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Abstract

While conventional tracking codes can readily provide
higher-order optical quantities and give an estimate of dy-
namic apertures, they are unable to provide directly mea-
surable quantites such as lifetimes and loss rates. The parti-
cle tracking framework Plibb aims at modelling a storage
ring with sufficient accuracy and a sufficiently high num-
ber of turns and in the presence of beam-beam interactions
to allow for an estimate of these quantities. We provide a
description of new features of the codes; we also describe
a novel method of treating chromaticity in ring sections in
a symplectic fashion.

FRAMEWORK

The most significant changes in the Plibb framework
are (1) the separation into a library and application com-
ponent. The former contains lightweight classes and func-
tions for matrices, phasespace vectors, differential algebra,
particles, particle bunches, statistics, random number gen-
eration, parameter file parsing and differential algebra and
can be readily utilized by other codes. The latter con-
tains executable programs, the most important being the
Lifetimeapplication. It contains a MAD-X compatible
parser, algorithms to set up a beamline representations and
running a set of particle bunches through it, instrumenting
it with loss counters and other statistics. (2) The integration
of the NIMZOVICH strong-strong code is described below.

Two minor new components have proven to be espe-
cially valuable: (1) a MAD-X compatible parser as well
as a compatible set of beamline elements allows for rel-
atively painless interaction with standardized lattice files;
all modifications–such as lumping, splitting lattices, and
inserting elements–can now done within the code without
the need to alter lattice files or to extract information from
other tracking codes.

(2) Compile-time polymorphism and class injection is
now used throughout the code. This technique allows one
to write add a new element type by simply writing a single
transformation function. The compiled code then contains
separately optimized function objects for transformations
of phasespace vectors, particle bunches for tracking, differ-
ential algebraic objects etc. A lattice is then represented by
a sequence of these objects, it can e.g. track a first-order
differential-algebraic object to extract a transfer matrix or
a particle bunch to estimate a loss rate without any speed
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impact due to polymorphism.

LOSS RATES AND STATISTICS

One of the aims of the Plibb framework is the im-
mediate computation of observable quantities such as loss
rates and beam lifetimes. These quantities are dominated
by the behavior of particles of large amplitude. In previ-
ous versions of the code, gaussian distributions of particles
of equal weights were used; these were ’hollowed out’ in
six-dimensional phase space to avoid computation of the
uninteresting particle dynamics near the core of the beam.
The downside of this approach is that it is somewhat ar-
bitrary (due to the cut-off) and that it may introduce large
amounts of shot noise in the particle loss signal.

With the addition of a strong-strong beam-beam func-
tionality, one has to use completely populated bunches.
Still, the dynamics of selected sections of phasespace can
be better resolved by choosing a distribution

ρ(ξ ) = Θ(1− r)(r5−γ)(rγ exp(−r2/2))(d(r6−γ)dΩ) (1)

in normalized phasespace, where r2 = ∑i ξ 2
i and the three

factors are contributed by rejection, weighting, and redistri-
bution of a unit qausirandom number distribution. The dis-
tribution is filled systematically using a Halton sequence,
reducing statistical noise. By adjusting γ , the resolution
can be selectively increased at a chosen action value.

BEAM DYNAMICS

Chromatic Lumping

Computational speed requirements may necessitate the
lumping of adjacent lattice elements to a single one. A
typical setup would lump elements between sextupoles and
beam-beam elements. Sextupole elements in dispersive
sections will introduce chromaticity, which consequently
has to be considered in the lumped sections to obtain the
correct total chromaticity of the ring. A common procedure
is to insert a pt-dependent tune shift after a lumped sec-
tion, which has the disadvantages of omitting the chromatic
changes of the Twiss functions and being non-symplectic.
Also, it is not easily applied to arbitrary coupling or to
beamline sections. Plibb uses an approach avoiding these
drawbacks.

The full map M of a beamline section will be symplectic
around any phase-space vector x0, ∂x ⊗∂xM (x0 + x)|x=0 ∈
Sp(2n,R). While the one-turn map of a real storage ring
around the orbit will also be strongly stable, an section’s
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map may not even be stable. The transfer map can be ex-
panded in a Taylor map around the orbit:

x′i = M(0),i +M(1),ikx
k +1/2M(2),iklx

kxl . . . ,

where the orbit has been chosen x0 = 0.
A particle with momentum offset pt = Δ will follow

the dispersion trajectory with an offset of DΔ with respect
to the orbit at the section’s entrance; expanding around
DΔ gives a transformation with O(Δ) coefficients M̄(1),ik =
M(1),ik + ΔM(2),iklD

l
Δ. Expanding the symplecticity condi-

tion for the transformation around the DΔ-shifted orbit to
first order in Δ gives

M̄�
(1)JM(1) = M�

(1)JM̄(1) +O(Δ2) ; (2)

plugging I + ΔḠ = Mμ−1
(1) M̄(1)M

−μ
(1) ,μ ∈ R into (2) gives

Ḡ�J = JḠ + O(Δ2), i. e., Ḡ is a generator of a symplec-
tic transformation, Ḡ ∈ sp(2n,R), which can be seen by
putting μ = 0 and using that Ḡ is a vector of the adjoint
representation of the symplectic group.

As the lumping procedure is to incorporate only trans-
verse dynamics and chromaticity, M will not change pt .
Projecting out the (t, pt) plane by a projector P by G =
PḠP,

(1+ ΔG)+O(Δ2) = eΔG = eL [ptx�Hx] (3)

where L [A] = {A, ·} is the Liouville operator and H =
PHP = −1/2JG is a symmetric matrix with zeros in the
t, pt entries. One thus obtains the mapping

Mapprox = Mμ−1
(1) expL

[
ptx

�Hx
]

M−μ
(1) (4)

which is symplectic by construction and agrees with the
exact mapping O(p2

t ). One will usually choose μ ∈ {0,1}.
To explicitly construct (4), one brings (3) into block-

diagonal form by constructing appropriate linear combi-
nations of G’s eigenvectors. As G can be any symplec-
tic generator, it can have any admissible eigenvalue struc-
ture. The eigenvalues of G will be decomposable in m
equivalence sets of cardinality ni, i ∈ {1, . . . ,m}, the equiv-
alence relation being the equality of the unique representa-
tive Λ = |ℜλ |+ i|ℑλ |.

Let Λσ1σ2 = σ1ℜΛ + σ2ℑΛ and |Λσ1σ2〉 the associated
eigenvector. With 〈Λσ1σ2 | := |Λσ1σ2〉� J and for any a,b ∈
C

2n,G ∈ sp(n,R)

〈a b〉= −〈b a〉
〈a G b〉= 〈b G a〉 . (5)

Also, for eigenvalues and eigenvectors,

Λσ1,σ2 = Λ∗
σ1,−σ2

|Λσ1,σ2〉 = |Λσ1,−σ2〉∗ .
(6)

and
Λ 	= Λ′ → 〈

Λσ1σ2 Λ′
σ3σ4

〉
= 0 (7)

and

|σ1 + σ3|+ |σ2 + σ4| 	= 0 → 〈
Λσ1σ2 Λσ3σ4

〉
= 0 . (8)

Vectors of equal Λ will be linearly combined into sets
of real vectors |qii〉 , |pii〉 , ii ∈ {Ni + 1, . . . ,N + ni},Ni =
∑i−1

k=1 ni. Introducing generalized coordinates |ξ2i〉 =
|qi〉 , |ξ2i+1〉 = |pi〉, a matrix B can be formed by lining up
column vectors |ξ 〉. The matrix B is symplectic, B�JB =
J. To prove this, it is sufficient (because of (5) and (7))
to check that 〈pi qk〉 = −δik within each of the possible
equivalence sets. From the group properties, one obtains
the following list of equivalence sets, generator’s eigen-
values and the associated normalization prescriptions, real
|p〉 , |q〉 pairs, and hamiltonian matrices H̃ik = −1/2JB̃ =
−1/2B�JGB = −1/2〈ξi G ξk〉:
• (’Singlet’) Λ00 = 0, the finite transformation is the

identity mapping.

• (Real pair) Λ+0, Λ−0; 〈Λ+0 Λ−0〉 = 1

|q〉 =
√

1/2(|Λ−0〉+ |Λ+0〉)
|p〉 =

√
1/2(|Λ−0〉− |Λ+0〉)

H = Λ(p2 −q2)/2 ,

describing a repulsive, harmonic ’oscillator’.

• (Complex pair:) Λ0+, Λ0−; 〈Λ0+ Λ0−〉 = −i

|q〉 =
√

1/2(|Λ0−〉+ |Λ0+〉)
|p〉 = i

√
1/2(|Λ0−〉− |Λ0+〉)

H = |Λ|(p2 +q2)/2

describing a harmonic oscillator.

• (Quadruplet:) Λ++, Λ+−, Λ−+, Λ−−; 〈Λ++ Λ−−〉 =
〈Λ+− Λ−+〉∗ = 1

|q1〉 = 1/2(|Λ−−〉− |Λ++〉+ |Λ−+〉− |Λ+−〉)
|p1〉 = −1/2(|Λ++〉+ |Λ−−〉+ |Λ+−〉+ |Λ−+〉)
|q2〉 = i/2(|Λ−−〉+ |Λ++〉− |Λ−+〉− |Λ+−〉)
|p2〉 = i/2(|Λ++〉− |Λ−−〉− |Λ+−〉+ |Λ−+〉)

H = ℜΛ∑
i
(p2

i −q2
i )/2+ ℑΛ(q1p2 −q2p1) .

.

By setting ω2 = ℜΛ,Ω = ℑΛ,p = m3/2(v + Ωe3 ×
x)/ω ,q = ωm−1/2x this can be identified as an
isotropic, repulsive oscillator rotating with frequency
−Ω in the x-plane.

Implementation

Degeneracy A complication not treated above is the oc-
currence of degeneracy: in the spectrum of G, an eigen-
value Λ may occur with degeneracy d. As numerical
eigensolvers will return a (linear independent) set of vec-

tors {
∣∣∣Λ̂(i)

σ1σ2

〉
|i = 1, . . . ,d} spanning the eigenspace, a set



{
∣∣∣Λ(i)

σ1σ2

〉
|i = 1, . . . ,d} has to be constructed fulfilling (7).

This can be achieved by a generalization of the Gram-
Schmidt orthogonalization to the symplectic case; it re-
quires a case distinction similar to the one given above.

Exact Solutions With D(φ) =
⎧
⎪⎪⎩coshφ sinhφ

sinhφ coshφ

⎫
⎪⎪⎭,

F(φ) =
⎧
⎪⎪⎩ cosφ sinφ
−sinφ cosφ

⎫
⎪⎪⎭, the closed solutions to the

cases above are

ξ ′ = ξ

ξ ′ = D(
√

|Λ|)ξ
ξ ′ = F(

√
|Λ|)ξ

ξ ′ = F(ℑΛI2)D(
√

ℜΛI2)F(−ℑΛI2)ξ

(9)

respectively. As usually Δ � 1, a thin-lens approxima-
tion is admissible and will be desirable for speed reasons.
As a result of our choice of basis, each hamiltonian sepa-
rates into two parts, each quadratic in coordinates or mo-
menta. This immediately allows us to approximate the as-
sociated finite transformation by the kicks associated with
both parts.

New Beamline Elements, Wire Compensation

While originally conceived for the Tevatron, Plibb is
now applied to RHIC. All beamline elements occuring
in the RHIC beamline definition have been implemented,
most of them in an exact and a thin-lens approximations.
Plibb supports sector bends, quads, sextupoles, general
multipoles, RF cavities, correctors, rotators, electrostatic
separators, and general linear elements. All elements are
implemented as compile-time polymorphic functors, al-
lowing for differential-algebraic methods (see above).

There is on-going set of experiments at RHIC being per-
formed to evaluate the feasibility of a current-wire com-
pensation scheme for long-range parasitic beam-beam in-
teractions at LHC. Plibb is among the codes [2] being
used to simulate the experiments. A wire compensator has
been added to Plibb’s library of transformation functors;
it is implemented using a simple kick scheme. Its effects
in the RHIC lattices have been verified by comparison with
anaytic results.

Experimentally, the compensation scheme proper has
not been checked with RHIC’s current setup, as the gold
operation does not exhibit significant beam-beam effects.
Tune shift and the experimental signatures of current and
wire distance scans have been established and compared to
simulations codes [2].

Weak-Strong Beam-Beam

Plibb incorporates several models for the weak-strong
beam-beam interaction. They employ different simplifica-
tions, starting from 4× 4 dynamics due to a strong beam
ellipsoid aligned with the x,y axes to an arbitrary oriented

strong beam ellipsoid, including the correct longitudinal
dynamics [1] and considering phase-advance effects by
slicing the strong beam ellipsoid into equal-weights longi-
tudinal portions. The model does not yet, however, take
into account non-drift particle motion for advancing be-
tween kicks by the slices.

We also have implemented different approximations for
the numeric calculation of the analytic expression for the
beam-beam kick, currently, they have to be selected at com-
pile time.

Strong-Strong Beam-Beam

The most significant change has been the integra-
tion of the strong-strong code NIMZOVICH into Plibb.
NIMZOVICH was originally designed as a strong-strong
code for the simulation of electron machines dominated by
a single interaction point; consequently, not much empha-
sis was laid on the symplectic and higher-order correctness
of the lattice. By making it part of Plibb framework,
this has been remedied. Also, the code now uses a par-
allelization scheme optimized for many parasitic crossings
and small synchrotron tunes. This allows it to scale well
to thousands of processors, making close-to-realistic LHC
simulations feasible.

A remaining open question is the behavior of a PIC code
such as NIMZOVICH in the context of hadronic simula-
tions with their high demand on low noise and symplec-
tic correctness. While a 4× 4 PIC algorithm for strong-
strong beam-beam can be easily seen to be symplectic with
an appropriately chosen field solver, the fully coupled and
logitudinally interpolating 6× 6 case requires more care-
ful analysis. Also, the contribution of field noise–inherent
to PIC methods–to the total diffusion speed of the system
needs to be analyzed, possibly complicated by the use of
weighted-particle method.

Benchmarking

Considerable effort has gone into checking the correct-
ness of the transformation functors. For magnetic lattices,
we have cross-checked tunes, chromaticities, and lattice
funtions against MAD-X results for the full RHIC lattice
and MAD8 results for the full Tevatron lattice; in all cases,
the agreement was excellent. The chromatic lumping algo-
rithm was checked by comparing chromaticities and tunes
of lumpings of various coarseness with one another. Beam-
beam effects have been checked by comparing tune shifts
and tune footpints with analytically known results. Typical
results for loss rate estimates for the RHIC experiment are
given in [2].
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