
NAL PROPOSAL No. 63 

Correspondent: 	 J. K. Walker 
Experimental Facilities 
National Accelerator Lab 
Batavia, Ill. 60510 

FTS/Commercial: 	 312-231-6600 Ext. 453 

SURVEY OF PARTICLE PRODUCTION IN PROTON COLLISIONS AT NAL 

M. Atac, D. Carey, T. Collins, Y. Kang, Q. Kerns, 
F. Nezrick, A. Roberts, J. Sauer, R. Shafer, 

R. Stefanski, D. Theriot, T. Toohig, J. K. Walker 

June 15, 1970 



SURVEY OF PARTICLE PRODUCTION IN PROTON COLLISIONS AT NAL 

ABSTRACT 

A spectrometer which can analyze up to 2.4 GeV/c 

particles is proposed for a high-energy survey at NAL of the 

reactions: 

p + p + p + anything 

p + anything 

7T-+ + anything 

K± + anything 

± 
]J + anything 

± e + anything 

y + anything 

The information obtained will be useful for: 

a. calculating the high-energy neutrino 
spectrum. (This has been our basic 
motivation in this work.) 

b. predicting secondary hadron beam intensities. 

c. input data for radiation shielding purposes. 

d. intrinsic physics interest. 
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2. General Discussion 

We are 

p 
 STATt 

interested 

P DETF-CTEl> Pt\I'rncLE n; K ~~~ ­
Due to the forward-backward symmetry in the c ••• s. of the pp 

collision the detection of a particle produced backwards in 

the c ••• s. (low laboratory energy) or forwards in the c.m.s. 

(high laboratory energy) is equivalent. The importance of 

this fact at N.A.L. was pointed out several years ago by 

D. Jovanovic. The experimental study of the yield of high 

energy particles at very small angles involve severe problems 

of particle identification and great precision in alignment. 

These problems become increasingly severe in the range 200­

500 GeV. We propose, instead, to study the yield of particles 

in the backward hemisphere in the center of mass system. In 

this case, the angular alignment is trivial and particle ident­

ification for momenta less than 2.4 GeV/C is relatively easy. 

Figure 1 is a plat of the kinematic relation between 

forward and backward production of pions and kaons in 200 GeV 

p-p collisions. It is clear that detection of backward meSons 

limits the accessible range of forward pions to ~ 40 GeV/C 

and for kaons > 120 GeV/C. Extending the range for pions to 

less than 40 GeV/C will be done by detecting low energy forward 

going pions. The limit of a pion having zero longitudmmal 

momentum in the center of mass corresponds to a forward going 
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1.4 GeV/C pion in 200 GeV p-p collisions. The corresponding 

figure for 500 GeV p-p collisions is 2.4 Gev/C forward pions 

which sets the upper limit of momentum aiamysis for the 

spectrometer. In a similar way, the range for kaons can be 

extended. 

Figure 2 is a plot showing the relation between 

forward and backward production angles for several pion momenta. 

3. Spectrometer 

Figure 3 shows a schematic of the proposed spectro­

meter layout. At the hydrogen target the vertical size of the 

proton beam is made < 0.1 mm. Particles emitted from the 

effective line source in the target are bent in the vertical 

plane by the 24" magnet. The tra!:tectory of a particle at the 

exit of the magnet is measured by 211 X 2" planes of wire· chambers 

a spatial accuracy of = 0.1 mm. The momentum resolution of 

the spectrometer is about 2% and has a total momentum acceptance 

of several percent ~p/p. The geometric acceptance is defined 

by a p.pl" thick and 1 cm X 1 cm scintillation counter giving 

a solid angle of acceptance of 4 X 10-4 steradian. 

Particles are detected with thin scintillation 

counters and identified with a ~erenkov counter, time of flight, 

specific ionization loss, range and pulse height in an electro­

magnetic shower detector. 

4. 	 Brief Discussion of Reactions: 

a) pp ~ n± + anything 
If we define 6c = _0_.,3~=-= 

P (GeV/C) 

as the characteristic angle for the production of high energy 

secondaries of mementum p (GeV/C) then we will obtain information 

on the yield of these secondaries in the angular range el-->e2 
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wh~c 61 « 6 «62 • The counting rates are very high.c 

The existence and momentum distribution of low energy pions 

in the center of mass system (sometimes called pionization 

process) is of some current theoretical interest. This process 

should be able to be studied. 

b) pp + K± + anything 

Similar remarks to a) can be applied here. Of course 

we will not be able to study kaons which have very low center 

of mass momenta. 

By fitting the data to a reasonable particle pro­

duction model (say that due to Hagedorn and Ranft) we will 

be able to extrapolate across the range of momenta in whica particles 

do not get out. :of the targ~t. This applies to all of the 

reactions studied. 

c) pp + p + anything 

Perh&p&, the dominant feature here is the diffractive 

elastic scattering. However, the deep inelastic proton spectrum 

will be used in various ways for seconHary beams. This process 

has been extensively studied at CERN and BNL. In both cases 

the high energy outgoing proton was detected. Fig. 4 shows 

the kinematics relationship between the slow recoil proton momentum 

and angle against the mass of the "anything" for 200 GeV pp 

collisions. We should be able to obtain useful proton spectra 

and interesting physics information from these mass distributions. 

d) pp + p + anything 

Predictions on antiproton yields at very high energy 

are particularly unreliable. These measurements will greatly 

assist in the design of secondary beams. 
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e) pp ~ fix + anything 

+ ~ e- + anything 

It is likely that the detection of these particles is 

dominated by the decay, of u and K mesons. On the other hand 

it may be interesting to look at the yield of high transverse 

momentum (~ 2.4 GeV/C) leptons as a function of incident proton 

energy. Any threshold effect might signal the production of the 

intermediate boson followed by leptonic decay. 

f) pp ~ y + anything 

The gamma rays will mostly corne for the decay of 

uO mesons produced in the pp collisions. We propose surveying 

the yields of gamma rays with energy greater than a few GeV 

corresponding to transverse mementa greater than about 1 GeV/C. 

this data should be useful for designing a gamma ray beam in 

Area 2 or 3 and at the same time look for anomalous large 

transverse momentum behavior. 

5. Logistics and Scheduling 

The physical requirements of the apparatus are not 

great. On the other hand, the early determination of particle 

fluxes in a reliable and simple way is of importance to our 

development program. Thus, if we wish to have the spectrometer 

ready by the summer of 1971, work will have to start rather 

soon on its construction. 
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Spectrometer Layout 

50-500 GeV 
external proton I cm diameter liquid 
beam hydrogen target 

.....---....,........------ -------0-- -- ---- ------~.---

~ slits 

24" long 
magnet 

~ wire chambers 

. 	 electromagnetic 

shower counter 


Fig. 3 

Total ~ength of spectrometer = 6 1 located in proton beam 
transport tunnel leading to beam dump. 
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December 9, 1970 

APPENDIX TO NAL PROPOSAL 63 

We have proposed an experiment to study particle 

production in proton proton collisions between 70 GeV and 

500 GeV incident proton energy. The yields of stable second­

ary particles will be obtained up to their highest possible 

momentum, and at transverse momenta less than about 2 or 3 

GeV/c. 

The results of this experiment will provide the basic 

information for~ 

a) predicting secondary hadron and neutrino beam 

intensities. 

b) input data for shielding purposes. 

In addition, these single particle spectra are of 

profound intrinsic physics inherent by themselves as tests of 

models of high energy hadron dynamics. 

In the past few years, several studies of particle 

production have been made above 10 GeV. The best of these 

studies is probably that reported in April 1970 by a CERN 

group. (l) The over-all absolute error quoted in this work is 

±15%. The history of models purporting to describe the particle 

production process is a long one. Recent contributions have 

been made by Hagedorn and Ranft}Z) way1and;3) Caneshi and 

Pignotti;~) Sanford and wang;5) wang;6) Li1and and Pi1kuhn;7) 

Benecke, Chou, Yang, YeJ6) and finally by Dre11~9) These models 

have been adjusted to fit the production data below 30 GeV. 
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In the last few months it has become quite clear (and emphasized 

most recently at the Argonne Symposium on High Energy Inter­

actions, November 19, 1970) that these models when extrapolated 

to 70 GeV are in striking disagreement with the available data 

of the CERN-SERPUKOV collaboration. The predicted yields for 

essentially all the models average to about a factor of five 

above the observed yields. Extrapolations of the models to 

several hundred GeV probably results in much larger errors. 

It is clear, that careful absolute measurements of 

these particle production spectra up to 500 GeV should be per­

formed as soon as possible, due to the great uncertainty in 

the anticipated yields of particles at NAL. 

Kinematic Region to be Covered 

Figure 1 shows a Peyro~ Plot for the reaction 

p + p + TI + anything 

This plot is convenient for the following reasons: 

1. 	 Plotted in units of center of mass transverse momentum 

* and normalized longitudinal momentum ·1 xl = 2 *PJ.. PL/Energy 

in c.m.s. the contours become approximately energy inde­

pendent. The area below the contour is that kinematic 

region accessible to the proposed spectrometer. 

2. 	 Shown for comparison is the area covered by the recent 

CERN particle survey. 

3. 	 Two typical beam lines being constructed in the Meson 

Laboratory at NAL are shown as the dashed lines. 
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4. 	 The plot shows the ability of the spectrometer to reach 

down even to very small values of Ixl as well as the maxi­

mum possible Ixl An expanded graph of the small Ixl 

region is shown in Figure 2. Thus pion production can be 

studied even below the mass unit of the pion in both 

variables p....* and I x I • 
Figure 3 shows the coverage of the proposed survey 

for the charged beams in the Meson Laboratory. Almost the full 

range of angles and momenta utilized in the Meson Lab can be 

conveniently covered by the spectrometer. The small region of 

no coverage in the most forward beams is due to the mesons 

being difficult to detect below 100 MeV/c. 

Figure 4 shows a similar plot for the K meson survey. 

Figure 5 shows the corresponding Peyrou Plots for the 

reaction 

p + p ~ p + anything 

Similar remarks can be made as before, however, the only 

significant difference here is the missing bottom ~20% of the 

momentum coverage of the proton survey. Otherwise, the cover­

age is excellent. 

We have emphasized in our proposal that in addition 

to the basic proton beam survey, the data can be interpreted 

as a study of the mass distribution of the "anything". Figure 

6 shows the spectrometer acceptance superimposed on a kine­

matics plot of this reaction. The shape of this continuum 

mass distribution as well as its energy and momentum transfer 
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dependence is of great interest to hadron dynamics. The ex­

perimental mass resolution as a function of momentum transfer 

for various masses of the "anything" is shown in Fig. 7 

The mass resolution is minimum at the Jacobian peak where it 

is dominated by the angular resolution of the proton detection. 

Effectively, multiple scattering of the proton in the target, 

walls, gas and counter limit the available resolu±ion. A mass 

resolution of 20 to 30 MeV can be achieved over a quite broad 

range of momentum transfers. This is due to our relatively 

good momentum resolution, which begins to be important quite 

rapidly as one moves away from the Jacobian peak. If any 

structure is observed in the continuum mass distribution of 

the "anything" then its significance above the background can 

be optimized by varying the momentum transfer and keeping the 

mass fixed. The available data of the Collins group at BNL 

indicate large variations of the momentum transfer distribution 

of different N* production compared with the continuum background. 

This data suggests that close to an order of magnitude improve­

ment of signal to noise of structure effects may be achieved 

by controlling the momentum transfer in the reaction. 

We wish to emphasize the great strength of this tech­

nique is its equal ability to study particle production in 

proton proton collisions at 500 GeV as 70 GeV. 

To give more feeling for an actual survey of a beam, 

let us consider the 3.0 mrad beam in the Meson Laboratory. 

Table I shows the angles and energies of the detected TI mesons 

involved in the survey. Figure B shows the Hagedorn-Ranft 
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MESON LAB. 3 mrad Beam Survey 

Pforward(GeV/c) 

20 

40 

60 

80 

100 

120 

140 

160 

180 

Pback (GeV/c) 

.097 

.120 

.186 

.255 

.322 

.390 

.457 

.523 

.590 

6back (degrees) 

38.2 

91.7 

105.1 

109.5 

111.4 

112.5 

113.1 

113.5 

113.8 

Counts! 
second 

32 

48 

64 

96 

80 

62 

16 

4 

1 

The event rate is for ~+ mesons in a ±2% 6p/p 
and 10-~ steradian solid angle acceptance of the 
spectrometer. The beam intensity is assumed to be 
10 1Z protons per second and a liquid hydrogen target 
is 1 cm thick. 

TABLE 1. 
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particle production predictions for this beam. The antiproton 

rates are down by about a factor of 1000 from the TI* rates. 

The Jacobian for transforming the forward to backward cross 

sections is favorable to the antiproton production compared 

to pion production by roughly a factor of 2. Thus, rates for 

antiprotons will be down by about 500 from that for TI+ given 

in Table 1, giving one antiproton per 5 to 10 seconds as 

typical. 

We propose surveying the particle yields at several 

angles to cover the area of the Peyrou Plots as well as possible 

at 70 GeV, 200 GeV and 500 GeV 1 or whatever is the highest 

stable machine energy that is available. 
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ADDENDUM TO NAL PROPOSAL #63: STUDY OF TWO PARTICLE 
CORRELATIONS IN THE SECONDARIES PRODUCED IN PROTON 

PROTON COLLISIONS 

ABSTRACT 

We propose extending the study of single particle spec­

tra in p-p interactions, to study correlation effects in the 

two particle spectrum of secondaries. The proton-proton in­

teraction is unique in two respects compared with other hadron 

proton interactions. The proton beam intensity is about 105 

times greater than any secondary beam intensity. Secondly, 

in proton-proton collisions due to the symmetry in the center 

of mass system, observations of the low energy secondaries in 

the laboratory system permit a complete study of the process. 

Particle identification up to about 2.4 GeV/c is adequate and 

allows a simple and relatively inexpensive setup to be used. 

The object of this experimental proposal is to find 

clear cut qualitative features of high energy hadron-hadron 

collisions as they are displayed in particle-particle correla­

tion effects. These results coupled with our presently approved 

study of single particle spectra will provide many of the 

basic qualitative features of high energy strong interaction 

dynamics. 
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1. 	 Justification 

There does not exist a real theory of strong inter­

actions at present. The models of high energy processes that 

one studies are no substitute for such a theory. It is the 

aim of this experimental proposal, coupled with proposal #63 

to help to characterize the general features of multiple 

particle production independently of any model. 

We propose studying 

p + p + a + b + anything 

where a, b can be anyone of the following particles 

~+,~" , K+,K-,p or p. F the 0 f th' 1 we h a" or purpose ~s proposa s 11 

concentrate on a discussion where a and b are charged pions. 

The detection and identification of the other types of par­

ticles of course will be done. 

There is a well known analogy which links multiparticle 

production cross sections to the multiparticle distribution 

functions of a classical gas. The scaling laws predicted by 

the multiperipheral model may be introduced via this analogy. 

In addition, the conceptual development of the Feynman parton 

model of high energy collisions depended to a significant ex­

tent on this analogy. Finally, the thermodynamic model of 

Fermi and Hagedorn is largely based upon the analogy. In a 

real gas, a knowledge of the density and density correlation 

functions (as a function of temperature and pressure, say) 

determines all the properties of the gas of practical interest. 

By analogy, a knowledge of the density and density density 

correlations of the "elementary particle gas" at high energy 
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should be invaluable in characterizing its properties. 

The density of the gas is simply the invariant single 

particle spectrum for the scattering problem (this will be 

different for the different species of secondary particle 

+ ­
'IT ,K --). The density-density correlations of the gas corres­

pond to the two particle correlation function (again this will 

be different for different species of particles). In this way, 

the gas analogy makes clear that any attempt to study mUltiple 

production should include experiments on the single particle dis­

tributions and the two-particle correlation functions. 

We shall now try to be more specific and give examples 

of the type of qualitative features that nature may reveal in 

these experiments. consider the diagram 

where Pl' P2 are proton 4-vectors, Pa' Pb are the 4-vectors of 

the detected particles and x is the undetected hadron state. 

The measured differential cross section 

do is a function (F) of six variables. 
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We may write these six variables as 

2
S = (PI + P2) 

It 

xa = 2p /Isa 

x = 2 "/Isb Pb 

and 

The basic question is: what simple features does the function F 

exhibit at high energy? 

We list some features that have been suggested in 

the last year. At this stage we should acknowledge stimulation 

by the ideas of Ken Wilson of Cornell on possible experiments on 

multiple production. 

1. Scaling Hypothesis: 

Iv d3Pa d3Pb -+ -+ -+ -+p \ 

.8-+ 00 ~ Eb F (xa ' xb 1 PaJ.' Pb.L i PaJ.. bJ! 


x ' xb fixeda 

PaJ.' Pb.Lfixed 

In other words, at high enough energy the function F becomes a 

function of 5 rather than 6 variables; --the S dependence drops 

out. 

2. dx/x Proposed Law: 

dcr 
large fixed ScrT 
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where it is proposed that F may be a constant for x ' xb ~ 0.3 a 

3. Proposed Factorization Law: 

=I(S)G(Xal xb> H(IPaJ.I,lpbJ.I,PaJ,.· Pb"'> 

4. 	 Correlation Lengths: 

Here one studies, for example 

do 
0T S large and fixed 

-r -r 
PaL' PbJ. 

xa fixed 

as a function of xb" 

One can compute the two particle correlation function g 

from this data. 

We define 

-r -r 
, Pa • Pb > 

= F(S,xa'Xb,lpa~JPb ... 1 , ~a 

- fa(s,xa,IPa ... l)fb(S,xb,lpbJ.l> 

where fa(s,xa,lpa... l) and fb(S,xb,lpbJ.l) are the single particle 

spectra functions of particles a and b. Qualitatively, the most 

interesting property of the correlation function is if it exhibits 

a correlation length, i.e., see if it goes to zero for 

2S - (p + p )2» m for the case of the particles a and b+- - a b f 
being oppositely charged ~ mesons. 

These are some examples of clear out qualitative fea­

tures that may emerge for the structure of the production 
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amplitude F in this type of experiment. Of course, similar 

qualitative features should emerge from the study of the single 

particle spectra. No doubt nature is more subtle than we can 

anticipate and will provide us, after much hard experimental 

fort, with different but more rich insights into the structure 

of the hadron hadron scattering amplitude. We believe that 

discovering the general characteristic features of these pro­

cesses is more important than having precise numerical data on 

particular processes (e.g. 5 body final states) just to test 

a particular model. Finally, we hope these characteristic features 

that are discovered will give a profound insight into our under­

standing of strong interaction theory. 

II. Apparatus 

A double focussing magnetic spectrometer is being con­

structed for studying the single particle distributions in 

proton-proton interactions. The solid angle accepted by the 

spectrometer is about 1 millisteradian and the maximum operable 

momentum is 2.4 GeV/c. The momentum band pass of the spectro­

meter is about 10% and individual particle momenta will be 

determined to about ±0.5%. The angular resolution for particles 

traversing the spectrometer is about ±l milliradian. The 

angular range over which the spectrometer operates is 50 to 

1750 in the laboratory system. The angular range corresponds 

to covering essentially all of the backward hemisphere in 

proton-proton collisions up to 500 GeV incident protons. 

A 1 em thick liquid hydrogen target will be used. 



-7­

The proton beam intensity will be measured using several 

monitors and it is anticipated that eventually reliable 

absolute monitoring of the beam will be achieved at the ±l% 

level of accuracy at all proton beam energies. Good beam moni­

toring is required to study the energy dependence of the dis­

tribution functions (breaking of the scaling laws). 

The design of the spectrometer is such that all of the 

counters are located behind shielding out of sight of the 

liquid target and the proton beam line. In this way we anti­

cipate, based on experience with presently available beam ener­

gies and spectrometers, that we will be able to operate the 

13spectrometer at up to 10 protons per second passing through 

the liquid hydrogen target. Liquid targets have been built 

and used at SLAC which allow successful operation at beyond 

this beam intensity. 

For the purpose of the study of the two particle 

correlations, we propose the use of a second similar spectro­

meter with an upper momentum limit of about 2.4 GeV/c and 

about 25 feet long. The detailed design of the second spectro­

meter will depend on further calculations of multiparticle 

event simulations. In particular, it is possible that a 

larger solid angle of acceptance for the second spectrometer 

would be appropriate. For the present we consider the design 

of the two spectrometers to be identical. These two spectro­

meters would rotate about a common axis centered below the 

liquid hydrogen target. They would normally, but not always, 

be on opposite sides of the incident proton beam line. The 
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length of each spectrometer is 25' and i.s remotely controlled 

in all of its functions. 

III. Experimental Procedure 

We consider, to be specific, the TI+ ,TI correlation 

function. Let S+_ be the invariant mass squared of the TI+,TI 

pair; in terms of the measured laboratory quantities Ip+1 Ip-I , 
e+, e- with an obvious notation 

= 2m2 + 2' / 2 + +2TI V mlf p 

+One expects strong correlation between the TI and TI 

when S ~ m 
2 

(m is the p mass). The correlation function may+-- p p 
2become small when S+_» m. The experiment then consists of 
p 

measuring the cross section at various xb as described earlier. 

Figures 1, 2 and 3 show the regions of the Peyrou plot 

at incident proton energies of 70 GeV, 200 GeV and 500 GeV 

which can be covered by the proposed experimental setup for 

2 2 2
S+_ = mp and S+_ = 3mp. For the case of S+ = m the access­- p 

ib1e region covers essentially the complete range of x and PL 

where we expect the vast bulk of the vents will fall. The dual 

model, the double Pomeron exchange model, parton model etc. 

all make interesting and different predictions for this type 

of data. It is likely that new scaling laws will emerge from 

these results and the range of their validity will be explored 

in detail. 

Rates 

An event simulation Monte Carlo program is being used 

to study the effective acceptance of the two spectrometer 

.~~---.-. -------------------­
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arrangement for dipion systems over the complete kinematic 

range that is accessible. This is a complicated and lengthy 

procedure and is sensitive to the model of particle production 

that is used. We do not yet have results from this work. 

As a first step towards evaluating rates we have 

simply calculated the single pion rates in each spectrometer 

when they are symmetrically located on either side of the beam 

at some representative angles for 200 GeV incident proton en­

ergy. The transverse momentum of the dipion system is .there­

fore zero and the values of x (= 2 Pll/NS)of the pipion system 

are given in Fig. 4. The invariant dipion mass is approximately 

constant at 0.4 GeV2 , the actual values are shown in Fig. 1. 

For this dipion mass the range 0 < x < 1 can be covered for all 

proton energies up to SOO GeV. In addition, transverse momenta 

in the range 0 ~ ~~ 2 GeV/c can be covered (the upper limit 

is correlated with the value of x as indicated in Figs. 2, 3, 4). 

Scaling and factorization can be explored over a wide 

range of the variables. In addition, the cross section de­

· f' h . + + - +pendence on the c h o~ce 0 p~on c arges ~.e. TI TI I TI TI , TI TI 

can be investigated. 

It can be seen that the counting rates in each spec­

trometer are very large, typically about lOS/sec at the above 

settings. To enhance the true coincidence rate above the 

uncorrelated or random coincidence rate it may be appropriate 

to run at lower incident beam intensity for these low invariant 

dipion masses where rates are high. A detailed study of the 
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anticipated correlated coincidence rate for various models 

will be done in the coming months. 

Of course, it should be emphasized that in this 

example of two pions we have picked out only one of a number 

of the qualitative questions which can be investigated with 

this technique. The rates with kaon pairs and proton, anti­

proton pairs will presumably be considerably less than for 

pion pairs. The correlations of unlike particles such as pions 

and protons will also be of interest. 

Time Schedule 

We anticipate that the major portion of the single 

particle spectra will be taken by December 1972. We propose 

that installation of the second spectrometer should proceed 

at this time and that data taking can begin sometime in the 

spring of 1973. 

Summary 

At this stage, we believe the physics justification 

to study two particle correlations in hadron-proton collisions 

is very strong. The proton-proton scattering is a particularly 

appropriate first case for studying these correlations due to 

high beam intensity and very simple, inexpensive and well 

tried detection techniques being required. We believe it is 

important at this stage that the design of the Proton Labora­

tory should take into account a thin transmission target at 

the pivot of the two spectrometers which can swing from ~5° 

to 1750 
• 

-------------_ --_......__..­......_--­
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We intend submitting a detailed addendum to this pro­

posal on the subject of two particle coincidence rates. It 

is our conviction that these two phases of the experiment, 

namely, single particle spectra and two particle correlation 

spectra, will yield many of the most important qualitative 

characteristics of high energy hadron dynamics. 
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Counting 
Equivalent For- Transverse Backward Pion Invariant Mass Value of x = Rate of Pions 
ward Pion Mom. Mom. GeV/c Mom. IAngle of Dipion Sy- 2Pll/lSof Di- in Spectrometer 

stem (GeV)2 pion System GeV/c) A or B/Second(GeV/c) GeV/clnegrees 

36.30 0.44 0.25 1.6 x 10525 ±0.3 0.507 

50 ±0.3 0.322 68.80 0.39 0.50 2 x 105 

t.93.8° 0.44 0.75 1.7 x 10575 to.3 0.30 

A 

Proton Beam 
I 
I-' 
I-'f~~s,~ 
I 

Liquid Hydrogen Spectrometer B 
Target 

Kinematics and Counting Rates for Each Spectrometer. 

Fig. 4-. 


