

the acidity of the melts.  The higher conductivity is attributed to a reduction in the 

viscosity of the melt and the increased percentage of Al2Cl7
-
 ions and possibly a lower 

degree of ion pairing between the Al2Cl7
-
and Quat+ ions as compared to the AlCl4

-
 and 

Quat+ ions.  Melting points of 55.6 and 57.7°C were measured for the N= 0.55 and N= 

0.53 melts, respectively.  These results are consistent with previously reported findings.6 
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Figure III-1.2 Conductivity vs. temperature for three BTMACl:AlCl3 melts.  

 

Figure III-1.3 shows a cyclic voltammogram (CV) for BTMACl:AlCl3 (N = 0.55) 

neutralized with excess NaCl and a trace amount of SOCl2, at 71°C on a tungsten 

electrode.  The coulombic efficiency of 86% will vary depending on the switching 

potentials and the measurement conditions.  The shape of the reduction and oxidation 

peak are very sharp, indicating a rapid redox process. The sharp rise in the reduction 

current and hysteresis loop shows that the nucleation of the first layers of sodium requires 

a small overpotential related to the nucleation and crystallization of the sodium metal on 

a non-sodium surface.  This current-voltage shape is typical of the sodium couple in 

dialkylimidazolium ionic liquids. Figure III-1.3 shows a wide potential window with low 

background current, which indicates the presence of few impurities.  Therefore, further 

purification of the starting materials may not result in appreciable improvements in the 

coulombic efficiency. 
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Figure III-1.3 CV of the BTMACl:AlCl3 melt (N = 0.55) neutralized with excess NaCl 
and a trace of SOCl2 at 71°C on a tungsten electrode. 

 
 
The efficiency of reduction and re-oxidation can also be measured by utilizing 

chronoamperometry (CA).  Using this technique the reduction of sodium is initiated by 

applying the appropriate voltage for a fixed period of time.  The voltage is then switched 

to that corresponding to the re-oxidation of sodium for a set period of time.  The 

efficiency can be found by comparing the areas under each of the curves (which 

corresponds to the total charge deposited and removed).  In Figure III-1.4, the discharge 

time is 2 seconds longer than the charge time.  The average current for the reduction 

process is higher than that for the re-oxidation process, indicating a slower oxidation rate 

(when compared to the reduction rate).  By modifying the switching potential and the 

time, we can get different efficiencies.  The efficiency for Figure III-1.4 is 87%.  
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Figure III-1.4 Chronoamperometry of the BTMACl:AlCl3 melt (N = 0.55) neutralized 
with excess NaCl on a W electrode at 65°C with SOCl2 added. 

 

 

A critical question in the study of ionic liquids is the optimum current for 

reduction and oxidation of sodium.  This value is dependent on the melt composition, the 

electrode utilized and the operating temperature.  Table III-1.2 summarizes the resulting 

coulombic efficiency when the current density (for a CE test) and reduction/re-oxidation 

time is varied.  From this table it can be seen that the maximum efficiency can be 

achieved at currents of 5.7 to 6.3 mA/cm2, with very low efficiencies when the current 

density approaches low (1.3 mA/cm2) or high (10 mA/cm2) values. 
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Current Density 

(mA/cm2) 
1.3 2.5 3.8 4.4 4.4 5.1 5.1 5.7 6.3 6.3 6.3 7.6 10 

Charge/Discharge 

Time (sec) 
10 10 60 50 60 30 60 60 60 80 100 60 10 

Efficiency (%) 31 52 85 86 88 82 88 89 89 90 88 84 16 

Table III-1.2 Coulombic efficiencies of a buffered BTMACl:AlCl3 melt (N = 0.55) with 
trace SOCl2 at a tungsten electrode at 71°C. 

 

Figures III-1.5 and III-1.6 illustrate why low efficiencies were obtained with the 

high and low currents.  Figures III-1.5A and III-1.5B are examples of low and high 

current densities, respectively.  Fig. III-1.5 shows the reduction current with time for 

sodium plating.  Though the background current is low, there are species present that can 

be reduced more easily than the Na+ ions in the melt.  In Panel A the current density (0.63 

mA/cm2) is low enough that it takes a significant amount of time (4 out of 10 seconds) 

and charge to reduce these species before the sodium ions can be reduced at 

approximately –2.4 V.  In Panel B, the time prior to sodium deposition was negligible 

due to the high current density (10 mA/cm2).  However, the current density exceeds the 

maximum value for sodium ion reduction resulting in the reduction of some other 

species, probably Quat+ (and a slight shift of the potential to more negative values) after 

~3 seconds.  The CE curves for the optimum case are shown in Figure III-1.6.  In Panel A 

the current was high enough (6.3 mA/cm2) that the voltage for the reduction of sodium 

ions rapidly reached –2.4 V, but still low enough that the voltage remained relatively 

constant for the entire deposition process.  Following the reduction of sodium, the re-

oxidation portion of the process is carried out at the same current (6.3 mA/cm2) and is 
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shown in Panel B.  During the re-oxidation, the potential remained fixed at –2.0 V until 

the rapid increase near 70 sec.  The plateau at 2.3 V represents Cl2 gas evolution.  The 

efficiency for the process shown in Figure III-1.6 is 90%. 
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Figure III-1.5 Chronopotentiometry of a buffered BTMACl:AlCl3 melt (N = 0.55) with 
trace SOCl2 added on a W electrode at 71°C. The oxidation currents, not shown here, 
were applied after the reduction measurements.  
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Figure III-1.6 Chronopotentiometry on a W electrode at 71°C. The buffered 
BTMACl:AlCl3 melt (N = 0.55) has SOCl2 added. The current density was 6.3 mA/cm2. 
 
 

To quantify the parasitic reactions on the plated sodium in the melt, the self-

discharge current, Iself-discharge, was calculated by measuring the efficiency as a function of 

the open circuit time.  Using CE the self-discharge current was measured at a tungsten 

electrode with reduction and oxidation current densities of 6.3 mA/cm2 for 100 seconds 

and an operating temperature of 71°C.  Under these conditions, with no open circuit time, 

the average efficiency was 88.8%.  Figure III-1.7 shows the self-discharge current using a 
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linear-fit of the data points for the neutralized BTMACl:AlCl3 (N = 0.55) melt with 

SOCl2 added.  The self-discharge current was 76.6 μA/cm2, which is higher than that of 

the 1-methyl-3-propylimidazolium chloride melt (22 μA/cm2).10  It suggests that the 

parasitic reactions in the BTMACl melt are more active than those in the MPIC melt.  

The higher operating temperature of the BTMACl melt could account for the increase in 

the activity of the parasitic reactions. 
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Figure III-1.7 Charge density vs. open circuit time on a W electrode at 71°C in a 
buffered BTMACl:AlCl3 melt (N = 0.55) with SOCl2 added. 
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The most likely candidate to scavenge electrons from the plated sodium is the 

Quat+ ion.  The reduction potential of the Quat+ depends on the electron withdrawing (or 

releasing) nature of the constituents groups.  As discussed earlier, the ionic strength is 

related to the ability of the constituent groups to delocalize the charge on the nitrogen.  In 

this regard, the aromatic ring of MPIC has a higher level of positive ion delocalization 

than the benzyl and methyl groups in the BTMACl melt resulting in the lower self-

discharge current for MPIC.  The addition of more electron releasing groups on the cation 

should help in reducing the self-discharge current.   

The self-discharge tests were performed using a buffered BTEACl:AlCl3 (N = 

0.55) melt.  Utilizing the CE test procedure outlined previously, an average baseline 

efficiency of 91.0% was determined using a current density of 6.37 mA/cm2 on a 

tungsten electrode at 82°C.  Under these conditions the self-discharge current was 32.7 

μA/cm2, which is approximately half that measured for the BTMACl melt.  Ethyl groups 

release more electron density on the positive center than methyl groups.  This result is 

very encouraging since the operating temperature (82°C) for the BTEACl tests was 

higher than that used for the BTMACl tests (71°C), which should result in more active 

parasitic reactions for the BTEACl case.  

To see if the thickness of the sodium deposit affects the self-discharge current, 

self-discharge tests were carried out using the same conditions for the BTEACl melt but a 

lower current density (2.55 mA/cm2).  With these conditions, the average baseline 

efficiency was 92.0% and the self-discharge current was 18.0 μA/cm2.  The decrease in 

the self-discharge current with a lower current density may be due to the deposit of a 

thinner film.  We need further investigations to prove this issue. 
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While the results for the BTMACl melt and the BTEACl melt were encouraging, 

the plating of sodium in a BTBACl melt was poor.  Both platinum and gold electrodes 

showed reduction/re-oxidation cycle efficiencies of less than ~20%.  The efficiency on a 

tungsten electrode was the highest.  Efficiencies for the CV tests ran at 100 mV/sec and 

74°C varied from 38 to 59%.  The maximum efficiency (75.3%) was achieved using 

chronopotentiometry by applying a current density of 2.55 mA/cm2 at 74°C.  Due to the 

low efficiency the self-discharge current was not measured.  The long butyl chains 

increase the viscosity of the melt, which is believed to be, at least in part, responsible for 

the low efficiencies. 

 

Discussion 

In this paper, we discuss the properties and structures of non-imidazole based 

quaternary ammonium salts for ionic liquids.  The ultimate goal of this work is to develop 

a room temperature ionic liquid for use in sodium batteries.  Having a moderate operating 

condition will reduce the overall energy necessary to run the battery and therefore lead to 

higher overall system efficiencies.  Due to the size of the benzyl group, when the Quat 

pairs with chloroaluminate, the viscosity is higher than desired.  The extreme case is the 

BTBACl melt where the long alkyl chains lead to a liquid with a viscosity that is high 

enough to prevent the efficient reduction and re-oxidation of sodium.  In contrast, both 

BTMACl and BTEACl form ionic liquids near room temperature (70 to 85°C) that 

support the efficient plating and stripping of sodium.  The improved performance of the 

BTEACl melt when compared with the BTMACl melt is attributed to the increased 

electron releasing ability of the ethyl groups over the methyl groups. 
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In this study, we investigated the modification of the cation and its effect on 

melting points.  However, modifying the anion can also impact the melting point of an 

ionic liquid.  In other studies, larger, asymmetric anions have been shown to lower the 

melting points of ionic liquids.15  In order to achieve a room temperature ionic liquid, the 

symmetry of both the cation and the anion must be reduced.  Though effective in 

lowering the melting point, it may become necessary to substitute the benzyl group with 

alternative alkyl or aromatic groups to achieve our ultimate goals.  Regardless, the data 

collected using the melts discussed in this report will be useful in determining the 

structures of the salts to be synthesized and examined in future studies. 

 
 
Conclusion 

Benzyl(trialkyl)ammonium chlorides were found to be good quaternary 

ammonium chlorides to make ionic liquids with chloroaluminate at slightly above room  

temperatures (70 to 85°C).  The benzyl ring serves two functions: the aromatic resonance 

distributes the positive charge around the Quat+, while also disrupting the symmetry of 

the Quat+.  These effects both contribute to the melting points of the melts.  As compared 

with the BTMACl melt, the BTEACl melt had better reduction/re-oxidation efficiencies 

and a lower self-discharge current.  The longer alkyl groups (ethyl groups) release more 

electron density toward the positive center than the shorter ones (methyl groups). 
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III-2. Properties of Benzyl-substituted Quaternary Ammonium Ionic Liquids 

Chapter 2 summarizes the synthesis of new room temperature ionic liquids.  

These ionic liquids show improved physical properties over those investigated in Chapter 

1.  The physical properties, density, conductivity, and viscosity, are presented. 

Results and Discussion 

Imidazolium ions are known to form ionic liquids (ILs) with chloroaluminate 

ions.  They have been used as the electrolyte for electroplatings15-18 and energy 

conversion devices.9,19  Also, many fundamental studies have been performed with 

imimdazolium-based Ils.6,20  The imidazolium ion is useful in forming ionic liquids 

because it has moderate size giving the IL adequate conductivity, modest viscosity, and 

high solubility for other species.  Recently, a variety of quaternary ammonium based ILs 

have been reported.14,21  Quaternary ammonium salts (Quats) are attractive for use in ILs 

because they are easy to synthesize, relatively safe, and can have very low molecular 

weights, possibly leading to lower viscosity and higher conductivity.   

In this work, a new series of quaternary ammonium chloride salts are introduced 

as the cationic part of room temperature ILs.  Figure III-2.1 shows a series of Quats 

investigated in this study.  They are composed of a benzyl group, and three alkyl groups 

(methyl, ethyl, and/ or propyl groups).  The melting point and conductivity were 

investigated as a function of the asymmetry of the cation.  The Quats were mixed with 

AlCl3 in the ratio of 55 mole % AlCl3 and 45 mole % Quat, N=0.55.  (N represents the 

mole fraction of acid in the melt.)  The Lewis acid, AlCl3, forms AlCl4
− (Lewis neutral) 

and Al2Cl7
−(Lewis acid) when mixed with the quaternary ammonium chloride, as shown 

in Equation III-2.1 and III-2.2.  Neutralization of the Al2Cl7
− occurs by reacting the 
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Al2Cl7
− with a Lewis base (e.g. Cl−, such as from NaCl13), to produce neutral AlCl4

− ions 

(Equation 3).  

 

Quat+Cl-  + AlCl3 → Quat+ + AlCl4
−     (III-2.1) 

AlCl4
− + AlCl3 → Al2Cl7

−      (III-2.2) 

Al2Cl7
− + NaCl → NaAlCl4 + AlCl4

−                (III-2.3)  

 

Blomgren et al. reported that 67 mole % AlCl3 (acidic melts) with Quats were usable for 

aluminum plating.22 

 

 

N
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Cl
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Figure III-2.1 Quats with a benzyl substituent. Quat A: BEDMACl; Quat B: BDMPACl; 
Quat C: BDMIPACl; Quat D: BDEMACl. 
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The conductivity (κ), density (ρ), melting point (MP), and viscosity (η) of the ILs 

at N=0.55 are shown in Table III-2.1 for acidic (55 mole % AlCl3) melts.  Three of the 

Quats shown in Fig.III-2.1 are structural isomers, and the molecular weight of the non-

isomer (Fig III-2.1A) is close to the others.  The density for each acidic IL is nearly the 

same.  However, the viscosity and conductivity of the Quats are quite different.  It 

appears that the packing density around the nitrogen is important.  For example, the 

isopropyl substituent on Quat C is more compact than the n-propyl on Quat B leading to a 

higher viscosity for Quat C.  

 
Quat η (cP) at 27°C ρ (g/ml) at 27°C  κ (mS/cm) at 

27°C 
Tg(°C) m.p. (°C) 

A 278 1.26 0.716 -67.9 13.4 
B 364 1.25 0.570 -63.1 - 
C 735 1.24 0.333 -57.9 - 
D 771 1.25 0.343 -64.1 - 

Table III-2.1 Property from acidic RTILs composed of 55 mole % AlCl3 + 45 mole % 
Quat. Quat A: BDMEACl, Quat B: BDMPACl, Quat C: BDMIPACl, Quat D: 
BDEMACl. 

 

Previously, we reported the MPs of several benzyltrialkylammonium 

chloroaluninates.23  MPs of ILs with benzyltrimethylammonium chloride (BTMACl) and 

benzyltriethylammonium chloride (BTEACl) were 55.6°C and 66.4°C, respectively. 

Figure III-2.2 compares the structures of Quats and their MPs.  The three Quats in Figure 

III-2.2 have similar structure and molecular weights.  However, the asymmetric nature of 

benzyldimethylethylammoniuim chloride (BDMEACl) (mixture of the methyl and ethyl 

groups from the other two) has a dramatic effect on its melting point compared to 

BTMACl and BTEACl.  It is believed that the higher symmetry of the Quat permits 

easier crystallization resulting in a higher MP.  There are two phase transitions for the 

BDMEACl’s IL.  The transition at -67.9°C is the glass transition point and the secondary 
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transition at 13.4°C is the MP of the IL.  Quats B, C, D in Figure III-2.1 do not have MPs 

but glass transition points.  Figure III-2.3 shows the transitions for two of the ILs.  The IL 

composed of Quat A with AlCl3 has a glass transition and a melting point, however the 

Quat C melt has a glass transition only.  Sun et. al. reported a similar DSC thermogram 

for an ionic liquid.21 

N

Cl

N

Cl

N

Cl

BTMACl, 55.6oC BTEACl, 66.4oC

BDMEACl, 13.4oC  
 
Figure III-2.2 Structural comparison of Quats and their MPs. Quats are: BTMACl, 
BTEACl and BDMEACl. 
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Figure III-2.3 DSC curves for two acidic melts. The curve shows glass transition (Tg), 
crystallization (Tc), and melting point (Tm). 
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 The conductivity of the neutralized melts (excess NaCl added) is lower and the 

MPs are higher than those of acidic ILs.  Acidic melts are composed of QuatAlCl4, and 

QuatAl2Cl7.  The neutralization reaction converts the melts into QuatAlCl4 and NaAlCl4. 

Due to the smaller radius and higher charge density of the sodium ion, the NaAlCl4 in 

neutral ILs has higher ionic strength than the QuatAl2Cl7 and QuatAlCl4 in the acidic 

melts.  The higher ionic strength causes lower ionization (more ion paring) resulting in a 

higher MP and lower conductivity for the neutral ILs.24 

 Table III-2.2 shows the properties for the neutral melts (N=0.50).  The neutral 

melts were formed by adding a NaCl to the N= 0.55 melts.  A two-fold excess of NaCl 

was added to each melt to ensure neutrality.  The viscosity was not measured because of 

the undissolved salt.25  The glass transition point occurred at higher temperature 

compared to their acidic counterparts.  Also, Quat B and C had MPs even though none 

were observed in the acidic melts.  The second phase-transition points observed in the 

neutral melts with Quats B and D prohibit the electrochemical measurements at low 

temperature.  

 

Quat κ ( mS/cm) at 27°C Tg(°C) m.p. (°C) 
A 0.324 -56.1 - 
B 0.216 -57.1 33.3 
C 0.125 -45.9 - 
D 0.160 -61.4  -9.57 

Table III-2.2 Property from neutral RTILs. Acidic melts in Table 1 were neutralized 
with two fold excess of NaCl. Quat A: BDMEACl, Quat B: BDMPACl, Quat C: 
BDMIPACl, Quat D: BDEMACl. 
 

Neutral melts formed with Quat A have a wide electrochemical potential window, 

in excess 4 V as shown in Figure III-2.4.  The acidic melt has a relatively narrow 

potential window because the Al2Cl7
- ion can be reduced near 0 V.26  Figure III-2.4 
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shows current-potential scans at Pt, Au, and tungsten (W) electrodes in the neutral ILs. 

Chloride ion is oxidized at about 2.0 V.26  We believe that the reduction current near –2.0 

V is from the reduction of the Quat+ ion.  The current density at Pt is the highest, 

probably, due to its catalytic activity and lack of a native oxide.  The electrochemical 

properties of the neutral melts are currently under investigation.  The availability of low 

viscosity, stable, room temperature ILs could enable a variety of electrochemical energy 

conversion and storage devices.  
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Figure III-2.4 Cyclic voltammetry of the neutral Quat A ionic liquid. Working electrodes 
are platinum, gold and tungsten electrodes, 1 mm diameter discs. The scan rate was 100 
mV/sec. 
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III-3. Electrochemical Investigation of Benzyl-substituted Quaternary 

Ammonium Ionic Liquids 

Chapter 3 shows the electrochemical performance of the new ionic liquids 

demonstrated in Chapter 2.  Coulombic efficiencies and self-discharge currents for the 

liquids are presented as a function of temperature and electrode materials. 

Results and Discussion 

Figure III-3.1 shows a series of Quats investigated in this study.  They are 

composed of a benzyl group, and three alkyl groups (methyl, ethyl, and/ or propyl 

groups).  Acidic melts (N = 0.55) with these Quats formed room temperature ionic 

liquids.  Asymmetric structure of the Quats lowered the melting points of the melts. 

Properties of the melts were discussed elsewhere.24  An acidic melt at a higher acidity 

(N=0.67) reported were applicable for aluminum plating.22 

 

N

Cl

N

Cl

N

Cl

N

Cl

(A) (B)

(C) (D)  

Figure III-3.1 Quats with a benzyl substituent. Quat A: BEDMACl; Quat B: BDMPACl; 
Quat C: BDMIPACl; Quat D: BDEMACl. 
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Figure III-3.2 shows the conductivity vs. temperature with the acidic melts (N = 

0.55).  Quats B, C, D are structural isomers.  Quat A has lower molecular weight (1 CH2 

less) than others.  The melts with Quat A has a clearly higher conductivity than the others 

because it is less viscous than the others.  Melts with Quat C and D are much viscous 

than A and B, because the packing density around the nitrogen is denser for Quat C and 

D.  Figure III-3.3 is the conductivity vs. temperature with neutral melt.  Figure III-3.3 

shows that the structural isomers behave similarly in conductivity as temperature 

increases.  The conductivity difference between the melt of Quat and others increased as 

temperature increased.  It means that the mobility/temperature is higher with smaller ions 

than the bigger ions. 
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Figure III-3.2 Conductivity vs. temperature with the acidic melts (N= 0.55). 

 

Electrochemical properties for the sodium battery were measured with the 

neutralized melt from the acidic melt (N = 0.55).  The chronopotentiomety was 

performed for the coulombic efficiency and the self-discharge current measurements. 
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Figure III-3.3 Conductivity vs. temperature with the neutal melts. 

 

 

Table III-3.1 is the comparison of the two electrodes in the same melt at the same 

temperatures.  The current density was the optimum current density where the maximum 

efficiency was obtained under the given condition.  Therefore, the current density for the 

measurements was not identical for the electrodes.  At the same temperature, the 

efficiency and the self-discharge current for the two electrodes were also comparable. 

The thickness of the sodium deposit is thick enough to prohibit the two electrodes 

showing the nature of each metal substrate.  Temperature rise gives higher efficiency, but 

worse self-discharge currents.  The better mobility at the higher temperature caused 

higher efficiencies.  However, the higher temperature also expedites unwanted reaction 

for the self-discharge current.  
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Temperature Electrode Current Density 

, mA/cm2

Coulombic 

efficiency, % 

Self-discharge 

current, μA/cm2

Pt 0.68 87.5 3.96 25ºC 

W 1.02 88.5 5.25 

Pt 4.09 92.4 15.6 50ºC 

W 5.09 92.0 15.6 

Table III-3.1. Comparison between Pt and W electrodes for coulombic efficiency and 
self-discharge current. The measurements were performed by chronopotentiometry for 
100 seconds. The melt is composed of 45 mole % BEDMACl and 55 mole % AlCl3. It is 
neutralized with NaCl and SOCl2 is added. 

 

Table III-3.2 shows the comparison of electrochemical properties of sodium 

plating with melts.  Quat B and C have higher viscosity that Quat A.  Therefore, the melts 

of Quat B and C need higher than room temperature to compare their properties with the 

melt Quat A.  Quat D was too viscous to obtain electrochemical data for any condition. It 

produced no electrochemical data but very high noise.  The melt of Quat A shows better 

performance than the melt of Quat C in both the efficiency and the self-discharge current. 

The melt of Quat A has better efficiency only than the melt of Quat B.  High viscosity of 

the Quat B melt might cause the low efficiency and the low self-discharge current.  We 

could observe low efficiency and low self-discharge current at the high viscosity (low 

temperature, 25ºC) in Table III-3.1.  The self-discharge current value from the IL 

composed of MPIC10 gave 22 μA/cm2.  MSC7 based IL showed 3 μA/cm2.  The IL of 

Quat A has comparable values of self-discharge currents at room temperature. 
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Temperature Quat Current Density 

, mA/cm2

Coulombic 

efficiency, % 

Self-discharge 

current, μA/cm2

A 4.09 92.4 15.6 50ºC 

C 1.98 91.2 28.7 

A 4.09 91.5 52.0 71ºC 

B 3.40 81.7 36.4 

Table III-3.2 Self-discharge current vs. Quats. Chronopotentiometry measurements were 
performed for 100 sec with Quat A melts. The charge was matched for all melts by 
adjusting time, because each melt has different optimum current density. 
 

 
Conclusion 

Benzylethyldimethylammonium chloroaluminate has a coulombic efficiency and 

self-discharge current comparable to the MPIC and the MSC based sodium battery 

electrolytes.  The substrate materials does not affect the efficiency and the self-discharge 

current as long as they are inert in the system. 

 

III-4. The Role of Additives In the Electroreduction of Sodium Ions in 

Chloroaluminate-based Ionic Liquids 

In Chapter 4, we discuss how the additive catalyzes the plating of sodium metal in 

the melts.  We approach the problem by measuring the conductivities of different acidity 

melts, and analyzing the ionic interaction with and without the additive. 
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Results 

Acidic mixtures were prepared by mixing excess aluminum chloride with the 

Quat.  Varying the mole fraction of AlCl3 changed the acidity of the ionic liquid by 

altering the mole fraction of Al2Cl7
− and AlCl4

−.  Table III-4.1 shows the density, 

viscosity, and conductivity for mixtures, N = 0.51, 0.53, 0.55 and 0.59.  A significant 

increase in viscosity was observed as the melt approaches neutrality (N approaches 0.5). 

 
  
Mole Fraction Mole fraction* Measurement at 27 ± 1ºC 
AlCl3 BDMEACl AlCl4

− Al2Cl7
− Density 

(mmol/ml)
Viscosity
(mm2/s) 

Conductivity 
(mS/cm) 

0.51 0.49 0.479 0.021 7.40 370 0.512 
0.53 0.47 0.436 0.064 - - 0.617 
0.55 0.45 0.389 0.111 6.95 222 0.715 
0.59 0.41 0.279 0.221 6.59 123 1.010 

Table III-4.1 Properties of acidic melts of BDMEACl: AlCl3. 
(* Due to the equilibrium constant1, the fraction of Cl- is of the order of 10-17.) 

 

The conductivity of a liquid is a function of the concentration (or density) of the 

ions and their interaction (mobility).  For each of the acidic IL mixtures, the cation mole 

fraction, BDMEA+, was kept constant, so that the relative contributions of the Al2Cl7
− 

and AlCl4
− ions to the conductivity could be evaluated.  A significant drop in 

conductivity is observed as the liquid approaches neutrality (N approaches 0.5) with the 

lowest conductivity, 0.512 mS/cm, observed for the N = 0.51 melt.  The maximum 

number of anions possible in 1 ml was obtained from the density (mmol/ml) and the 

molecular weight.  The maximum number of anions are 4.46x1021, 4.18x1021, and 

3.96x1021 anions/ml for N = 0.51, 0.55 and 0.59 melts, respectively.  As the acidity 

decreases (from N = 0.59 to N = 0.51) and the mole fraction of Al2Cl7
− decreases, the 

 48



potential number of anions increases, however, the conductivity decreases.  The potential 

number of ions increases because Al2Cl7
− converts to two AlCl4

− species as the melt 

approaches the neutral point (N approaches 0.5).  However, the increased number of 

AlCl4
− anions does not provide higher conductivity.  These results indicate a higher 

individual contribution to the conductance for the Al2Cl7
− ion than for the AlCl4

− ion.  On 

a per mole basis, the equivalent conductance of Al2Cl7
− is about 4.4 times that of AlCl4

−.  

This value was obtained from the number of ions and the conductivity of the IL.  The size 

of Al2Cl7
− is larger than AlCl4

− (Al2Cl7
− ion has a bridging chloride between two AlCl3 

units).  Thus, the electrostatic interaction between Al2Cl7
− and Quat+ is weaker than 

between AlCl4
− and Quat+ at this temperature.  Although the mobility of an unassociated 

AlCl4
− ion would be higher than that of Al2Cl7

− (because of its size), the degree of 

association between AlCl4
− and Quat+ (i.e. ion pairing) is apparently responsible for the 

low contribution of AlCl4
− to the conductivity.  Figure III-4.1 shows the decrease in 

conductivity as the mole fraction of AlCl4
− is increased.  At higher temperatures, one 

would expect higher conductivity due to greater disassociation of the ion pairs and higher 

mobility (lower viscosity) of the IL. 
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Figure III-4.1 Conductivity versus AlCl4
- mole fraction for a mixture of 55% AlCl3 and 

45% BDMEACl at 27ºC. 
 

Neutralization of the N = 0.55 acidic melt with excess NaCl results in a mixture 

with 41% Quat+, 9% Na+, and 50% AlCl4
− ions on a molar basis.  The conductivity 

dropped from 0.715 mS/cm to 0.324 mS/cm even though the total number of potential 

ions per volume increased.  If the conductivity of the cations (Quat+ and Na+) were the 

same and the equivalent conductances of AlCl4
− and Al2Cl7

− were the same as in the 

acidic melts then, the conductivity of the N = 0.5 melt could be estimated from 

extrapolation of Table III-4.1 to N = 0.5.   The expected value would be 0.455 mS/cm.  

The actual value (0.324 mS/cm) is 0.130 mS/cm lower than the extrapolated value.  This 

result indicates that the individual conductivity of Na+ is actually lower than that of 

Quat+.  That is, there is little contribution from Al2Cl7
− in the N = 0.51 melt and the most 

significant change caused by neutralization is the addition of Na+ in place of Quat+.  If we 
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assume NaAlCl4 has no contribution to conductivity, the Quat+: AlCl4
− pair comprises 

roughly 82% of the mixture.  The expected conductivity from Quat+: AlCl4
− in N = 0.5 

melt is 0.372 mS/cm, which is 0.05 mS/cm higher than the observed value.  These results 

indicate that the addition of excess NaCl to the liquid is responsible for the 0.05 mS/cm 

short fall.  That is, the NaCl has a negative impact on the solution conductivity.          

In each case, the ion fractions were calculated assuming that the solubility of 

NaCl is sufficiently low so as not to affect the final mole fractions of the other ions. 

When excess NaCl is added, a solid powder is observed at the bottom of the liquid 

supporting this assumption.  The salt that is dissolved could either stay as NaCl or 

disassociate into its respective ions, Na+ and Cl−. In both cases the salt will impact the 

solution conductivity. If the salt disassociates, the small Na+ and Cl- ions in the melt 

would be expected to increase the conductivity.  Salt present as NaCl would hinder 

conductivity by introducing a neutral, nonconductive species to the liquid.       

The relative contribution of Na+ in comparison to Quat+ was investigated by 

comparing the conductivity of the melts with the same acidity but different Na+-to- Quat+ 

ratios.  An N = 0.55 melt was partially neutralized to N = 0.53 by the addition of NaCl 

and compared to a N = 0.53 melt with no NaCl.  Also an N = 0.59 melt was converted to 

N = 0.51 with NaCl and compared to an N = 0.51 melt with no NaCl.  The conductivity 

versus temperature for each of the aforementioned melts was measured and plotted in 

Figure III-4.2.  At 27°C the sample partially neutralized to N = 0.51 (Fig. III-4.2D) 

formed a slurry comprised of liquid and very thick gel that prevented the measurement of 

its conductivity.  The other mixtures each formed liquids that were a single homogeneous 

phase at 27°C.  When the temperature was increased from 55°C to 82°C the conductivity 
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values for the N = 0.51 mixtures rose from 2.18 to 5.12 for the acidic case (Fig. III- 4.2C) 

and 1.647 to 4.65 mS/cm for the partially neutralized sample (Fig. III-4.2D).  For the N = 

0.53 mixture, the difference in conductivity between the acidic (Fig. III-4.2A) and 

partially neutralized (Fig. III-4.2B) samples increased with temperature from 0.092 

mS/cm at 27°C to 0.58 mS/cm at 82°C.  In each of the two acidities, at each temperature, 

the exchange of Na+ for Quat+ (as a result of partial neutralization) lowered the 

conductivity.  Once again, this shows that the presence of Na+ in the melts contributes 

little or nothing to the melt conductivity, and the Na+ contribution is less than that of 

Quat+ even though Na+ is smaller. 
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53% AlCl3: 47% Quat: 0% NaCl (A)

53% AlCl3: 43.3% Quat: 3.7% NaCl (B)            
[Initial Mixture: 55% AlCl3: 45% Quat: 0% NaCl]
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[Initial Mixture: 59% AlCl3: 41% Quat: 0% NaCl]

 
Figure III-4.2 Conductivity versus temperature for: (A) Mixture of 53% AlCl3 and 47% 
BDMEACl; (B) Mixture of 53% AlCl3, 43.3% BDMEACl, and 3.7% NaCl.; (C) Mixture 
of 51% AlCl3 and 49% BDMEACl; (D) Mixture of 51% AlCl3, 35.3% BDMEACl, and 
13.7% NaCl. 
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The conductivity contribution of NaAlCl4 can be evaluated by addition of 

NaAlCl4 fine powder to the melt.  If NaAlCl4 is completely insoluble in the liquid, the 

addition will have no positive effect on the conductivity.  An acidic melt (N = 0.53) with 

an initial conductivity of 0.618 mS/cm at 27°C was used as the starting liquid.  An acidic 

mixture was chosen since the fraction of ions present (Quat+, AlCl4
−, and Al2Cl7

−) is 

known.  The conductivity versus mole % NaAlCl4 is shown in Figure III-4.3.  Upon 

addition of 1.76 mole % NaAlCl4, the conductivity decreased 12% to 0.544 mS/cm.  No 

solid precipitate was observed after mixing for two days.  After two days, NaAlCl4 was 

again added bringing the NaAlCl4 content of the liquid to its final value, 3.46 mole %.  

As a result of the addition, the conductivity dropped further to 0.485 mS/cm (an 

additional 9.5%).  After the second addition, a solid precipitate was observed indicating 

that the liquid was saturated with NaAlCl4.  The results show a reduction in conductivity 

greater than can be accounted for just by a change in the fraction of ions (i.e. addition of 

an inert substance to an ionic liquid).  The drop in conductivity indicates a decrease in the 

individual conductances of the ions present, as would occur with increased ion 

association.   

Previously, it has been shown that sodium metal cannot be electrodeposited from 

a neutralized ionic liquid (e.g. imidazolium-based melts) even though sodium ions are in 

the melt.9,10  A trace amount of an acidic additive activates the electrodeposition process 

producing sodium metal.  These previous results are consistent with a lack of free sodium 

ions in the IL (ions available for deposition).  To test this hypothesis, very small amounts 

of SOCl2 were added to a NaCl-neutralized IL.  An IL composed of BDMEACl and 

AlCl3 (N = 0.55) was prepared and neutralized with two-fold excess NaCl.  SOCl2 was 
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added with a micropipette and the conductivity was measured after one hour of stirring 

for each addition of SOCl2.  Long mixing times were avoided because SOCl2 could 

evaporate.  The results of the conductivity tests after each addition are shown in Figure 

III-4.4.  The addition of 1 weight % SOCl2 results in nearly a 10% increase in the 

conductivity even though SOCl2 itself is not expected to be ionized in the melt.  
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 Figure III-4.3 Conductivity versus mole % NaAlCl4 for an initial mixture of 53% AlCl3 

and 47% BDMEACl at 27°C. 
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Figure III-4.4 Conductivity at 30°C versus weight % SOCl2 for an initial mixture of 50% 
AlCl3, 40.9% BDMEACl, and 9.1% NaCl. 

 

The remarkable ability of SOCl2 (and other additives) to facilitate the deposition 

of sodium can be shown electrochemically.  A cyclic voltammogram (CV) of a Pt 

electrode in a neutralized BDMEACl: AlCl3 melt (starting material N = 0.55) results in 

no electroreduction of sodium ions, only the irreversible reduction of the BDMEA+.  

Similar results were obtained for mixtures tested with less than 0.025 mole % SOCl2.  

However, the CV results for the same melt with 0.18 mole % SOCl2 is shown in Figure 

III-4.5.  The reduction and re-oxidation of sodium at ca. -2 V is observed.  The reduction 

current is far in excess of the flux that could be provided by the SOCl2.  This result 

suggests that the SOCl2 additive is working to increase the concentration of sodium ions, 

in a catalytic way and is not being consumed.  As the concentration of sodium ions in the 

solution increases the reduction potential shifts to more positive potentials.  Increasing 

the SOCl2 level also led to higher current densities for the reduction and re-oxidation 

rather than changes in the potential at which reduction occurred.   
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Figure III-4.5 CV scan at 27°C for a mixture of 55% AlCl3 and 45% BDMEACl 
neutralized with 100% excess NaCl and 0.18 mole % SOCl2 added. 
 

Discussion 

The Zebra cell that operates at a high temperature does not require the addition of 

an additive because all components are molten and ionized.  However, the low-

temperature ionic liquid cell requires an additive to electrodeposit sodium even though 

the melt is liquid.  The conductivity data showed that exchange of Quat+ for Na+ resulted 

in a drastic drop in conductivity to a level where it appears that the Na+ is contributing 

nothing toward the overall melt conductivity.  The addition of NaAlCl4 also lowers the 

melt conductivity, even though it appears to dissolve.  Finally, the addition of trace 

amounts of HCl (previous results) or SOCl2 appear to activate the sodium ions in the melt 

so that they can be electrodeposited at rates far in excess of the flux of the additive.  The 

increase in the melt conductivity (Fig. III-4.4) with SOCl2 addition, shows that SOCl2 

dramatically increases the melt conductivity.  This behavior is consistent with the concept 
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that the SOCl2 serves to release Na+ ions from ion-pairs enabling them to contribute to 

the conductivity and be reduced to sodium metal.  Scheme III-4.1 shows the proposed 

interaction between the additives and sodium ions in the melt.  As the acid is added to the 

melt the interaction between the additive and the chloride becomes stronger.  This 

interaction weakens the interaction between Na+ and AlCl4
− ions.  Na+ is thus available 

for conduction and electrodeposition.  HCl acts in a similar way to provide more freedom 

to the Na+ ion.  Thus, SOCl2 and HCl act as a Lewis acid27-29 and compete with AlCl3 for 

Cl-.  
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Scheme III-4.1  Interaction between additives and NaAlCl4 ion. 
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III-5. Cation Electrochemical Stability in Chloroaluminate Ionic Liquids 

 In Chapter 5, the electrochemical stability of ten organic cations is investigated. 

The structures of the salts are shown in Figure III-5.1.  The stability of the ten cations 

was investigated as the solute in acetonitrile (ACN).  Previously, similar cations were 

investigated in ACN by Gifford and Palmisano to investigate the impact of replacing the 

beta hydrogen in an imidazolium cation with a methyl group.30  For salts III, VI and VII, 

the stability in the chloroaluminate IL was also evaluated.  The reduction mechanism of 

salts III, VI, and VII, was studied using mass spectroscopy. 

 

 
 

N
CClH2

+O

Cl
O

N N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

I II IVIII V

VI VII IXVIII X

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
CClH2

+O

Cl
O

N N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

I II IVIII V

VI VII IXVIII X

N
+O

Cl
O

N
+O

Cl
O

N
+O

Cl
O

Figure III-5.1 I: Me3MeClNCl; II: 1-methyl-3-propylimidazolium chloride; III: 
benzylethyldimethylammonium chloride; IV: butylethyldimethylammonium chloride; V: 
ethyldimethylpropylammonium chloride; VI: butylmethylpyrrolidinium chloride; VII: 
butyldimethylpropylammonium chloride; VIII triethylmethylammonium chloride; IX 
tributylmethylammonium chloride; X benzyldimethylpropylammonium chloride. 
 

Results 

Cyclic Voltammetry in Acetonitrile:  
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 Room-temperature ILs can be formed by mixing an imidazolium or quaternary 

ammonium salt with aluminum trichloride.  Upon formation of an IL, the reduction 

potential of the cation will determine the negative potential limit of the electrochemical 

window.  In this work, the stability of the salts was evaluated by dissolving the organic 

chloride salts (compounds I to X shown in Fig. III-5.1) in acetonitrile to form 0.1M 

solutions.  The chloride salts were used so that only the cation was changed between the 

samples.  Cyclic voltammetry (CV) was performed scanning from the open circuit 

voltage toward the negative potential direction until a significant reduction current was 

observed.  The reduction potentials reported in this text correspond to the potential at 

which the current exceeded 1 mA/cm2 at a scan rate of 100 mV/s. 

 Figure III-5.2 shows a comparison of three salts: salt I (Me3(MeCl)NCl), salt II 

(1-methyl-3-propylimidazolium chloride) and salt III (benzylethyldimethylammonium 

chloride).  Sodium metal can be electrodeposited from salts II and III when they are used 

in chloroaluminate ILs.7,24  Salt I is most easily reduced as shown in Figure III-5.2 where 

a reduction current of 1 mA/cm2 was observed at –1.35 volts.  The chloromethyl group is 

easily reduced due to the electron withdrawing nature of the halogen.  The imidazolium, 

salt II, is more difficult to reduce than I, 1 mA/cm2 at –1.53 volts, and salt III is the most 

difficult to reduce with 1 mA/cm2 at –1.74 volts.  Finkelstein et al. found that during 

reduction the leaving group is the benzyl radical.31,32  The benzyl radical is the most 

likely product from the reduction of salt III.  However, the hydrogen at the beta position 

of the imidazolium ring of salt II is more easily reduced resulting in the lower reduction 

potential (1.53 vs. 1.74 volts) for salt II compared to salt III.30 
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Figure II-5.2 CV scans for 0.1M solutions of salts I, II and III in acetonitrile. 
 

Alkyl substituents on the quaternary ammonium cation are more difficult to 

reduce than benzyl groups because they form less stable radicals (i.e. poorer leaving 

groups).  A comparison of two alkyl-substituted quaternary ammonium cations to the 

benzyl-substituted quaternary ammonium salt is shown in Figure III-5.3.  The benzyl-

substituted quaternary ammonium cation is the most easily reduced among the three, -

1.74 V.  The reduction potential of the cation becomes more negative (more difficult to 

reduce) when an alkyl group is used in place of the aromatic benzyl substituent.  Further, 

the shorter the alkyl chain length, the more negative its reduction potential due to stability 

of the resulting product.  The smallest cation, salt V, is the most difficult to reduce at -

1.89 V, with salt IV at -1.87 volts.  The difference between salts III and IV (benzyl to 

alkyl) is more significant than the difference between salts IV and V (both are alkyl 

substituted). 
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Figure III-5.3 CV scans for 0.1M solutions of salts III, IV and V in acetonitrile. 
 

Figure III-5.4 shows the stability of the pyrrolidinium-substituted quaternary 

ammonium cation (VI), to the benzyl-substituted (III) and tetra alkyl-substituted cation in 

ACN.  Salts VI and VII both have nine total carbons, however, salt VI, the pyrrolidinium 

cation, is different in that a heterocyclic ring is formed by four of the carbons.  Salt VI is 

significantly more stable than salt III (1 mA/cm2 at -2.09 V vs. -1.74 V) and more stable 

than salt VII (1 mA/cm2 at –1.78 V).  The heterocyclic ring structure of salt VI makes for 

a very poor leaving group.  If this increased stability translates to a wider electrochemical 

window when the cation is used in an IL, this cation would be an attractive candidate at 

negative potentials (e.g. stable in the presence of sodium or lithium for metal anode 

batteries). 
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Figure III-5.4 CV scans for 0.1M solutions of salts III, V and VI in acetonitrile. 
 

Along with the previous 7 salts, the reduction potential of three additional 

quaternary ammonium cations (VIII, IX and X) in acetonitrile were investigated.  Table 

III-5.1 summarizes the reduction potentials measured utilizing CV tests for these three 

salts, as well as salts III, IV and V.  The seven carbon salts, salts V and VIII, are 

structural isomers that both had a reduction potential of -1.89 volts.  The best stability 

measured for a quaternary ammonium cation was for the salt with the largest molecular 

weight, salt IX, which reduced at –1.95 volts.  The two salts with benzyl groups, salt III 

and X, reduced at similar potentials, -1.74 and –1.75 volts, respectively.  The similarity in 

reduction potential indicates that the aromatic benzyl group is the primary substituent 

determining the stability of the cation.   
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Name MW Carbon # Reduction Potential
(g/mol) (volts)

Et3MeNCl (Salt VIII) 151.68 7 -1.89
ProEtMe2NCl (Salt V) 151.68 7 -1.89
BuEtMe2NCl (Salt IV) 165.71 8 -1.87
BenEtMe2NCl (Salt III) 199.73 11 -1.74
BenProMe2NCl (Salt X) 213.75 12 -1.75
Bu3MeNCl (Salt IX) 235.84 13 -1.95  
Table III-5.1 Reduction potentials of 0.1M salt solutions in acetonitrile. 
 

For the structural isomers, the propyl group in salt V is a better leaving group than 

the ethyl groups of salt VIII.  However, this effect appears to be offset by replacing a 

methyl group with the larger ethyl group.  The presence of three ethyl groups is believed 

to stericly hinder reduction of the nitrogen.  This would explain the increased stability 

when the three ethyl groups are replaced with butyl groups, going from salt VIII to IX.  

Though the butyl groups are better leaving groups, their size more effectively blocks the 

reduction of the nitrogen.  The longer alkyl chains are also beneficial as they release more 

electron density to the positive nitrogen center.23 

 

Mass Spectroscopy of Acetonitrile Solutions:      

Mass spectroscopy was used to help identify the reaction products from 

electroreduction of the cations in ACN.  A 0.1M solution of salt III in ACN was 

electrolyzed and the results are shown in Figure III-5.5.  The mass spectrum of an 

electrolyzed solution, where charge corresponding to 12.5% of the cations being 

reducted, is compared to a control solution, which was not electrolyzed.  The electrolysis 

was carried out at 0°C to slow the evaporation of acetonitrile and volatiles produced 

during the electrolysis period.  The dominant peak observed for both the electrolyzed salt 

III solution and the control was mass 165, which corresponds to the mass of the salt III 
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cation alone.  The intensity of the other masses was normalized to the 165 peak for 

comparative purposes.  Both the control and the electrolyzed solution show mass peaks at 

58.9, 100 and 363.2.  The peak at 363.2 was produced in the spectrometer and 

corresponds to two cations bridged by a chloride anion.  The electrolyzed solution shows 

new peaks at 42.1, 74.1, 114.9, 135.9, 141.9, 150.1, 273.1 and 335.2.  The peak at 42.1 is 

most likely due to addition of a proton to acetonitrile. 
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Figure III-5.5 Mass spectroscopy results for 0.1M acetonitrile solution of salt III before 
and after 12.5% reduction. 
 

Several of the new peaks correspond to decomposition products from the cation.  

The peak at 74.1 corresponds to the loss of the benzene.  Similarly, the peak at 114.9 

could be the loss of benzene and the additional presence of acetonitrile.  Loss of the ethyl 

group matches with the peak seen at 135.9.  The loss of a methyl group corresponds to 
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the peak seen at 150.1.  Finally, the loss of the benzene and the ethyl groups from the di-

cation with bridging chloride are seen at masses 273.1 and 335.2, respectively. 

The mass spectrometry results for the electrolysis of a 0.1M ACN solution 

(charge corresponding to 10% electrolysis of the cations present) of salt VI is shown in 

Figure III-5.6.  The results from the electrolyzed solution are compared to a control 

sample.  The spectra are normalized to the dominant peak at 142, which corresponds to 

the cation, BuMPyr+.  Both the electrolyzed and control solution show peaks at mass 

58.9, 100, 116.9, and 319.2.  No new significant peaks were observed from the 

electrolyzed solution.  The peak at 319.2 appears to be due to two cations bridged by a 

chloride anion, similar to the results for salt III.  There are two potential explanations for 

the absence of daughter peaks resulting from the reduction of butyl methyl pyrrolidinium 

cation.  First, the loss of a butyl group results in a small molecule that evaporates prior to 

mass analysis, however, no quaternary ammonium fragment was found.  Second, and 

more likely, is that the reduction of the salt VI cation resulted in breaking the carbon-

nitrogen bond within the heterocyclic ring.  If this were the case, the reduced form would 

result in one fragment with the same mass as the parent cation.  That is, reduction of the 

non-cyclic alkyl results in an alkyl leaving group, but the cyclic structure does not 

because it remains bonded to the nitrogen.  
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Figure III-5.6 Mass spectroscopy results for 0.1M acetonitrile solution of salt VI before 
and after 10% reduction. 
 

Figure III-5.7 shows the spectrometry results before and after a 20% reduction for 

a 0.1M acetonitrile solution of salt VII.  Salt VII has the same number of carbons as salt 

VI, however, the four carbon, one nitrogen heterocyclic ring has not been formed 

between the propyl and methyl substituents.  The dominant peak in both electrolyzed and 

control sample is mass 144, which corresponds to the cation, BuMe2ProN+.  Both 

solutions showed peaks at 129.9, 158, 323.2, and 333.3.  The peak at 323.2 corresponds 

to two cations bridged by a chloride anion.  New peaks due to electrolysis of the solution 

are seen at mass 59, 75.9, 100, 116.8, 123.9, 164.1 and 375.3.  The peak at 129.9 

corresponds to the loss of a single methyl group, while the peak at 116.8 corresponds to 

the loss of two methyl groups.  The absence of additional daughter peaks is believed to be 
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due to the formation of a lower molecular weight, more volatile species, such as when 

butyl and/or propyl are the leaving groups. 
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Figure III-5.7 Mass spectroscopy results for 0.1M acetonitrile solution of salt VII before 
and after 20% reduction. 
 

Ionic Liquid Properties: 

Ionic liquids, mixtures that contain only ions and are liquids at or near room 

temperature (T < 100°C), were formed from the salts III, VI and VII by mixing them with 

aluminum chloride.  While we previously reported on the IL formed with salt III24, this is 

the first report of ILs formed by mixing salts VI or VII with AlCl3.  MacFarlane et al. 

reported the formation of a room-temperature IL when salt VI was mixed with the bis-

(trifluoromethane sulfonyl) imide ion.33  ILs of salt VI and its isomer, salt VII, were 

studied due to the increased stability in ACN.  Salt III was chosen as a reference based on 

its ability to form a room temperature IL and support the reduction/reoxidation of 

 67



sodium.24  When mixed with AlCl3, salts I, VIII and IX did not form room temperature 

ILs.  Though salt X formed an IL it was not studied due to its increased viscosity, relative 

to the salt III IL.  ILs formed utilizing salt II have been widely investigated in the 

literature, for example by Gray et al.10 

Acidic, N=0.55, mixtures were first prepared followed by neutralization with 100 

mole% excess of NaCl.  Previously, we showed that the acidic and neutral mixtures 

formed from salt III were liquid at temperatures slightly below room temperature.24  For 

mixtures formed with salt VII, melting points of 0.3°C and 3.7°C for the acidic and 

neutral mixtures, respectively, were measured.  The acidic mixture with salt VI was also 

fluid at room temperature.  However, the DSC analysis showed two endothermic phase 

transitions.  The first was a sharp, repeatable peak at -49.2°C.  The other was a broad 

peak, with a base at 50°C to 55°C.  Upon neutralization the mixture was not liquid at 

room temperature and a melting point of 43.2°C was measured.  It is believed that the -

49.2°C phase transition for the acidic melt could be due to the presence of the larger 

Al2Cl7
− anion.  Upon addition of NaCl, Al2Cl7

− was converted to the smaller, more 

symmetric AlCl4
− anion, resulting in the higher melting point, 43.2°C. 

 For the acidic melt of salt VII the conductivity and viscosity were measured to be 

2.86 mS/cm and 61 mm2/s, respectively.  This conductivity is almost four times greater 

than that measured for the acidic melt of salt III.  This kinematic viscosity is nearly one-

quarter of that measured for the IL of salt III, 222 mm2/s.24  The higher conductivity and 

lower kinematic viscosity is a result of the smaller size of salt VII versus salt III.  

The electrochemical window for the neutralized ILs of salt III, VI and VII are 

shown in Figure III-5.8.  The reference electrode was an N = 0.60 mixture of the 
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corresponding salt and AlCl3.  Due to the higher melting point, tests with the salt VI IL 

were performed at 71°C, versus 25°C for the ILs of salts III and VII.  The reduction for 

the IL from salt III starts at -2 V with a peak at –2.65 V.  The current was irreversible 

with no oxidation current observed upon scan reversal.  This is typical of Lewis neutral 

ILs containing sodium ions and no ‘additive’ where the IL itself is reduced in favor of 

sodium metal deposition.34  For the IL of salt VII, Fig. III-5.8b, the reduction begins at –

2.2 V with a peak at -2.6 V.  Again the cathodic current was irreversible with no 

oxidation current, as from sodium metal or other species, upon scan reversal.  For the IL 

of salt VI the initial reduction peak is observed at –1.73 V with a maximum at –2.14 V, 

Fig. III-5.8c.  A precipitous drop in current was observed after the initial cathodic peak. 

On repeat scans, the sharp decline in the current at –2.36 V also occurred, but at slightly 

different potentials.  A black deposit was observed on the electrode surface after the 

reduction process.  The drop in current and presence of a black film are consistent with 

the formation of a passivating film during reduction.  The peak current was directly 

proportional to the square root of the scan rate, indicating diffusion-limited behavior 

during the reduction process.  A second reduction peak was observed at –2.82 V, as 

shown in Fig. III-5.8c.  Repetitive scans between 0 V and -3 V for the IL of salt VI 

showed a progressive decrease in the reduction current.  The black deposit remained on 

the surface when the voltage was restricted to the 0 to -3 V range.  The black deposit was 

removed when the voltage was scanned to +2 V where the AlCl4
− was oxidized to Cl2.   
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Figure III-5.8 CV scans with 100% excess sodium and: (A) N=0.55 Mixture of Salt III; 
(B) N=0.55 Mixture of Salt VII; (C) N=0.554 Mixture of Salt VI. 
 

The presence of an insoluble reduction product is consistent with the mass 

spectrometry data presented previously in this paper.  Reduction of the heterocyclic 

cation, salt VI, does not lead to low molecular weight products whereas reduction of salts 
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III or VII do produce low molecular weight products which apparently do not precipitate 

on the electrode surface. 

The addition of a small amount of an acidic ‘additive’, such as SOCl2 to a 

sodium-containing neutral IL facilitates the electrodeposition of sodium metal.  The 

electrodeposition and reoxidation of sodium from the neutralized IL of salt VI SOCl2 is 

shown in Figure III-5.9.  The reduction of sodium ions on the initial scan to negative 

potentials occurs at –2.3 V with a peak current of 33.2 mA/cm2 at –2.4 V.  However, a 

precipitous drop in current occurred at more negative potentials, just as in the previous 

figure, Fig. III-5.8c, when no SOCl2 was present.  On scan reversal, an oxidation current 

corresponding to sodium oxidation was observed.  The oxidation peak current was 30.6 

mA/cm2 and occurred at –1.96 V.  The columbic efficiency for reduction and reoxidation 

of sodium (charge due to oxidation divided by the charge due to reduction) was 79.2%.  

Thus, about 21% of the reduction current did not result in recoverable sodium deposition. 

The precipitous drop in current, indicating reduction of the IL is consistent with the non-

sodium related current.  

If the reduction current were restricted to the less negative potentials during the 

reduction of sodium metal, the coulombic efficiency for reduction of sodium improved. 

The reduction potential was stepped to -2.3 V and held, chronoamperometry (CA), and 

then stepped to -1.8 V to oxidize the deposited sodium, as shown in Figure III-5.10.  The 

resulting coulombic efficiency for the neutral IL of salt VI was 87.2%.  No precipitous 

drop in current was observed at -2.3 V showing that the reduction of the salt VI cation 

was less a factor at these potentials. 
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Figure III-5.9 CV scan at 71°C for a mixture of 55.4% AlCl3 and Salt VI neutralized 
with 100% excess NaCl and SOCl2 added. 
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Figure III-5.10 CA scan at 71°C for a mixture of 55.4% AlCl3 and Salt VI neutralized 
with 100% excess NaCl and SOCl2 added. 
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The long-term stability of sodium in the IL formed from salt VI was measured by 

use of chronopotentiometry (CE).  Sodium was electrodeposited at a current of 3.82 

mA/cm2 for 100 sec.  An open circuit delay was inserted prior to applying an oxidation 

current.  The average coulombic efficiency for 23 CE tests with open circuit times of 7-9 

seconds was 80.3%.  The loss in recoverable sodium was converted to a self-discharge 

rate.  The effective self-discharge current over a one-hour open circuit time was 57.9 

μA/cm2 using a platinum electrode.  On tungsten, the average coulombic efficiency from 

CE experiments was 79.3% and the effective self-discharge current was 86.9 μA/cm2. 

The voltammogram for the neutralized IL of salt VII with SOCl2 is shown in Fig. 

III-5.11.  Although salt VII is a quaternary ammonium cation with the same number of 

carbon atoms as VI, the absence of the heterocyclic ring yields lower molecular weight 

reductive products, as discussed previously.  The voltammogram in Fig. III-5.11 shows a 

reduction current without the presence of a passivating film.  The reduction of Na+ ions 

was observed starting at –2.35 V.  Oxidation of the sodium occurred after scan reversal 

with a maximum current of 6.29 mA/cm2 at –1.74 V.  The columbic efficiency for the 

reduction and reoxidation process in Fig. III-5.11 was 76.2%.  A higher coulombic 

efficiency, 90.8%, was observed in a CE experiment.  The cathodic current was 1.13 

mA/cm2 for 200 seconds at a platinum electrode.  On tungsten, a slightly higher 

efficiency (CE experiment) was observed, 91.3%, where the cathodic current was held at 

1.53 mA/cm2 for 200 seconds.  The self-discharge current was 8.5 and 9.8 μA/cm2 for 

tests at the platinum and tungsten conditions, respectively. 
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Figure III-5.11 CV scan at 25°C for a mixture of 55% AlCl3 and Salt VII neutralized 
with 100% excess NaCl and SOCl2 added. 
 

In each of these previous tests with the salt VII melt no agitation of the sample 

was performed.  When a CE test was performed while stirring the sample, the current 

using a tungsten electrode increased to 3.56 mA/cm2.  Though the baseline efficiency 

also increased, from 91.3 to 94.1%, the self-discharge current increased by a factor of 10 

to 101 μA/cm2.  This indicates a greater increase in parasitic reaction rate. 

The self-discharge values for the ILs of salts VI and VII can be compared with the 

previously reported results for the salt III IL.  At 25°C, the self-discharge rate for salt VII 

is double the rate for salt III, 3.96 μA/cm2.  The discharge rate for salt VI though is 

similar to the value, 52.0 μA/cm2, observed for a salt III IL at 71°C.24  The increased self-

discharge rate for salt VII is attributed to the reduced IL viscosity relative to the IL of salt 

III.  
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Summary 

The electrochemical stability of ten organic cations as solutes in ACN was 

investigated.  For salts III, VI and VII the stability in ACN was compared to that 

measured in the chloroaluminate IL, with the performance of the chloroaluminate ILs of 

salts VI and VII presented for the first time.  Both salts were liquid at elevated 

temperatures, but only the IL for salt VII was a liquid at room temperature.  In both 

medium, the benzyl substituted cation (salt III) was less stable than the alkyl substituted 

cation (salt VII), due to the benzyl group being a better leaving group than the smaller 

butyl chain.  Mass spectroscopy measurements before and after electrolysis on the salt III 

samples, confirmed that reduction involves the loss of the various alkyl groups.  In ACN, 

salt VI was the most stable molecule due to its cyclic structure.  However, in the IL form, 

salt VI was the most easily reduced, resulting in an insoluble black deposit.  This is 

consistent with the mass spectrometry data, which did not show formation of low 

molecular weight products, as in the reduction of salts III and VII.  The ILs of salts III 

and VII demonstrate a greater ability to support the efficient reduction and reoxidation of 

sodium than the IL of salt VI.  The formation of insoluble products through the reduction 

of the salt VI cation, leads to the inferior performance compared to salts III and VII, even 

though the I-V behavior in ACN is better. 
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III-6. Electrochemical Deposition of Li-Na Alloys from an Ionic Liquid 

Electrolyte 

In this chapter, we investigate a lithium metal anode for use in a secondary 

battery.  However, anodes using lithium metal are prone to forming dendrites when 

recharged leading to capacity fading and electrode shorting.  The formation of dendrites 

also occurs with other metals, such as in the electrodeposition of tin, silver, and zinc.35-37 

Electronic-system failures have been attributed to short circuits caused by metallic 

dendrites.  The silver and tin whiskers observed in electronic components grow slowly 

over time when the circuit elements are maintained at different potentials.  In general, 

dendrite suppression has been achieved by alloying the metal with a small amount of a 

second metal, ca. >1%.  For example tin-lead and zinc-nickel are reliable metal systems 

for solderability and corrosion resistance.38,39  The deposition potential and melting point 

of the alloy are often lower due to the alloy effect.  

In this chapter, the lithium-alloy has been investigated as a means to producing a 

dendrite-free anode for lithium batteries.  Sodium has been chosen as the alloying metal, 

although other elements can also be considered, such as potassium.  The formation of 

dendrites for lithium, sodium, and their alloys were investigated in an IL electrolyte.  The 

deposition potential, coulombic efficiency for the re-oxidation of the deposited metal, and 

composition of the deposit are reported. 

  

Results 

The IL was formed by mixing 45 mole % benzylethyldimethylammonium (BME) 

and 55 mole % aluminum chloride.  NaCl and/or LiCl were then used to neutralize the IL 
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with excess salt added to maintain neutrality.  The conductivity of the neutral IL 

containing sodium and/or lithium is of interest because of the degree of ion pairing that 

occurs between the alkali cation and AlCl4
-.  The conductivity of the ILs was measured as 

a function of the concentration of the dissolved lithium and sodium cations at 25°C.  The 

mole fraction of BME+, AlCl4
-, and SOCl2 was held constant in all the experiments.  The 

conductivity values for five, neutral ILs with and without SOCl2 are shown in Table III-

6.1.  The mole fraction of the alkali cation in the liquid phase was 9 mol% in each IL.  

The conductivity of the IL increased as the lithium-to-sodium ion ratio increased.  The 

lithium-only ion IL had a conductivity of 549 μS/cm while the sodium-only IL had a 

conductivity of 321 μS/cm.  Previously, it was shown that replacement of the organic 

cations with sodium ions results in a lower conductivity melt due to ion-pairing of Na+ 

with AlCl4
-.  The improvement in conductivity by replacement of lithium ions for sodium 

ions may be due to the smaller size of the lithium ion.  A smaller ion could result in a 

higher packing density along with a greater mobility resulting in an increase in 

conductivity.  The conductivity of the LiCl neutralized melt may also be higher then that 

of the NaCl melt due to a higher molar saturation for Li+ then Na+ (i.e. some of the excess 

LiCl could dissolve).  To ensure neutrality of the melt, excess LiCl and/or NaCl was 

added (depending on the desired melt composition).  If a higher percentage of the excess 

LiCl was dissolved, relative to that of the NaCl, a higher conductivity would be observed 

due to the greater ion density of the melt.   

Additives also affect the conductivity of the melts.  Thionyl chloride (SOCl2) has 

been shown to increase the conductivity by increasing the degree of dissociation of the 

Li+ and Na+ from their counter-ions allowing electrodeposition to occur.34  The ~10% 
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increase in the conductivity of the Na-only melt (and little change in the Li-only melt) 

implies that the SOCl2 increases the free Na+ concentration more than for Li+.  The mixed 

melts show a small increase in conductivity after SOCl2 was added.  Since the SOCl2 is 

neutral and its molar fraction is small, it itself has little influence on the overall 

conductivity.34 

  
Table III-6.1 IL conductivity at room temperature at various LiCl:NaCl ratios before and 
after adding SOCl2. 
 

Cyclic voltammetry (CV) was used to characterize the electrodeposition 

reoxidation of sodium and lithium.  Figure III-6.1 shows CVs for five ILs with different 

sodium-to-lithium ratios.  In each case, the IL had an acidity of N = 0.55 before 

neutralization. 

The reduction potential of the IL neutralized with only NaCl has previously been 

reported to be -2.3 V.23  The sodium-containing IL reduction potential is more negative 

than that of the IL neutralized with LiCl, which begins to reduce at -1.8 V.  In each case, 

a hysteresis was observed where an overpotential for nucleation of the metal was present 

on the first scan to negative potentials.  The 90% Li+/10% Na+ IL has a similar I-V 

behavior to that of the lithium-only IL, and the 10% Li+/90% Na+ IL is similar to the 

sodium-only IL.  In each case, the metal was electrodeposited without the formation of 
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dendrites.  The current and sweep rate was varied across a wide range and the deposits 

were examined for the presence of dendrites.  Lithium dendrites have been recorded at 

currents as low as 0.5 mA/cm2 forming in as little as one minute.40  No dendrites were 

found in any of the ILs here.  The cause of the suppression is thought to be due to the 

formation of Li-Na alloys and the effect of the IL itself on the deposition of lithium.  

These causes will be discussed in the next section.  A more systematic survey of currents 

and times will be presented in a subsequent report. 

  
Figure III-6.1 CV scans at room temperature for 5 ILs with different LiCl:NaCl ratios. 
 

The reoxidation of the metal is different for each mixture in Figure III-6.1.  The 

pure sodium and pure lithium ILs have one large oxidation peak while the mixed sodium-

lithium deposits have two or three oxidation peaks.  This is possibly due to the presence 

of different Li-Na alloys (different ratios of metal), or the selective oxidation of one 

metal from the alloy at a more negative potential than the other metal.  For example, the 

oxidation potential of pure sodium is different from pure lithium metal.  It is important to 
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note that a less negative oxidation potential will prevent any reaction between the metal 

and the organic cation (BME+) that is reduced at -2.8 V.   

The CV curve for the 50% Li+/50% Na+ is shown in Figure III-6.1.  The slope of 

the I-V curve is more gradual than the other melts indicating possible kinetic effects.  The 

re-oxidation of the metal shows the most distinct double oxidation peaks of all the alloys 

studied here.  A significant oxidation current is observed at potentials negative of the 

initial reduction values indicating that both lithium and sodium are reduced, with lithium 

at a more positive potential.  The sodium is expected to be oxidized first (having a more 

negative reduction potential) from the alloy.  

 The coulombic efficiencies for the deposition-stripping of the metal was obtained 

from the CV curves by integrating the total charge on reduction and oxidation, as 

reported in Table III-6.2.  The coulombic efficiency is the total oxidation charge divided 

by the reduction charge.  The first column of results in Table III-6.2 shows the coulombic 

efficiencies from the CV experiments when a -2.6 V switching potential was used.  The 

90% LiCl/10% NaCl IL had the highest efficiency, 84%, and the 50% LiCl/50% NaCl 

melt had an efficiency of 83%.  This is consistent with the previous observation that alloy 

deposition occurs at more positive potentials, where there is a lower probability of IL 

reduction.  A survey of conditions was performed to find the highest coulombic 

efficiency in each IL.  In these experiments, the scan rate was held constant at 100 

mV/sec, while the switching potential was varied.  The second column of Table III-6.2 

shows the highest efficiency obtained from the survey experiments along with its 

corresponding switching potential.  The 90% LiCl/10% NaCl melt had the highest 

efficiency at 88% (switching potential of –2.3 V).  The pure lithium IL had an efficiency 
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of 74% (switching potential -2.4 V) while the pure sodium melt had an efficiency of 78% 

(switching potential -2.6 V).  This is consistent with the observation that lithium is 

deposited at more positive potentials than sodium.  The optimal switching potential for 

the 90% LiCl/10% NaCl melt is similar to that of the 100% LiCl melt.  This is consistent 

with the data in Figure III-6.1, which shows a similar I-V behavior for the two ILs. 

   
Table III-6.2 Coulombic efficiencies at room temperature for 5 ILs with different 
LiCl:NaCl ratios. 
 

Chronoamperometry (CA) was also used to measure the coulombic efficiency, as 

shown in Table III-6.2.  When the efficiency is measured by CV, the potential varies 

throughout the experiment.  The current corresponding to metal deposition vs. that 

corresponding to IL reduction is a function of potential, especially at the extremes of the 

potential scans.  In CA, potential steps are used which correspond more closely to that of 

a battery’s operation.  The reduction and oxidation potential steps used in the experiments 

were varied to find the optimal setting for deposition in each of the ILs.  The 90% 

LiCl/10% NaCl melt had the highest efficiency, 91%, with potential steps of -2.3 V 

followed by -1.3 V (each step was for 100 seconds).  The 90% LiCl/10% NaCl melt also 

gave the highest efficiency from CV measurements.  The CA curve for the 90% 

LiCl/10% NaCl melt can be seen in Figure III-6.2.   
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Figure III-6.2 CA curve at room temperature for the 90% LiCl/10% NaCl IL. 
 

Constant potential steps and step times were applied to each melt to compare the 

melt efficiencies directly.  The efficiency should increase as the amount of metal plated 

was increased.  This was previously shown to be true in other IL’s and was attributed to 

an initial parasitic current due to the reduction of impurities.26  Potential steps of -2.5 V 

and -1.2 V (100 seconds per run) were applied to each melt.  The efficiency values of 

each IL subjected to the same potential steps (-2.5 V/-1.2 V) can be seen in Table III-6.2 

in the first chronoamperometry efficiency column.  The 100% LiCl IL efficiency is not 

reported because the potential step to -2.5 V is beyond the stable range of the mixture.  

The general trend in the maximum efficiencies follows a trend similar to the CV data.  

Chronopotentiometry (CE) was also used to measure the coulombic efficiency.  

The maximum efficiency was measured by optimizing conditions to maximize the 

efficiency for each IL.  These results are shown in Table III-6.2.  The values of efficiency 

are similar to those observed by the other techniques.  The 90% LiCl/10% NaCl, which 

gave the highest efficiency values with CV and CA, had a coulombic efficiency of 80% 
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when the current steps were 1.0 mA/cm2 for 100 seconds.  It should also be noted that the 

current steps for maximum efficiency were higher in the ILs with high lithium 

concentration.  This can be seen in the CVs in Figure III-6.1 during deposition where at 

lower overpotentials there is less competition from reduction of the IL.  The current steps 

required for maximum efficiency for a CE measurement, depending on the melt, ranged 

from 0.41 mA/cm2 to 1.22 mA/cm2 as seen in Table III-6.2.  Each melt was then directly 

compared by subjecting each IL to current steps of 0.51 mA/cm2 for 100 seconds per 

step.  These results are seen in Table III-6.2 and show that at a relatively low current, like 

0.51 mA/cm2, ILs with higher sodium concentrations have a higher efficiency. 

 Elemental analysis was performed on the metal deposits for each of the melts in 

order to determine if both lithium and sodium were present.  Atomic absorption 

spectroscopy and a qualitative flame-test were used to determine the presence of lithium 

and sodium in the deposits.  The metal from the electrochemical depositions was initially 

dissolved in deionized water.  A platinum wire was immersed in the metal-containing 

solution and then placed into a blue flame.  Sodium and lithium ions produce yellow and 

red flames, respectively.  The pure sodium IL produced a deposit that resulted in a yellow 

flame and the lithium IL produced a deposit that resulted in a red flame.  When the 

Li+/Na+ alloy deposits were tested, the flame color was clearly a mixed yellow and red 

flame.  This qualitative analysis confirmed the presence of lithium and sodium deposit 

from the mixed Li+/Na+ IL.  Atomic absorption was used to quantify the alloy ratio 

deposited from the 90% Li/10% Na IL.  Standard solutions of LiCl and NaCl were 

prepared and used to calibrate the atomic absorption spectrometer.  The electrodeposited 

metal was dissolved in DI water and the concentration of the two ions was measured.  
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The Na-to-Li ratio obtained by atomic absorption was compared to that in the melt.  A 

Na:Li molar ratio of 50:1 was found from metal deposited from the BME IL.  This ratio 

is not consistent with the composition of the melt.  The indicates that the deposit was 

sodium rich, however, quantitative dissolution of the metal deposit may not have 

occurred.  This result clearly shows that Li/Na alloys are present during deposition 

resulting in the changes of the electrochemical properties discussed earlier.  

 

Discussion 

 The goal of this work is to deposit a Li-Na alloy that would in turn depress any 

formation of dendrites that occur during lithium deposition.  Shifts in reduction potentials 

along with distinct double and triple oxidation peaks are consistent with alloy deposition.  

A reduction potential shift occurred during deposition for all the mixed Na+/Li+ ILs 

indicating alloy deposition.  Studies have shown that the deposition of two or more 

metals (in this case, lithium and sodium) is possible as long as the reduction potentials are 

similar.37  Figure III-6.1 shows that the pure lithium and pure sodium I-V curves are 

similar in shape and potential from -2.15 V to -2.32 V.  The 90% Li/10% Na IL clearly 

exhibits reduction in this potential range.  This would indicate the occurrence of 

codeposition of lithium and sodium.   

The overpotential exhibited during oxidation of the 90% LiCl and 10% NaCl melt 

deposit further confirms the existence of alloys.  Oxidation begins to occur at -2.0 V, 

which is 0.2 V more negative than the point of initial reduction (-1.8 V).  This would 

imply the presence of multiple alloys or selective oxidation of one metal from the alloy at 

a more negative potential.  Other studies have shown that two-phase alloys can codeposit 
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on a polarized electrode surface even if a system is capable of forming a continuous solid 

deposit.37  Multi-phase alloys can produce the multiple oxidation peaks as seen in our 

results. 

Like lithium, both silver and tin form dendrites in the presence of a potential 

gradient.  Dendrite growth with silver and tin is suppressed by alloy formation.  Dendrite 

formation was not observed here, even when a pure lithium melt was used.  Currents 

were varied from 0.1 mA/cm2 to 1.0 mA/cm2 for anywhere between 1 minute to an hour 

with no occurrence of dendrites.40  According to other studies, dendrites have been seen 

in a 2MeTHF-EC/LiAsF6 electrolyte with a deposition current of 0.5mA/cm2 in as little 

as 1 minute.40  It is believed that the IL electrolyte itself has an effect on dendrite 

formation.  However, regardless of the effect the IL has on dendrite formation, dendrites 

did not form when lithium and sodium were codeposited.  This leaves the door open for 

the possibility that the alloying effect that occurs would still cause dendrite suppression.  

The elimination of dendrites will allow for much smaller anode and cathode separations 

eliminating high resistance and low current densities.  Further studies into various ILs 

being used as electrolytes are currently being performed. 

 Lithium anodes are thermodynamically unstable and require the use of passivating 

films on the electrode surfaces to allow the system to function as a practical battery.41  A 

rechargeable Li-ion battery consists of a lithium anode and a metal oxide cathode such as 

lithium cobalt oxide.41  If a Li-Na alloy is going to be deposited, then trace amounts (ca.. 

1%) of sodium will need to be present in the anode.  The electrolyte will need to hold the 

entire Na+ content when the battery is discharged because the cathode works on the 

Lithium-only cycle.   
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In summary, the IL also provides ambient temperature operating conditions.  It 

was found that the 90% Li/10% Na IL had the highest coulombic efficiency. 

 

III-7. Catalytic Additives for the Reversible Reduction of Sodium in 

Chloroaluminate Ionic Liquids 

 In this chapter we investigate the ability of several compounds to catalytically 

facilitate the electrodeposition of sodium.  Our initial work focused on determining the 

effect of Lewis acids (e.g. PCl5) and Na+ complexing species (e.g. 18-Crown-6, 18C6).  

However, it was discovered that small amounts of low molecular weight chlorocarbons 

produce the same catalytic effect. 

 

Results 

Effect of Lewis Acid Addition 

The Lewis acid SOCl2 has been demonstrated to be effective in promoting the 

reduction and reoxidation of sodium.  In both imidazolium and quaternary ammonium 

chloroaluminate ILs, coulombic efficiencies of greater than 90% have been repeatedly 

measured.23,24,42  It was proposed that Na+ ions coordinate with AlCl4
- in the ILs and the 

SOCl2 serves to weaken this coordination, freeing Na+ ions for reduction to the metal.34  

In this work, PCl5, a weaker Lewis acid than aluminum chloride, was added to a 

neutralized N = 0.55 BME IL.  Initially, the liquid was stirred at room temperature for a 

day prior to performing CV tests and only the irreversible reduction of the cation was 

observed, similar to when no additive was present.  However, the deposition and 

reoxidation of sodium were observed after the sample was stirred for a second day at 45-
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50°C, as shown in Figure III-7.1.  The scan shown in Fig. III-7.1 is at a tungsten 

electrode, but similar results were obtained with a platinum electrode.  The reduction and 

oxidation peaks are both steep with a reduction overpotential due to nucleation and 

crystallization of the metallic sodium on a nonsodium surface.23  The reduction peak at 

0.4 V was only observed when PCl5 was added to the IL and is believed to be due to the 

reduction of P(V).  Fuller et al. observed a similar reduction peak after the addition of 

SOCl2 and attributed it to the irreversible reduction of SOCl2.42  Fig. III-7.1 shows a CV 

scan at 45-46°C, but the reoxidation of sodium was also observed when a CV was 

performed at room temperature.  This indicates that at room temperature PCl5 is 

sufficiently soluble in the IL to catalytically promote sodium reduction, but the 

conversion to PCl6
- is very slow.  By increasing the temperature, the time to reach 

equilibrium in the IL is shortened. 
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Figure III-7.1 CV curves for neutralized N=0.55 BME IL with 5 mole % PCl5 added. 
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The maximum columbic efficiency measured for a CV test was 21%. 

Chronoamperometry (CA) experiments produced efficiencies greater than 60% for the 

reoxidation of sodium metal.  Figure III-7.2 shows the highest efficiency CA experiment 

where the reduction was carried out at –2.6 V.  Holding the potential minimized the time 

spent at potentials that were less efficient for depositing sodium metal.  At more negative 

potentials, the IL is reduced and at more positive potentials the reduction of impurities 

can account for a majority of the current.  The dissolution of PCl5 in the IL as PCl6
- 

produces sodium ions that are reducible at the working electrode.  The lower charge 

density of PCl6
-, compared to AlCl4

-, lowers the degree of ion pairing between the Na+ 

and the counter anion, enabling the deposition of sodium metal. 
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Figure III-7.2 CA test results for neutralized N=0.55 BME IL with 5.8 mole % PCl5 
added. 
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Based on the results with PCl6
- and AlCl4

-, halogenated anions with a higher 

charge density than AlCl4
- are not expected to provide sodium ions with sufficient 

freedom to be electrodeposited due to ion pairing.  This was tested by using BF4
- as an 

additive in the chloroaluminate IL.  The IL was made by adding 1-butyl-3-

methylimidazolium tetrafluoroborate (BMIF), which is a liquid at room temperature, to a 

neutral IL.  CV tests were performed after stirring the sample for 3 hours and more than 

20 hours.  However, all the CV tests performed with the BF4
- additive showed no Na 

deposition/recovery whereas the larger anion, PCl6
-, was effective in enabling the 

deposition of sodium.  The smaller BF4
- anion pairs more strongly with Na+ than AlCl4

- 

resulting in an IL with no reducible sodium ions. 

 

Effect of Na+ Complexing Species 

Based on the need for weak sodium ion complexes, 18-Crown-6 (18C6) was 

tested as an additive because of its ability to capture Na+.  A higher mixing temperature 

was used to increase the solubility and dissolution rate of 18C6 in the IL.  Figure III-7.3 

shows IL conductivity as a function of temperature and mole fraction of 18C6 in the IL.  

The conductivity decreased upon addition of the initial aliquot of 0.66 mole % 18C6.  

Additional aliquots of crown ether had no effect on the conductivity.  The solubility limit 

of 18C6 in the IL was low (less than 0.66 mole %) and additional crown ether remained 

undissolved.  Figure III-7.4 shows the voltammogram of the IL containing 1.8 mole % of 

18C6.  The crown ether provided a solvent shell for the sodium ions so that they were 

reducible.  The reduction and reoxidation peaks in Fig. III-7.4 were very sharp.  The 

reduction process showed a slight overpotential due to nucleation of the metal in the 
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foreign surface.  In the coordinated state, the Na+ ion is held within the cyclic ring of the 

crown ether.  The additive specifically targets the cation, Na+, disrupting the ion pair 

between the sodium ion and AlCl4
-. 
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Figure III-7.4 CV results for neutralized N=0.55 BME IL with 1.8 mole % 18-Crown-6. 
 

Effect of Chlorocarbons 

Solvation of the sodium ions disrupts the anion-sodium ion pair so that the 

sodium ions can be reduced to the metal, as in the case of 18C6.  The use of low 

molecular weight chlorocarbons was investigated as a solvating species for the sodium 

ions.  It is desirable to have an additive more soluble than 18C6 and more difficult to 

reduce than PCl6
-.  The effect of dichloromethane on the deposition of sodium was 

investigated using a neutralized N = 0.55 BME IL.  The reduction of sodium ions to the 

metal was observed after the addition of 4 mole % dichloromethane, as shown in the 

voltammogram, Figure III-7.5.  The coulombic efficiency was improved by adjusting the 

temperature, switching potential in the potential scan, and other conditions.  The 

reduction and reoxidation peaks for sodium are very steep, indicating a rapid redox 

process, similar to the results obtained for SOCl2.23  Dichloromethane can orient such that 
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the negative dipole of the chloride atoms are in close proximity to the Na+ cations.  The 

attraction between the partial negative charge on the chloride and the sodium cation 

weakens the interaction between the sodium cation and AlCl4
- anion.34 
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Figure III-7.5 CV scan following the addition of dichloromethane to the N=0.55 BME 
IL. 
 

The coulombic efficiency for the reduction and reoxidation of sodium was 

measured using chronopotentiometry (CE) at a tungsten electrode at room temperature 

following the addition of dichloromethane.  The initial experiments produced a 

coulombic efficiency of 63% for a 50 sec reduction current 0.64 mA/cm2, followed by a 

25 sec oxidation current at 1.27 mA/cm2.  After letting the sample sit for six days in an 

open vessel in the dry box, the same test resulted in a columbic efficiency of 52%.  After 

an additional five days, it was not possible to obtain 0.64 mA/cm2 without the voltage 

going to very negative potentials.  However, at a reduction current of 0.32 mA/cm2 for 50 

seconds, followed by an oxidation current of 1.27 mA/cm2 for 12.5 seconds, the 
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measured efficiency was 47%.  An additional aliquot of dichloromethane, about 4 mole 

%, then improved the efficiency to 79% using 0.64 and 1.27 mA/cm2 for the reduction 

and oxidation currents, respectively.  The average coulombic efficiency was 77% 

(average of seven repetitions) when reduction and oxidation currents of 0.64 mA/cm2 

were applied for 50 sec. 

 The decrease in efficiency over time is consistent with the evaporation of the 

dichloromethane from the IL.  The lower dichloromethane concentration results in fewer 

solvated sodium ions available for reduction.  The coulombic efficiencies were less than 

when SOCl2 was used as an additive under similar conditions (coulombic efficiency of 

88.5%).24 

 To investigate the general nature of chlorocarbons as additives, chloroform-D and 

carbon tetrachloride were tested as additives in fresh, neutral ILs.  Carbon tetrachloride 

provides an interesting comparison to dichloromethane and chloroform because of its 

symmetry (lack of dipole) and absence of a C-H bond.  The first CV scans with CDCl3 

(6.5 mole %) and CCl4 (6.1 mole %) from open circuit voltage to –2.6 volts are shown in 

Figure III-7.6.  Both chloroform and carbontetrachloride are effective in providing 

reducible sodium ions.  While the reduction and oxidation currents observed with each of 

the two additives are very steep, the reduction and reoxidation current for CDCl3 are 

nearly double that for CCl4.  The higher oxidation current coincides with greater 

coulombic efficiency for chloroform-D (79.3%) versus carbon tetrachloride (55.2%). 
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Figure III-7.6 CV test results with carbon tetrachloride and chloroform-D added to a 
neutral N=0.55 BME IL. 
 

CA tests were performed to quantify the efficiency of the sodium 

reduction/reoxidation process with chloroform-D and carbon tetrachloride.  The 

conditions at which the highest efficiencies were obtained are summarized in Table III-

7.1.  The maximum efficiency for the two additives is essentially the same: 90.5% for 

CDCl3 and 88.2% for CCl4. 

Reduction Oxidation Step Coulombic
Additive Voltage Voltage Time (s) Efficiency
CDCl3 -2.35 -1.96 300 90.5
CCl4 -3.15* -2.7* 300 88.2

CA Test Results

Unless noted all tests performed at room temperature using 0.5 mm diameter Pt 
working electrode and N=0.6 acidic reference.
* Pt reference, estimated potential vs acidic reference: 700 mV.   
 
Table III-7.1 CA test results for CDCl3 and CCl4 added to a neutral N = 0.55 BME IL. 
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CE tests were used to measure the long-term stability of sodium in the IL with 

each additive.  Sodium was first deposited at a constant current followed by an open-

circuit delay before reoxidation at the same current.  The loss of recoverable sodium was 

then converted to a self-discharge rate.10  The test conditions and results are summarized 

in Table III-7.2.  The self-discharge rates, 5.62 and 5.47 μA/cm2, for chloroform-D and 

carbon tetrachloride respectively, are within 3% of one another.  These values are 

comparable to the self-discharge rate measured using SOCl2 as the additive, 3.96 

μA/cm2.24 

Reduction/Oxidation Step Open-Circuit Self-Discharge
Additive Current (mA/cm2) Time (s) Time (s) Rate (μA/cm2)
CDCl3 1.02 50 3600 5.62
CCl4 0.76 50 3600 5.47

Unless noted all tests performed using 0.5 mm diameter Pt working 
electrode and N=0.6 acidic reference.  
 
Table III-7.2 Self-discharge test results for CDCl3 and CCl4 added to a neutralized N = 
0.55 BME IL. 
 

Following the initial series of tests, the ILs were allowed to sit exposed to the dry 

box atmosphere.  Figure III-7.7 shows the results of CV tests performed on the day 

chloroform-D was added, 2 weeks later, and finally 4 weeks later.  The results after 2 

weeks show a substantial decrease in both the reduction and oxidation currents.  After 4 

weeks, no sodium deposition was observed.  Similarly, when carbon tetrachloride was 

used as the additive, no sodium reduction was observed after 3 weeks.  These results are 

consistent with those obtained using dichloromethane where the evaporation of the 

solvent resulted in a decrease in the reducible sodium ions. 
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Figure III-7.7 CV results 0 days, 2 weeks and 4 weeks after addition of chloroform-D to 
neutral N=0.55 BME IL. 
 

The minimum chloroform-D concentration was experimentally determined, as 

shown in Figure III-7.8.  The addition of 0.34 mole % was adequate to provide a low 

level of reducible sodium ions.  The sodium reduction and reoxidation currents were 

similar for the addition of 0.96 and 1.79 mole % chloroform-D.  The addition of 0.34 

mole % corresponds to 26 Na ions for each CDCl3 molecule, however, the efficiency is 

only 25.1%.  When the concentration of CDCl3 was increased to 0.96 mole % (9 Na+ per 

chloroform-D molecule), both the reduction and oxidation currents increased and the 

reduction current became much steeper.  The coulombic efficiency increased to 60.8% 

with the higher additive concentration (0.96 mole %).  Increasing the concentration to 

1.79 mole % (5 Na+ per chloroform-D) did not produce significant improvements and 

resulted in a coulombic efficiency of 66%. 
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Figure III-7.8 CV test results after addition of 0.34, 0.96 and 1.79 mole % chloroform-D. 
 

CA tests were performed at three additive concentrations (Figure III-7.9) where 

the potential was set at –2.4 V for 100 sec, followed by a potential step to –1.95 V for 

100 sec.  The efficiency was lowest (39.2%) at 0.34 mole % chloroform-D and highest 

(78.8%) at 1.79 mole % CDCl3, which is in line with the CV tests.  For the two higher 

concentrations, the peak current and overall behavior were similar to each other showing 

that additional additive, above a critical level, does not result in additional benefits.  In all 

three cases, the current at longer times (> 40 sec) was the same indicating that it is 

independent of the chloroform-D concentration.  The higher peak oxidation current at 

higher additive concentrations is due to a higher concentration of reducible sodium ions. 
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Figure III-7.9 Results of chronoamperometry tests with 0.34, 0.96 and 1.79 mole % 
chloroform-D added. 
 

A similar test was carried out to determine the effect of chloroform-D 

concentration on conductivity, Figure III-7.10.  There was little change in the 

conductivity when the additive was 0 to 0.5 mole %.  There was a sharp increase in the 

conductivity when the additive concentration was increased above 1 mole %.  The 

conductivity with 3.1 mole % CDCl3 is nearly 35% greater than the IL without the CDCl3 

additive.  The samples with greater than 1 mole % chloroform-D were less viscous than 

the initial sample.  The increase in conductivity is due to two effects: less ion pairing of 

the sodium ions and lower viscosity.  As with SOCl2
34, chloroform-D is a neutral 

molecule that does not directly contribute to the conductivity.  The CV and CA test 

results confirm that the concentration of free sodium ions is greater, as shown by the 

reduction current.  The lower viscosity of the IL is because the hydrocarbon acts as a 
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solvent, similar to that demonstrated by Liao et al. in the plating of aluminum from a 

chloroaluminate IL with benzene added.43 
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Figure III-7.10 Conductivity versus mole % chloroform-D in a neutral IL. 
 

Summary 

The ability of five different compounds to facilitate reduction of sodium from a 

chloroaluminate IL was investigated.  PCl6
- and 18-Crown-6 act to disrupt the Na+ and 

AlCl4
- ion pairs producing reducible sodium ions.  The addition of the small chlorinated 

compounds, CH2Cl2, CDCl3 or CCl4, resulted in the efficient reduction and reoxidation of 

sodium.  It is believed that the electronegative chlorine atoms are oriented near the 

positive sodium cation, weakening its attraction to AlCl4
-. 
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IV. Experimental 

All experiments were carried out in a Vacuum Atmosphere glove box under dry 

nitrogen due to the sensitivity of the ILs to moisture.  The glove box was maintained at 

oxygen and moisture levels below 10 ppm.  Experiments above room temperature were 

performed in an oil-jacketed cell connected to a Fisher Scientific IsoTemp 3016 for 

temperature control.  Salts I, II, VI, VIII, and IX (Fig. III-5.1) were obtained from 

Sachem, Inc. (Austin, TX) and purified before use.  Methyl propyl imidazolium chloride 

(MPICl) was synthesized and purified following previously published procedures.9  

Aluminum trichloride, AlCl3 (99.99%), anhydrous carbon tetrachloride (99.5+%), thionyl 

chloride, and SOCl2 (99+%) were obtained from Aldrich and used as received.  

Benzyltrimethylammonium chloride (97%), benzyltriethylammonium chloride (98%) and 

benzyltributylammonium chloride (98%) were obtained from Alfa Aesar.  Chloroform-D 

(99.9atom%) was purchased from Aldrich and stirred over fresh sodium metal in the dry 

box to remove any traces of water.  18-Crown-6 (99.95%) was obtained from Aldrich 

melted, dried under vacuum and re-crystallized.  To dry dichloromethane, dry P2O5 was 

added and spun while performing vapor distillation under vacuum. 

Four Quats were prepared by N-alkylation of 1:1 ratio of amines and 

alkylchlorides.  Amines and alkylchlorides for each Quat are:  N, N-dimethylethylamine 

and benzylchloride for benzylethyldimethylammonium chloride; N, N-

dimethylbenzylamine and propylchloride for benzyldimethylpropylammonium chloride; 

N, N-dimethylisopropylamine and benzylchloride for 

benzyldimethylisopropylammonium chloride; N, N-diethylmethylamine and 

benzylchloride for benzyldiethylmethylammonium chloride.  The salts were filtered and 
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re-crystallized in acetonitrile.  The Quats, 1-butyl-3-methylimidazolium tetrafluoroborate 

(>97.0%, Fluka), LiCl (99.999%, Alfa Aesar), and NaCl (99.999%, Alfa Aesar) were 

dried under vacuum for 48 hrs at 70oC before use in the glove box. 

 Conductivity measurements were performed using a custom-built probe and 

ThermoOrion conductivity meter.34  Two platinum plates were set a fixed distance apart 

and the corners were sealed in glass to prevent bending or movement of the plates. 

Platinum leads were connected to each plate.  Calibration was performed using a standard 

(Orion) NaCl solution before use in the glove box.  After each use the probe was cleaned 

with nitric acid, rinsed with de-ionized water and dried. 

An EG&G model 273 potentiostat was used for the electrochemical 

measurements.  Pt (99.999%) and W (99.95%) wires were obtained from Alfa Aesar and 

fabricated into working electrodes by sealing them inside glass tubes.  The electrodes 

were cleaned in hot HNO3 prior to use.  They were polished using 0.3 μm alumina 

powder and thoroughly rinsed with de-ionized water prior to use.  The counter electrode 

was a twisted Pt wire or platinum foil sealed in glass on the corners.  For the IL tests, the 

reference electrode was formed by immersing an aluminum wire (99.9995%) in an acidic 

melt (N = 0.6) in a glass tube separated from the electrolyte by a fine glass frit.  The half 

reaction for the reference electrode is as follows. 

 

4 Al2Cl7
− + 3e− ↔ Al + 7 AlCl4

−    E = 0.0 V      (V-1.1) 

 

The reference electrode for the acetonitrile tests was formed by immersing a silver wire 

coated with AgCl in the 0.1 M acetonitrile solution in a glass tube separated from the 
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electrolyte by a fine glass frit.  In all measurements, the three electrodes were positioned 

as close as possible to one another.  IR compensation was not performed for the IL tests, 

but was performed for the measurements in acetonitrile solutions.  

 The melting points were determined using a Seiko Instruments S II 220C 

differential scanning calorimeter (DSC).  The ramp rate of the cooling cycle was 1-

2°C/min and the heating cycle was 5°C/min.  In the electrochemical experiments 

involving the electrodeposition and reoxidation of sodium, the chemical reactivity of the 

sodium metal with the melt was quantified by measuring the self-discharge current.  An 

open-circuit period was inserted between the plating and stripping of the sodium.  The 

amount of charge recovered upon electrochemical stripping of the sodium was measured 

as a function of open-circuit time and expressed as an equivalent current density.10 

 

§ Results of 1H-NMR(400 MHz CDCl3): butylethyldimethylammonium chloride: δ 0.98 

(t, CH3), 1.38 (m, CH2 + CH3), 1.68 (m, CH2),  3.41(s, 2N-CH3),  3.49 (t, N-CH2), 3.72(q, 

N-CH2); salt V: 0.99 (t, CH3), 1.35(t, CH3), 1.74(m, CH2), 3.35(s, 2N-CH3), 3.43 (t, 2N-

CH2), 3.68(q, 2N-CH2); salt VII: 0.76 (m, 2CH3), 1.18 (m, CH2), 1.46 (m, CH2), 1.55(m, 

CH2),  3.14(s, 2N-CH3),  3.30 (m, 2N-CH2). 
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