
Accepted by The International Journal of Computer Communications, Elsevier, 2006

The Performance Analysis of Linux Networking –
Packet Receiving∗

Wenji Wu+, Matt Crawford, Mark Bowden

Fermilab, MS-368, P.O. Box 500, Batavia, IL, 60510
Email: wenji@fnal.gov, crawdad@fnal.gov, bowden@fnal.gov

Phone: +1 630-840-4541, Fax: +1 630-840-8208

Abstract

The computing models for High-Energy Physics experiments are becoming ever more
globally distributed and grid-based, both for technical reasons (e.g., to place computa-
tional and data resources near each other and the demand) and for strategic reasons (e.g.,
to leverage equipment investments). To support such computing models, the network and
end systems, computing and storage, face unprecedented challenges. One of the biggest
challenges is to transfer scientific data sets – now in the multi-petabyte (1015 bytes) range
and expected to grow to exabytes within a decade – reliably and efficiently among facili-
ties and computation centers scattered around the world. Both the network and end
systems should be able to provide the capabilities to support high bandwidth, sustained,
end-to-end data transmission. Recent trends in technology are showing that although the
raw transmission speeds used in networks are increasing rapidly, the rate of advancement
of microprocessor technology has slowed down. Therefore, network protocol-processing
overheads have risen sharply in comparison with the time spent in packet transmission,
resulting in degraded throughput for networked applications. More and more, it is the
network end system, instead of the network, that is responsible for degraded performance
of network applications. In this paper, the Linux system’s packet receive process is stud-
ied from NIC to application. We develop a mathematical model to characterize the Linux
packet receiving process. Key factors that affect Linux systems’ network performance are
analyzed.

Keywords: Linux, TCP/IP, protocol stack, process scheduling, performance analysis

1. Introduction

The computing models for High-Energy Physics (HEP) experiments are becoming ever
more globally distributed and grid-based, both for technical reasons (e.g., to place com-
putational and data resources near each other and the demand) and for strategic reasons
(e.g., to leverage equipment investments). To support such computing models, the net-
work and end systems, computing and storage, face unprecedented challenges. One of the
biggest challenges is to transfer physics data sets – now in the multi-petabyte (1015 bytes)
range and expected to grow to exabytes within a decade – reliably and efficiently among
facilities and computation centers scattered around the world. Both the network and end

∗ Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.
+ Corresponding Author

 1

FERMILAB-PUB-06-406-CD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71307365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems should be able to provide the capabilities to support high bandwidth, sustained,
end-to-end data transmission [1][2]. Recent trends in technology are showing that al-
though the raw transmission speeds used in networks are increasing rapidly, the rate of
advancement of microprocessor technology has slowed down [3][4]. Therefore, network
protocol-processing overheads have risen sharply in comparison with the time spent in
packet transmission, resulting in the degraded throughput for networked applications.
More and more, it is the network end system, instead of the network, that is responsible
for degraded performance of network applications.

Linux-based network end systems have been widely deployed in the HEP communities
(e.g., CERN, DESY, Fermilab, SLAC). In Fermilab, thousands of network end systems
are running Linux operating systems; these include computational farms, trigger process-
ing farms, servers, and desktop workstations. From a network performance perspective,
Linux represents an opportunity since it is amenable to optimization and tuning due to its
open source support and projects such as web100 and net100 that enable tuning of net-
work stack parameters [5][6]. In this paper, the Linux network end system’s packet
receive process is studied from NIC to application. We work with mature technologies
rather than “bleeding-edge” hardware in order to focus on the end-system phenomena
that stand between reasonable performance expectations and their fulfillment. Our analy-
sis is based on Linux kernel 2.6.12. The network technology at layers 1 and 2 assumes an
Ethernet medium, since it is the most widespread and representative LAN technology.
Also, it is assumed that the Ethernet device driver makes use of Linux’s “New API,” or
NAPI [][],7 8 which reduces the interrupt load on the CPUs. The contributions of the pa-
per are as follows: (1) We systematically study the current packet handling in the Linux
kernel. (2) We develop a mathematical model to characterize the Linux packet receive
process. Key factors that affect Linux systems’ network performance are analyzed.
Through our mathematical analysis, we abstract and simplify the complicated kernel pro-
tocol processing into three stages, revolving around the ring buffer at the NIC driver level
and sockets’ receive buffer at the transport layer of the protocol stack. (3) Our experi-
ments have confirmed and complemented our mathematical analysis.

The remainder of the paper is organized as follows: In Section 2 the Linux packet receiv-
ing process is presented. Section 3 presents a mathematical model to characterize the
Linux packet receiving process. Key factors that affect Linux systems’ network perform-
ance are analyzed. In Section 4, we show the experiment results that test and complement
our model and further analyze the packet receiving process. Section 5 summarizes our
conclusions.

2. Packet Receiving Process

Figure 1 demonstrates generally the trip of a packet from its ingress into a Linux end sys-
tem to its final delivery to the application [7][9][10]. In general, the packet’s trip can be
classified into three stages:

• Packet is transferred from network interface card (NIC) to ring buffer. The NIC
and device driver manage and controls this process.

 2

• Packet is transferred from ring buffer to a socket receive buffer, driven by a soft-
ware interrupt request (softirq) [9][11][12]. The kernel protocol stack handles this
stage.

• Packet data is copied from the socket receive buffer to the application, which we
will term the Data Receiving Process.

In the following sections, we detail these three stages.

NIC
Hardware

Network
Application

Traffic SinkRing Buffer
Socket RCV

BufferSoftIrq
Process

SchedulerTrafficSource

IP
Processing

TCP/UDP
Processing

SOCK RCV
SYS_CALLDMA

Kernel Protocol Stack Data Receiving ProcessNIC & Device Driver

Figure 1 Linux Networking Subsystem: Packet Receiving Process

2.1 NIC and Device Driver Processing
The NIC and its device driver perform the layer 1 and 2 functions of the OSI 7-layer net-
work model: packets are received and transformed from raw physical signals, and placed
into system memory, ready for higher layer processing. The Linux kernel uses a structure
sk_buff [7][9] to hold any single packet up to the MTU (Maximum Transfer Unit) of the
network. The device driver maintains a “ring” of these packet buffers, known as a “ring
buffer,” for packet reception (and a separate ring for transmission). A ring buffer consists
of a device- and driver-dependent number of packet descriptors. To be able to receive a
packet, a packet descriptor should be in “ready” state, which means it has been initialized
and pre-allocated with an empty sk_buff which has been memory-mapped into address
space accessible by the NIC over the system I/O bus. When a packet comes, one of the
ready packet descriptors in the receive ring will be used, the packet will be transferred by
DMA [13] into the pre-allocated sk_buff, and the descriptor will be marked as used. A
used packet descriptor should be reinitialized and refilled with an empty sk_buff as soon
as possible for further incoming packets. If a packet arrives and there is no ready packet
descriptor in the receive ring, it will be discarded. Once a packet is transferred into the
main memory, during subsequent
processing in the network stack, the
packet remains at the same kernel
memory location.

Figure 2 shows a general packet re-
ceiving process at NIC and device
driver level. When a packet is re-
ceived, it is transferred into main
memory and an interrupt is raised
only after the packet is accessible to
the kernel. When CPU responds to
the interrupt, the driver’s interrupt
handler is called, within which the

...
Packet Packet

Packet

Packet
Descriptor

Ring Buffer

...

DMA

1
24 3

8

7

6
5

...

NIC Interrupt
Handler

Raised softirq

Poll_queue (per CPU)

NIC1

SoftIrq

x

Netif_rx_schedule()

Hardware
Interrupt

N
IC

1

check

1

2

3

4

dev->poll

Net_rx_action

5

6
Higher Layer Processing

alloc_skb()

Refill

Figure 2 NIC & Device Driver Packet Receiving

 3

softirq is scheduled. It puts a reference to the device into the poll queue of the interrupted
CPU. The interrupt handler also disables the NIC’s receive interrupt till the packets in its
ring buffer are processed.

The softirq is serviced shortly afterward. The CPU polls each device in its poll queue to
get the received packets from the ring buffer by calling the poll method of the device
driver. Each received packet is passed upwards for further protocol processing. After a
received packet is dequeued from its receive ring buffer for further processing, its corre-
sponding packet descriptor in the receive ring buffer needs to be reinitialized and refilled.

2.2 Kernel Protocol Stack

2.2.1 IP Processing
The IP protocol receive function is called during the processing of a softirq for each IP
packet that is dequeued from the ring buffer. This function performs initial checks on the
IP packet, which mainly involve verifying its integrity, applying firewall rules, and dis-
posing the packet for forwarding or local delivery to a higher level protocol. For each
transport layer protocol, a corresponding handler function is defined: tcp_v4_rcv() and
udp_rcv() are two examples.

2.2.2 TCP Processing
When a packet is handed upwards for TCP
processing, the function tcp_v4_rcv() first
performs the TCP header processing. Then
the socket associated with the packet is
determined, and the packet dropped if
none exists. A socket has a lock structure
to protect it from un-synchronized access.
If the socket is locked, the packet waits on
the backlog queue before being processed
further. If the socket is not locked, and its
Data Receiving Process is sleeping for
data, the packet is added to the socket’s
prequeue and will be processed in batch in
the process context, instead of the inter-
rupt context [11][12]. Placing the first
packet in the prequeue will wake up the
sleeping data receiving process. If the pre-
queue mechanism does not accept the
packet, which means that the socket is not
locked and no process is waiting for input
on it, the packet must be processed
immediately by a call to tcp_v4_do_rcv().
The same function also is called to drain
the backlog queue and prequeue. Those
queues (except in the case of prequeue

Application Traffic Sink

Ringbuffer

Backlog

IP
Processing

Sock
Locked?

Y

Receiving process
sleeps for data?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence
Queue

Receive
Queue

TCP
Processing

NIC
Hardware

Traffic Src

DMA

Copy to iov?

Copy to iov?

Y

Y

Fast path?

Y

N

Figure 3 TCP Processing - Interrupt Context

 4

overflow) are drained in the process context, not the interrupt context of the softirq. In
the case of prequeue overflow, which means that packets within the prequeue
reach/exceed the socket’s receive buffer quota, those packets should be processed as soon
as possible, even in the interrupt context.

tcp_v4_do_rcv() in turn calls other functions for actual TCP processing, depending on the
TCP state of the connection. If the connection is in tcp_established state,
tcp_rcv_established() is called; otherwise, tcp_rcv_state_process() or other measures
would be performed. tcp_rcv_established() performs key TCP actions: e.g. sequence
number checking, DupACK sending, RTT estimation, ACKing, and data packet process-
ing. Here, we focus on the data packet processing.

In tcp_rcv_established(), when a data packet is handled on the fast path, it will be
checked whether it can be delivered to the user space directly, instead of being added to
the receive queue. The data’s destination in user space is indicated by an iovec structure
provided to the kernel by the data receiving process through a system calls such as
sys_recvmsg. The conditions of checking whether to deliver the data packet to the user
space are as follow:

• The socket belongs to the currently active process;
• The current packet is the next in sequence for the socket;
• The packet will entirely fit into the application-supplied memory location;

When a data packet is handled on the slow path it will be checked whether the data is in
sequence (fills in the beginning of a hole in the received stream). Similar to the fast path,
an in-sequence packet will be copied to user space if possible; otherwise, it is added to
the receive queue. Out of sequence packets
are added to the socket’s Out-of-Sequence
Queue and an appropriate TCP response is
scheduled. Unlike the backlog queue, pre-
queue and out-of-sequence queue, packets in
the receive queue are guaranteed to be in or-
der, already acked, and contain no holes.
Packets in out-of-sequence queue would be
moved to receive queue when incoming
packets fill the preceding holes in the data
stream. Figure 3 shows the TCP processing
flow chart within the interrupt context.

Copy to iovReceive Queue
Empty?

Y

N

Prequeue
Empty?

Backlog
Empty?

Y

sk_backlog_rcv()

As previously mentioned, the backlog and
prequeue are generally drained in the process
context. The socket’s data receiving process
obtains data from the socket through socket-
related receive system calls. For TCP, all
such system calls result in the final calling of
tcp_recvmsg(), which is the top end of the
TCP transport receive mechanism. As shown

iov

Return

User Space

Kernel

Socketentry

Data receiving process

data

tcp_recvmsg()

sys_call

Y

N

N

Lock socket

Unlock socket

Enough data?

sk_wait_data()

Y

N

Lock socketWakeup

Figure 4 TCP Processing – Process Context

 5

in Figure 4, when tcp_recvmsg() is called, it first locks the socket. Then it checks the re-
ceive queue. Since packets in the receive queue are guaranteed in order, acked, and
without holes, data in receive queue is copied to user space directly. After that,
tcp_recvmsg() will process the prequeue and backlog queue, respectively, if they are not
empty. Both result in the calling of tcp_v4_do_rcv(). Afterward, processing similar to
that in the interrupt context is performed. tcp_recvmsg() may need to fetch a certain
amount of data before it returns to user code; if the required amount is not present,
sk_wait_data() will be called to put the data receiving process to sleep, waiting for new
data to come. The amount of data is set by the data receiving process. Before
tcp_recvmsg() returns to user space or the data receiving process is put to sleep, the lock
on the socket will be released. As shown in Figure 4, when the data receiving process
wakes up from the sleep state, it needs to relock the socket again.

2.2.3 The UDP Processing
When a UDP packet arrives from the IP layer, it is passed on to udp_rcv(). udp_rcv()’s
mission is to verify the integrity of the UDP packet and to queue one or more copies for
delivery to multicast and broadcast sockets and exactly one copy to unicast sockets.
When queuing the received packet in the receive queue of the matching socket, if there is
insufficient space in the receive buffer quota of the socket, the packet may be discarded.
Data within the Socket’s receive buffer are ready for delivery to the user space.

2.3 Data Receiving Process
Packet data is finally copied from the socket’s receive buffer to user space by data
receiving process through socket-related receive system calls. The receiving process
supplies a memory address and number of bytes to be transferred, either in a struct iovec,
or as two parameters gathered into such a struct by the kernel. As mentioned above, all
the TCP socket-related receive system calls result in the final calling of tcp_recvmsg(),
which will copy packet data from socket’s buffers (receive queue, prequeue, backlog
queue) through iovec. For UDP, all the socket-related receiving system calls result in the
final calling of udp_recvmsg(). When udp_recvmsg() is called, data inside receive queue
is copied through iovec to user space directly.

3. Performance Analysis

Based on the packet receiving
process described in Section
2, the packet receiving proc-
ess can be described by the
model in Figure 5. In the
mathematical model, the NIC
and device driver receiving
process can be represented by
the token bucket algorithm [14], accepting a packet if a ready packet descriptor is avail-
able in the ring buffer and discarding it if not. The rest of the packet receiving processes
are modeled as queuing processes [15].

Ring Buffer

Refill Rate Rr

T

T

Socket i
RCV Buffer

3 12

RT Rs Rdi

Total Number of
Packet Descriptors

D

Number of Packet
Descriptors in Ready State

A
To other sockets

2 Packet
Discard

3 1

Ri

RT’

Ri’

Rsi

Figure 5 Packet Receiving Process - Mathematical Model

 6

We assume several incoming data streams are arriving and define the following symbols:
• , : Offered and accepted total packet rate (Packets/Time Unit);)(tRT)(' tRT

• ,)(tRi Ri' (t): Offered and accepted packet rate for data stream i (Packets/Time Unit);
• : Refill rate for used packet descriptor at time t (Packets/Time Unit);)(tRr

• : The total number of packet descriptors in the receiving ring buffer; D
• The number of packet descriptors in the ready state at time t;)(tA :
• minτ : The minimum time interval between a packet’s ingress into the system and

its first being serviced by a softirq;
• NIC’s maximum packet receive rate, (Packets/Time Unit); maxR :
• : Kernel protocol packet service rate (Packets/Time Unit);)(tRs

• : Softirq packet service rate for stream i (Packets/Time Unit);)(tRsi

• : Data receiving process packet service rate for stream i (Packets/Time Unit);)(tRdi

• : Socket i’s receive buffer size at time t (Bytes);)(tBi

• : Socket i’s receive buffer quota (Bytes); iQB
• : The number of runnable processes during the packet reception period; N
• , ... , : N runnable processes during the packet reception period; 1P NP
• : Data receiving process for data stream i; iP

The Token Bucket algorithm is a surprisingly good fit to the NIC and device driver re-
ceiving process. In our model, the receive ring buffer is represented as a token bucket
with a depth of D tokens. Each packet descriptor in the ready state is a token, granting
the ability to accept one incoming packet. The tokens are regenerated only when used
packet descriptors are reinitialized and refilled. If there is no token in the bucket, incom-
ing packets will be discarded.

Then, it has:

0>∀t , RT ' (t) =
RT (t), A(t) > 0

0, A(t) = 0
⎧
⎨
⎩

 (1)

Therefore, to admit packets into the system without discarding, the system should meet
the condition:

 , (2) 0>∀t 0)(>tA

Also, it can be derived that:
 A(t) = D − RT ' (τ)dτ

0

t∫ + Rr (τ)dτ
0

t∫ , 0>∀t (3)

It can be seen from (1) and (3) that in order to avoid or minimize packet drops by the
NIC, the system needs either to raise its and/or , or to effectively decrease

.
)(tRr D

)(tRT

 7

Since a used packet descriptor can be reinitialized and refilled after its corresponding
packet is dequeued from the receive ring buffer for further processing, the rate of
depends on the following two factors: (1) Protocol packet service rate . To raise the
protocol kernel packet service rate, approaches of optimizing or offloading the kernel
packet processing in the system’s protocol kernel have been proposed. For example,
TCP/IP Offloading technology [

)(tRr

)(tRs

16][17][18][19][20] aims to free the CPU of some
packet processing by shifting tasks to the NIC or storage device. (2) The system memory
allocation status. When the system is in memory pressure, allocation of new packet buff-
ers is prone to failure. In that case, the used packet descriptor cannot be refilled; the rate
of is actually decreased. When all packet descriptors in the ready state are used up,
further incoming packets will be dropped by the NIC. Experiments in Section 4.1 will
confirm this point. In the absence of memory shortage, it can be assumed that

.

)(tRr

)()(tRtR rs =

D is a design parameter for the NIC and driver. A larger implies increased cost for the
NIC. For a NAPI driver, should be big enough to hold further incoming packets before
the received packets in the NIC receive ring buffer are dequeued and the corresponding
packet descriptors in the receive ring buffer are reinitialized and refilled. In that case,

should at least meet the following condition to avoid unnecessary packet drops:

D
D

D
maxmin * RD τ> (4)

Here, minτ is the minimum time interval between a packet’s ingress into the system and
its first being serviced by a softirq. In general, minτ includes the following components
[12] [21]:

• NIC interrupt dispatch time (NIDT): when an NIC interrupt occurs, a system must
save all registers and other system execution context before calling the NIC
packet-receive interrupt service routine to handle it.

• NIC interrupt service time (NIST): the time used by the NIC interrupt service rou-
tine to retrieve information from the NIC and schedule the packet-receive softirq.

Among them, NIDT has nearly constant value given a hardware configuration. However,
NIST depends on the length of the NIC interrupt handler. A poorly designed NIC device
driver may impose a long NIST value and cause an unacceptably large minτ . With a given

, a poorly designed NIC device driver can even cause packet drops in the receive ring
buffer.
D

)(tRT is the offered total packet rate. Usually, one tries to increase in order to

maximize the incoming throughput. In order to avoid or minimize packet drops by the
NIC, to decrease seems to be an unacceptable approach. However, use of jumbo
frames

)(tRT

)(tRT
* [22][23][24] helps maintain the incoming byte rate while reducing to

avoid packet drops at the NIC. Using jumbo frames at 1Gb/s reduces the maximum
packet rate from over 80,000 per second to under 14,000 per second. Since jumbo frames

)(tRT

* IEEE 802.3 Ethernet imposes a Maximum Transmission Unit (MTU) of 1500 bytes. But
many Gigabit Ethernet vendors have followed a proposal by Alteon Networks to support
Jumbo frame sizes over 9000 bytes.

 8

decrease , it can be seen from (4) that the requirements for D might be lowered with
jumbo frames.

maxR

The rest of the packet receiving processes are modeled as queuing processes. In the
model, socket i’s receive buffer is a queue of size . The packets are put into the queue
by softirq with a rate of , and are moved out of the queue by the data receiving
process with a rate of .

iQB
)(tRsi

)(tRdi

For stream i, based on the packet receiving process, it has:

)()(' tRtR ii ≤ and)()(tRtR ssi ≤ (5)

Similarity, it can be derived that:
 (6) Bi(t) = Rsi(τ)dτ

0

t∫ − Rdi(τ)dτ
0

t∫

In transport layer protocol operations plays a key role. For UDP, when ,
all the incoming packets for socket i will be discarded. In that case, all the protocol proc-
essing effort over the dropped packet would be wasted. From both the network end
system and network application’s perspective, this is the condition we try to avoid.

)(tBi ii QBtB ≥)(

TCP does not drop packets at the socket level as UDP does when the receive buffer is
full. Instead, it advertises to the sender to perform flow control. However,
when a TCP socket’s receive buffer is approaching full, the small window
advertised to the sender side will throttle the sender’s data sending rate, resulting in de-
graded TCP transmission performance [

)(tBQB ii −
)(tBQB ii −

25].

From both UDP and TCP’s perspectives, it is desirable to raise the value of ,
which is:

)(tBQB ii −

QBi − Rsi(τ)dτ
0

t∫ + Rdi(τ)dτ
0

t∫ (7)

Clearly it is not desirable to reduce to achieve the goal. But the goal can be
achieved by raising and/or . For most operating systems, is configurable.
For Linux 2.6, is configurable through /proc/net/ipv4/tcp_rmem, which is an array of
three elements, giving the minimum, default, and maximum values for the size of the re-
ceive buffer.

)(tRsi

iQB)(tRdi iQB

iQB

To maximize TCP throughput, the rule of thumb for configuring TCP is to set it to
the Bandwidth*Delay Product (BDP) of the end-to-end path (the TCP send socket buffer
size is set the same way). Here Bandwidth means the available bandwidth of the end-to-
end path; and Delay is the round trip time. According to the above rules, for long, high-
bandwidth connections, would be set high. IA-32 Linux systems usually adopt a
3G/1G virtual address layout, 3GB virtual memory for user space and 1GB for kernel

iQB

iQB

 9

space [12][26][27]. Due to this virtual address partition scheme, the kernel can at most
directly map 896MB physical memory into its kernel space. This part of memory is
called Lowmem. The kernel code and its data structures must reside in Lowmem, and
they are not swappable. However, the memory allocated for s (and the send socket
buffers) also has to reside within Lowmem, and is also not swappable. In that case, if

is set high (say, 5MB or 10MB) and the system has a large number of TCP connec-
tions (say, hundreds), it will soon run out of Lowmem. “Bad things happen when you’re
out of Lowmem” [

iQB

iQB

12][26][27]. For example, one direct consequence is to cause packet
drops at the NIC: due to memory shortage in Lowmem, the used packet descriptor cannot
be refilled; when all packet descriptors in the ready state are used up, further incoming
packets will be dropped at the NIC. To prevent TCP from overusing the system memory
in Lowmem, the Linux TCP implementation has a control variable - sysctl_tcp_mem to
bound the total amount of memory used by TCP for the entire system. Sysctl_tcp_mem is
configurable through /proc/net/ipv4/tcp_mem, which is an array of three elements, giving
the minimum, memory pressure point, and high number of pages allowed for queuing by
all TCP sockets. For IA-32 Linux systems, if would be set high, the sysctl_tcp_mem
should be correspondingly configured to prevent system from running out of Lowmem.
For IA-64 Linux systems Lowmem is not so limited, and all installed physical memory
belongs to Lowmem. But configuring and sysctl_tcp_mem is still subject to physical
memory limit.

iQB

iQB

)(tRdi is contingent on the data receiving process itself and the offered system load. The

offered system load includes the offered interrupt load and offered process load. Here, the
offered interrupt load means all the interrupt-related processing and handling (e.g., NIC
interrupt handler processing, packet receiving softirq processing). In an interrupt-driven
operating system like Linux, since interrupts have higher priority than processes, when
the offered interrupt load exceeds some threshold, the user-level processes could be
starved for CPU cycles, resulting in decreased . In the extreme, when the user-level
processes were totally preempted by interrupts, would drop to zero. For example,
in the condition of receive livelock [

)(tRdi

)(tRdi

8], when non-flow-controlled packets arrive too fast,
the system will spend all of its time processing receiver interrupts. It will therefore have
no CPU resources left to support delivery of the arriving packets to data receiving proc-
ess, with dropping to zero. With heavy network loads, the following approaches are
usually taken to reduce the offered interrupt load and save CPU cycles for network appli-
cations: (1) Interrupt coalescing (NAPI) [

)(tRdi

8], which reduce the cost of packet receive
interrupts by processing several packets for each interrupt. (2) Jumbo frames
[22][23][24]. As stated above, jumbo frames can effectively reduce the incoming packet
rate, hence the interrupt rate and the interrupt load. Specifically, jumbo frames will re-
duce network stack processing (softirq processing) overhead incurred per byte. A
significant reduction of CPU utilization can be obtained. (3) TCP/IP offloading [17][18].

In the following sections, we discuss from the offered process load’s perspective,
assuming the system is not overloaded.

)(tRdi

 10

Linux 2.6 is a preemptive multi-processing operating
system. Processes (tasks) are scheduled to run in a
way of prioritized round robin [11][12][28]. As
shown in Figure 6, the whole process scheduling is
based on a data structure called runqueue. Essen-
tially, a runqueue keeps track of all runnable tasks
assigned to a particular CPU. As such, one runqueue
is created and maintained for each CPU in a system.
Each runqueue contains two priority arrays: active
priority array and expired priority array. Each prior-
ity array contains one queue of runnable processes
per priority level. Higher priority processes are
scheduled to run first. Within a given priority, proc-
esses are scheduled round robin. All tasks on a CPU
begin in the active priority array. Each process’ time
slice is calculated based on its nice value; as a process in the active priority array run out
of its time slice, the process is considered expired. An expired process is moved to the
expired priority array+. During the move, a new time slice and priority is calculated.
When there are no more runnable tasks in the active priority array, it is simply swapped
with the expired priority array.

...

Active Priority Array

Priority

Task: (Priority, Time Slice)

Let’s assume that during the period of data reception, the system process load is stable.
There are N running processes: , ... , ; and is the data receiving process for data
stream i. ’s packet service rate is constant

1P NP iP

iP λ when the process is running. Each process
will not sleep (e.g., waiting for I/O) or a sleeping process is waking up soon compared
with its time slice. As such, data
receiving process P ’s running
model can be modeled as shown in
Figure 7. Interrupts might happen
when a process runs. Since inter-
rupt process time is not charged
upon processes, we do not consider
interrupts here.

i

Further, the running cycle of can be derived as follows: iP

∑
=

N

j
jPTimeslice

1

)((8)

In the model, process ’s running period is Timeslice , and the expired period is: iP)(iP

)()(
1

i

N

j
j PtimeslicePTimeslice −∑

=

 (9)

+ To improve system responsiveness, an interactive process is moved back to the active
priority array.

Cycle n

Running
expired

0 t1 t2

Running
expired

t3 t4

Cycle n+1

Figure 7 Data receiving process running model

(3, Ts1)

(139, Ts2) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

Figure 6 Linux Process Scheduling

 11

From a process’ perspective, process ’s relative CPU share is: iP

 (10) ∑
=

N

j
ji PTimeslicePTimeslice

1

)(/)(

From (8), (9), and (10), it can be seen that when process’ nice values are relatively fixed
(e.g., in Linux, the default nice value is 0), the number of will dictate ’s running fre-
quency.

N iP

For the cycle n in Figure 7, we have:

Rdi (t) =
λ, 0 < t < t1

0, t1 < t < t2

⎧
⎨
⎩

 (11)

Therefore, to raise the rate of requires increasing the data receiving process’ CPU
share: either increase data receiving process’ time slice/nice value, or reduce the system
load by decreasing to increase data receiving process’ running frequency. Experiment
results in Section 4.3 will confirm this point.

)(tRdi

N

Another approach to raise the rate of is to increase the packet service rate)(tRdi λ . From
a programmers’ perspective, the following optimizations could be taken to maximize λ :
(1) Buffer alignments [29][30]; (2) Asynchronous I/O [30].

4. Results and Analysis

We run the data transmission experiments
upon Fermi’s sub-networks. In the experi-
ments, we run iperf [31] to send data in one
direction between two computer systems. iperf
in the receiver is the data receiving process. As shown in Figure 8, the send and the re-
ceiver are connected to two Cisco 6509 switches respectively. The corresponding
connection’s bandwidth is as labeled. The sender and receiver’s features are as shown in
table 1.

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

Figure 8 Experiment Network & Topology

 Sender Receiver†

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium II CPU (350 MHz)
System Memory 3829 MB 256MB

NIC Tigon, 64bit-PCI bus slot at 66MHz,
1Gbps/sec, twisted pair

Syskonnect, 32bit-PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

OS Linux 2.6.12
(3G/1G virtual address layout)

Linux 2.6.12
(3G/1G virtual address layout)

Table 1 Sender and Receiver Features

† We ran experiments on different versions of Linux receivers, and similar results were
obtained.

 12

In order to study the detailed packet receiving process, we have added instrumentation
within the Linux packet receiving path. Also, to study the system’s reception perform-
ance at various system loads, we are compiling the Linux Kernel as background system
load by running make –nj [11]. The different value of n corresponds to different levels
of background system load, e.g. make –4j. For simplicity, they are termed as “BLn”.
The background system load implies load on both CPU and system memory.

We run ping to obtain the round trip time between Sender and Receiver. The maximum
RTT is around 0.5ms. The BDP of the end-to-end path is around 625KB. When TCP
sockets’ receive buffer sizes are configured larger than BDP, the TCP performance won’t
be limited by the TCP flow control mechanism (Small TCP sockets’ receive buffer size
would limit the end-to-end performance, readers could refer to [25][32]). To verify this
point, we run experiments with various receiver buffer sizes equal or greater than 1MB:
sender transmits one TCP stream to receiver for 100 seconds, all the processes run with a
nice value of 0. The experiment results are as shown in Table 2. It can be seen that: when
the TCP sockets’ receive buffer sizes are greater than BDP, similar results (End-to-End
Throughputs) have been obtained.

 Experiment Results: End-to-End Throughput
Receive Buffer Size 1M 10M 20M 40M 80M

BL0 310 Mbps 309 Mbps 310 Mbps 309 Mbps 308 Mbps
BL4 64.7 Mbps 63.7 Mbps 63.9 Mbps 65.2 Mbps 65.5 Mbps

BL10 30.7 Mbps 31 Mbps 31.4 Mbps 31.9 Mbps 31.9 Mbps

Table 2 TCP Throughput with various Socket Receive Buffer Sizes

 In the following experiments, unless otherwise specified, all the processes are running
with a nice value of 0; and iperf’s receive buffer is set to 40MB. From the system level,
the sysctl_tcp_mem is configured as: “49152 65536 98304”. We choose a relatively large
receiver buffer based on the following considerations: (1) In the real world, system ad-
ministrators often configure /proc/net/ipv4/tcp_rmem high to accommodate high BDP
connections. (2) We want to demonstrate the potential dangers brought to the Linux sys-
tems when configuring /proc/net/ipv4/tcp_rmem high.

4.1 Receive Ring Buffer
The total number of packet descriptors in the receive ring buffer of the receiver’s NIC is
384. As it has been put in section 3, the receive ring buffer might be a potential bottle-
neck for packet receiving. Our experiments have confirmed this point. In the
experiments, Sender transmits 1 TCP stream to Receiver with the transmission duration
of 25 seconds. The experiment results are as shown in Figure 9:

• Normally, only a small portion of the packet descriptors in the receive ring buffer
is used, and the used descriptors are reinitialized and refilled in time.

• Surprisingly it can be seen that on a few occasions (@2.25s, @2.62s, @2.72s)
with the load of BL10, all 384 packet descriptors in the receive ring buffer were
used. At these times further incoming packets are dropped until the used descrip-
tors are reinitialized and refilled. Upon careful investigation, it was determined
that with BL10, the system is in high memory pressure. In this condition attempts
to allocate new packet buffers to refill used descriptors fail and the rate of is)(tRr

 13

actually decreased; soon the receive ring buffer runs out of ready descriptors and
packets are dropped. Those failed-to-be-refilled used descriptors can only be re-
filled after the Page Frame Reclaiming Algorithm (PFRA) of the Linux kernel
refills the lists of free blocks of the buddy system, for example, by shrinking
cache or by reclaiming page frames from User Mode processes [12].

 In the real world, packet loss is generally blamed on the network, especially for TCP
traffic. Few people are conscious that packets drops might commonly occur at the NIC.

Figure 9 Used Packet Descriptors in the Receiving Ring Buffer

4.2 TCP & UDP
In the TCP experiments, sender transmits one TCP stream to receiver for 25 seconds.
Figures 10 and 11 show observations at background loads (BL) of 0 and 10 respectively.

• Normally, prequeue and out-of-sequence queue are empty. The backlog queue is
usually not empty. Packets are not dropped or reordered in the test network. How-
ever, when packets are dropped by the NIC (Figure 9) or temporarily stored in the
backlog queue, subsequent packets may go to the out-of-sequence queue.

• The receive queue is approaching full. In our experiment, since the sender is more
powerful than the receiver, the receiver controls the flow rate. The experiment re-
sults have confirmed this point.

• In contrast with Figure 10, the backlog and receive queues in Figure 11 show
some kind of periodicity. The periodicity matches the data receiving process’ run-
ning cycle. In Figure 10, with BL0, the data receiving process runs almost
continuously, but at BL10, it runs in a prioritized round-robin manner.

In the UDP experiments, sender transmits one UDP stream to receiver for 25 seconds.
The experiments are run with three different cases: (1) Sending rate: 200Mb/s, Receiver’s
background load: 0; (2) Sending rate: 200Mb/s, Receiver’s background load: 10; (3)
Sending rate: 400Mb/s, Receiver’s background load: 0. Figures 12 and 13 show the re-
sults for UDP transmissions.

• Both cases (1) and (2) are within receiver’s handling limit. The receive buffer is
generally empty.

 14

• In case (3), the receive buffer remains full. Case (3) exhibits receive-livelock
problems [8]. Packets are dropped in the socket level. The effective data rate in
case (3) is 88.1Mbits, with a packet drop rate of 670612/862066 (78%) at the
socket.

Zoom in

Figure 10 Various TCP Receive Buffer Queues – Background Load 0

Figure 11 Various TCP Receive Buffer Queues – Background Load 10

 15

Figure 12 UDP Receive Buffer Queues at various conditions

Figure 13 UDP Receive Buffer Committed Memory

The above experiments have shown that when the sender is faster than the receiver, TCP
(or UDP) receiver buffers are approaching full. When the socket receive buffer size is set
high, a lot of memory will be occupied by the full receive buffers (the same for the socket
send buffer, which is beyond the topic of this paper). To verify this point, we run the ex-
periments as follow: sender transmits one TCP stream to receiver for 100 seconds, all the
processes run with a nice value of 0. We record the Linux system’s MemFree, Buffers,
Cached as shown in /proc/meminfo at the 50 seconds point (based on the above experi-
ments, the receive buffer is approaching full at 50s). Here, MemFree is the size of the
total available free memory in the system. Buffers and Cached are the sizes of the in-
memory buffer cache and page cache respectively. When the system in memory pressure,
the page frames allocated for the buffer cache and the page cache will be reclaimed by
the PFRA [12][27]. Also, please note that: (1) since the total system memory is 256MB,
all of them belong to Lowmem. (2) sysctl_tcp_mem is configured as “49152 65536
98304”, which means that the maximum TCP memory is allowed to reach as high as
384MB‡, if possible.

The experiment results are as shown in Table 3. It can be seen that with increased socket
receive buffer size, the system’s free memory clearly decreases. Specifically, when the

‡ A page is 4K.

 16

socket receive buffer size is set as 170MB, both the buffer cache and the page cache are
shrunk. The page frames allocated for the buffer cache and the page cache are reclaimed
by PFRA to save memory for TCP. It can be contemplated that if the socket receive
buffer is set high and there are multiple simultaneous connections, the system can easily
run out of memory. When the memory is below some threshold and the PFRA cannot re-
claim page frames any more, the out of memory (OOM) killer [12] starts to work and
selects processes to kill to free page frames. To the extreme, system might even crash. To
verify this point, we set the socket receive buffer size to 80MB, and run five TCP connec-
tions simultaneously to the receiver, the receiver soon ran out of memory and killed the
iperf process.

 Experiment Results
Receive Buffer Size 1M 10M 40M 80M 160M 170M

MemFree (KB) 200764 189108 149056 95612 3688 3440
Buffers (KB) 7300 7316 7384 7400 7448 2832
Cached (KB) 28060 28044 28112 28096 14444 6756

Table 3 Linux System’s Free Memory with Various Receive Buffer Size

Clearly, for a system with 256MB memory, allowing the overall TCP memory to reach as
high as 384MB is wrong. To fix the problem, we reconfigure the sysctl_tcp_mem as
“40960 40960 40960” (the maximum TCP memory is allowed to reach at most 160MB).
Again, we set the socket receive buffer size to 80MB, and repeat the above experiments.
No matter how many TCP connections are simultaneously streamed to the receiver, both
iperf process and the receiver work well.

The above experiments have shown that when /proc/net/ipv4/tcp_rmem (or
/proc/net/ipv4/tcp_wmem) is set high, the /proc/net/ipv4/tcp_mem should be correspond-
ingly configured to prevent system from running out of Lowmem. For IA-32 architecture
Linux network systems with memory larger than 1G, we suggest to limit the overall TCP
memory to 600MB at most. As said in Section 3, this is due to the facts that: the IA-32
architecture Linux network systems usually adopt the 3G/1G virtual address layout, and
the kennel can at most have 896MB of Lowmem; the kernel code and its data structures
must reside in Lowmem, and they are not swappable; the memory allocated for socket
receive buffers (and send buffers) also have to reside within Lowmem, and they are also
not swappable. When the socket receive buffer size is set high and there are multiple si-
multaneous connections, the system can easily run out of Lowmem. The overall TCP
memory must be limited.

4.3 Data receiving process
The object of the next experiment is to study the overall receiving performance when the
data receiving process’ CPU share is varied. In the experiments, sender transmits one
TCP stream to receiver with the transmission duration of 25 seconds. In the receiver, both
data receiving process’ nice value and the background load are varied. The nice values
used in the experiments are: 0, -10, and -15.

A Linux process’ nice value (static priority) ranges from –20 to +19 with a default of
zero. Nineteen is the lowest and –20 is the highest priority. The nice value is not changed

 17

by the kernel. A Linux process’ time slice is calcu-
lated purely based on its nice value. The higher a
process’ priority, the more time slice it receives per
round of execution, which implies a greater CPU
share. Table 4 shows the time slices for various nice
values.

Nice value Time slice
+19 5 ms

0 100 ms
-10 600 ms
-15 700 ms
-20 800 ms

Table 4 Nice value vs. Time slice
The experiment results in Figure 14 have shown:

• The higher a data receiving process’ priority, the more CPU time it receives per
round of execution. The higher CPU shares entails the relative higher actual
packet service rate from the socket’s receive buffer, resulting in improved end-to-
end data transmission.

• The greater the background load, the longer each complete round of execution
takes. This reduces the running frequency of data receiving process and its overall
CPU share. When the data receiving process is less scheduled to run, data inside
the receive buffer is less frequently serviced. Then TCP flow control mechanism
will take effect to throttle the sending rate, resulting in degraded end-to-end data
transmission rate.

Experiment results confirm and
complement our mathematical
analysis in section 3.

5. Conclusion

In this paper, the Linux system’s
packet receive process is studied
in detail from NIC to application.
We develop a mathematical
model to characterize and analyze the Linux packet receive process. In the mathematical
model, the NIC and device driver receiving process is represented by the token bucket
algorithm; and the rest of the packet receiving processes are modeled as queuing proc-
esses.

0

50

100

150

200

250

300

350

BL0 BL1 BL4 BL10

Background Load

TC
P

B
an

dw
id

th
 M

bp
s/

s

nice = 0

nice = -10

nice = -15

Figure 14 TCP Data Rate at Various Conditions

Experiments and analysis have shown that incoming packets might be dropped by the
NIC when there is no ready packet descriptor in the receive ring buffer. In overloaded
systems, memory pressure usually is the main reason that causes packet drops at the NIC:
due to memory shortage in Lowmem, the used packet descriptor cannot be refilled; when
all packet descriptors in the ready state are used up, further incoming packets will be
dropped by the NIC.

Experiments and analysis have also shown that the data receiving process’ CPU shares is
another influential factor for the network application’s performance. Before consumed by
the data receiving process, the received packets are put into sockets’ receive buffers. For
UDP, when a socket’s receive buffer is full, all the incoming packets for the socket will
be discarded. In that case, all the protocol processing effort over the dropped packet

 18

would be wasted. For TCP, a full receive buffer will throttle the sender’s data sending
rate, resulting in degraded TCP transmission performance. To raise the data receiving
process’ CPU share, the following approaches could be taken: interrupt coalescing,
jumbo frames, TCP/IP offloading, reducing the offered system load, lowering the data
receiving process’ nice value etc.

For the IA-32 architecture Linux network systems, more attention should be paid when
enabling big socket receive (send) buffer size: configuring /proc/net/ipv4/tcp_rmem (or
/proc/net/ipv4/tcp_wmem) high is good to the performance of high BDP connections, but
the system might run out of Lowmem. Therefore, the /proc/net/ipv4/tcp_mem should be
correspondingly configured to prevent system from running out of Lowmem.

We studied systems with network and CPU speeds that are moderate by today’s standards
in order to deal with mature overall system design. We expect our results to hold as all
parts of the system scale up in speed, until and unless some fundamental changes are
made to the packet receiving process.

References

[1] H. Newman, et.al., “The Ultralight project: the network as an integrated and managed resource for

data-intensive science”. Computing in Science & Engineering, Volume 7, Issue 6, Page(s): 38 – 47.
[2] A. Sim, et.al., “DataMover: robust terabyte-scale multi-file replication over wide-area networks”,

Proceedings of 16th International Conference on Scientific and Statistical Database Management,
2004, Page(s): 403 – 412.

[3] Matzke, D., “Will physical scalability sabotage performance gains?”, Computer, Volume 30, Issue
9, Sep 1997, Pages: 37 – 39.

[4] Geer, D.; “Chip makers turn to multicore processors”, Computer, Volume 38, Issue 5, May 2005
Page(s):11 – 13.

[5] M. Mathis, J Heffner and R Reddy, "Web100: Extended TCP Instrumentation for Research, Educa-
tion and Diagnosis", ACM Computer Communications Review, Vol 33, Num 3, July 2003.

[6] Tom Dunigan, Matt Mathis, Brian Tierney. A TCP Tuning Daemon, SuperComputing 2002.
[7] Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones, Jean-Philippe Martin-Flatin, and

Yee-Ting Li, "A Map of the Networking Code in Linux Kernel 2.4.20", March 2004.
[8] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven kernel”,

ACM Transactions on Computer Systems, 15(3): 217--252, 1997.
[9] Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Muller, and Marc Bechler, The Linux Network-

ing Archetecture – Design and Implementation of Network Protocols in the Linux Kernel, Prentice-
Hall, ISBN 0-13-177720-3, 2005.

[10] www.kernel.org
[11] Robert Love, Linux Kernel Development, Second Edition, Novell Press, ISBN: 0672327201, 2005.
[12] Daniel P. Bovet, Marco cesati, Understanding the Linux Kernel, 3rd Edition, O’Reilly Press, ISBN:

0-596-00565-2, 2005.
[13] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device Drivers, 3rd Edition,

O’Reilly Press, ISBN: 0-596-00590-3, 2005.
[14] Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Prentice-Hall, ISBN: 0133499456, 1996.
[15] Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications,

2nd Edition, Academic Press, ISBN: 0-12-051051-0, 1990.
[16] Hoskote, Y., et.al., “A TCP offload accelerator for 10 Gb/s Ethernet in 90-nm CMOS, Solid-State

Circuits”, IEEE Journal of Volume 38, Issue 11, Nov. 2003 Page(s):1866 – 1875.
[17] Regnier, G., et.al., “TCP onloading for data center servers”, Computer, Volume 37, Issue 11, Nov.

2004 Page(s):48 – 58.

 19

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2

[18] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and J. Tracy. “Server Network Scal-

ability and TCP Offload”, In Proc. of the 2005 USENIX Annual Technical Conference, pages 209--
222, Anaheim, CA, Apr. 2005.

[19] J. Mogul., “TCP offload is a dumb idea whose time has come”, In Proc. of the 9th Workshop on Hot
Topics in Operating Systems, Lihue, Hawaii, May 2003.

[20] Clark, D. D., Jacobson, V., Romkey, J., Salwen, H.: "An Analysis of TCP Processing Overheads",
IEEE Communication Magazine, Vol. 27, No. 2, June 1989, pp. 23 – 29.

[21] Kwei-Jay Lin, Yu-Chung Wang, "The design and implementation of real-time schedulers in RED-
Linux", Proceedings of the IEEE 91(7): 1114-1130, July 2003.

[22] S. Makineni, R. Iyer, “Performance characterization of TCP/IP packet processing in commercial
server workloads”, IEEE International Workshop on Workload Characterization, Oct.
2003, Pages: 33 – 41.

[23] Y. Yasu, Y. Nagasaka, et. al., “Quality of service on Gigabit Ethernet for event builder”, IEEE Nu-
clear Science Symposium Conference Record, 2000, Volume 3, Pages: 26/40 - 26/44.

[24] Silvestre, J.; Sempere, V.; Albero, T., “Impact of the use of large frame sizes in fieldbuses for mul-
timedia applications”, 10th IEEE Conference on Emerging Technologies and Factory Automation,
2005. ETFA 2005. Volume 1, Pages: 433 – 440.

[25] Transmission Control Protocol, RFC 793, 1981.
[26] www.linux-mm.org
[27] Mel Gorman, Understanding the Linux Virtual Memory Manager, Prentice Hall PTR, ISBN:

0131453483, April 2004.
[28] Claudia S. Rodriguez, Gordon Fischer, Steven Smolski, The Linux(R) Kernel Primer: A Top-Down

Approach for x86 and PowerPC Architectures, Prentice Hall PTR, ISBN: 0131181637, 2005.
[29] Leon Arber, Scott Pakin, “The impact of message-buffer alignment on communication perform-

ance”, Parallel Processing Letters, Vol. 15, No. 1-2, 2005, pp. 49-66.
[30] Ken Chen, Rohit Seth, Hubert Nueckel, “Improving enterprise database performance on Intel Ita-

nium architecture”, Proceedings of the Linux Symposium, July 23-26, 2003, Ottawa, Ontario,
Canada.

[31] http://dast.nlanr.net/Projects/Iperf/
[32] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Re-

view, ACM SIGCOMM, volume 28, number 4, Oct. 1998.

 20

	BL0
	Experiment Results
	MemFree (KB)
	Buffers (KB)
	Cached (KB)

