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Summary

This report describes research performed under Laboratory Research and Development 

Project 05-ERD-019, entitled “A New Capability for Regional High-Frequency Seismic 

Wave Simulation in Realistic Three-Dimensional Earth Models to Improve Nuclear 

Explosion Monitoring”.  A more appropriate title for this project is “A Model-Based 

Signal Processing Approach to Nuclear Explosion Monitoring”.  This project supported 

research for a radically new approach to nuclear explosion monitoring as well as allowed 

the development new capabilities in computational seismology that can contribute to 

NNSA/NA-22 Programs.

Current methods for seismic monitoring reduce seismograms to a small number of 

derived measurements from observed signals, such as the arrival times and amplitudes of 

waves with specific propagation paths through the Earth (i.e. phases).  These 

measurements are interpreted in terms of deterministic one-dimensional (1D) Earth 

models, possibly with empirical or model-based corrections for three-dimensional (3D) 

structure.  These models are often inaccurate due to our lack of knowledge of detailed 

sub-surface structure on a wide range of length-scales.  Our lack of knowledge of 

structure generally becomes more important as the frequency of interest increases, 

inhibiting our ability to model high-frequency (> 1 Hz) signals and requiring the use 

inherently limited empirical calibration strategies to monitor small events at regional 

distances (< 1000 km).  

We present a new paradigm for seismic monitoring of seismic events, including 

earthquakes and underground nuclear tests. The method has the potential to lower 

detection thresholds over conventional methods, by taking advantage of information in 

the entire waveform using correlation methods.  The use of correlation methods has been 

shown to lower the detection thresholds with empirical waveform templates (e.g. match 

filtering and subspace detection).  The method presented here uses theoretical signals, 

rather than observed signals, to build templates for correlation detection.  
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We demonstrate a model-based signal processing approach composed of several 

elements: the simulation of seismic waves in stochastic 3D Earth models and coherent 

signal-processing to represent observed seismograms in terms of theoretical 

seismograms.  Rather than use a single “optimal” Earth model to predict observations, we 

use sets of stochastic models of Earth structure.  These models incorporate constraints 

from multiple data sets using a Markov Chain Monte Carlo method and provide a range 

of plausible three-dimensional models for a region whose variability reflects limits of our 

knowledge of the true structure.  We then compute the complete seismic response of each 

model using the Spectral Element Method (SEM) and high-performance computing or 

more computationally efficient path-specific 1D averages.  The resulting theoretical 

signals are combined using coherent signal processing to represent an observed signal in 

terms of a linear combination of theoretical signal templates.  

Results indicate that the 3D synthetics can be combined to represent the observed signals 

very well, but for low frequencies. This is impractical for lowering detection thresholds, 

but promises to be effective as resolution of seismic structure improves and 

computational methods and power facilitate the calculation of synthetic seismograms.  In 

order to increase the bandwidth of theoretical signals, we took an alternative approach 

useing more computationally efficient theoretical seismograms based on path-specific 1D 

averages through the 3D velocity models.  This allowed us to increase the frequency 

content and the number of template waveforms for correlation detection.  This method 

performs well and very clearly detects a moderate (mb = 5.1) mainshock earthquake for 

which the templates were designed.  It also detects a smaller (mb = 4.4) event that is 

difficult to detect with conventional energy detection.  Combining up to four stations in a 

network at regional distances (460-1060 km) improves detection confidence and reduces 

spurious detection of teleseismic events.  Finally, we show that when templates were 

designed with an explosion source at shallow depth we could not detect earthquakes that 

occurred at normal crustal depths (~10 km). 

We suggest a two-pronged strategy for advancing this technology: 1) exploitation of 

increasingly realistic 3D stochastic earth models will improve correlation of theoretical 
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templates with event signals; and 2) exploitation of larger networks of seismic stations to 

reject background events that from target source(s).  Both of these strategies take 

advantage of current trends in the broader seismology community to improve models, 

deploy ever-greater numbers of seismic stations and take advantage of a progressive drop 

in computational costs.  The results of this study established the framework for Model-

Based Signal Processing by showing that theoretical signals can be used in subspace 

detection and that network processing improves network detection performance.
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1.0 Introduction

Conventional methods for seismic monitoring of underground nuclear explosions are 

heavily dependent on the use of measured quantities from seismograms and deterministic 

models of Earth structure.  For example, seismic events are typically located by 

minimizing the difference between observed and predicted arrival times of major P- and 

S-wave phases from one-dimensional (1D) Earth models, possibly with corrections for or 

three-dimensional (3D) structure.  This procedure works well when the event is large 

enough to be observed with high signal-to-noise ratio and the travel time predictions are 

accurate.  Event identification works by comparing the amplitudes of high-frequency P-

waves (through body-wave magnitude, mb) with low frequency surface wave amplitudes 

(through the surface wave magnitude, MS).  For smaller events when MS cannot be 

estimated (mb < 4.0) high-frequency (0.5-10 Hz) regional discriminants (e.g. Pn/Sn, 

Pn/Lg, Pg/Lg amplitude ratios) are used.  These methods rely on detections made using 

energy detectors that compare short-term average to long-term average (STA/LTA) 

amplitude ratios in a pre-defined frequency band (Figure 1.1).  For example, in the 

1970’s and 1980’s large underground nuclear tests at known test sites were detected, 

located and identified using observations at teleseismic distances (> 2500 km) and the 

wealth of knowledge gained from previous tests.  These signals were typically large 

enough to be observed with high signal-to-noise ratios at large distances, even 

worldwide.  

Figure 1.1  Regional distance seismogram showing windows for traditional short-term 

average/long-term average (STA/LTA) detection.  This seismogram has high signal-to-

noise ratio and can be easily detected with the STA/LTA method.
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As new nuclear states emerge it has become increasingly important to monitor broad 

regions without previous tests and to monitor at lower the detection thresholds.  Smaller 

events do not generate as much low-frequency energy, inhibiting use of the surface 

waves.  This requires the use of regional distance (< 1000 km) signals at higher 

frequencies, typically above the microseismic noise peak at 0.17 Hz.  Regional distance 

signals at these frequencies are very complex because the wavefield interacts with the 

heterogeneous crust, including surface geology and topography.  The seismic monitoring 

community has responded by performing detailed region-specific calibration of travel 

times (for event location) and amplitudes (for event identification).  Empirical calibration 

by design depends on using the available observations and these can be limited.  A 

further challenge to modeling the behavior of regional distance seismic observations for 

monitoring is the fact that our knowledge of detailed seismic velocity structure is poor 

and the error in travel time and amplitude predictions is often unknown.  An obvious 

limitation to conventional seismic monitoring calibration is reached when signal 

amplitudes are comparable to noise levels.  In this case, the main pulses of energy cannot 

be detected with STA/LTA methods because the signals are comparable or weaker than 

the noise and the subsequent functions of location based on travel times and identification 

based on amplitudes cannot be completed.  Events that are not detected will be missed by 

the monitoring system.

2.0 Coherent Signal Processing

We address these limitations to conventional seismic monitoring by relying on 

correlation detection, where more information present in the whole waveform is used, 

rather than the derived observables such as travel time and amplitude.  Coherent signal 

processing relies on correlation properties between signals and requires a signal model 

for comparison with a data stream.  This model can be an observed signal or set of signals 

or, in the case of Model-Based Signal-Processing, a set of theoretical signals.  In this 

section we describe the application of coherent signal processing to seismic monitoring.  

2.1 Correlation Detection
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The simplest correlation detector is a match filter.  In this case a single template is 

compared to data stream.  At each sample the current data signal window is compared to 

the template signal and a detection statistic, such as the correlation coefficient, is 

computed.  The template can be constructed from a single or multiple channels, such as 

single-station three-component or seismic array data.  The detection statistic between the 

data stream and the template is recorded for each instance of the stream.  When the 

detection statistic exceeds a certain value, a detection is declared (Figure 2.1).  In the 

presence of Gaussian noise there is a well-established relationship between the 

probability of a false alarm and the probability of a missed detection.  When the detection 

threshold (i.e. the value of the detection statistic) is set low the operator must deal with 

the consequences of a high false alarm rate.

Figure 2.1 Example of a match-filter where a new signal (red) is detected by a high 

correlation with the template signal (blue).

Match filters are excellent for observing an exact (or near exact) repeat of an event one 

has already recorded.  However, when the source occurs at a slightly different location or 

depth, or has different source properties (e.g. magnitude, moment tensor, source time

function and/or directivity) the correlation between the new event and the template is 

degraded.  In such cases it is possible for the detection statistic to fall below the user-

defined detection threshold and the event will be missed.

2.2 Sub-Space Detection

In the case where a match-filter misses an event because of degradation in the correlation 

between the signal for a new event and the template signal, a remedy is possible but 

requires additional template signals.  When multiple template signals are available they 

can be combined to achieve optimal correlation with a given instance of a data stream.  
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The templates should have some variability that arises from differences in the sources or 

propagation paths.  This is the principle of a sub-space detector.  Multiple templates of a 

target event are gathered, aligned and arranged in a matrix.  The matrix is decomposed 

into its eigenvectors, ranked by eigenvalues, using singular value decomposition.  A 

subset of the eigenvectors is then used to form linear combinations that optimally fit each 

instance of the data stream (thus the name sub-space).  The sub-space method requires 

the choice of sub-space dimension, that is the number of eigenvectors to use to form 

linear combinations that mimic the data stream. These methods are described in Harris 

(1989, 1997) and Harris and Paik (2006).

3.0 Stochastic Earth Models

In this section we describe the three-dimensional (3D) earth models used to compute 

synthetic seismograms for model-based signal processing.  

3.1 The Markov Chain Monte Carlo Method to Estimate Seismic Velocity Structure

Conventional methods to estimate seismic velocity structure rely on formal inversion of 

observables, such as body-wave travel times and surface wave dispersion measurements.  

Such methods typically rely on a linear approximation relating the observables to seismic 

velocity structure and invert a large linear system of equations to solve for the model 

parameters.  These inversions often predict the observations used to estimate the model, 

but do not predict other observables due to different sensitivities of data to structure.  For 

example structures estimated from surface wave dispersion likely do not predict P-wave 

travel times because of the differing sensitivities to P- and S-wave velocity structure and 

different depth sensitivities.  In order to reconcile models estimated from different data 

researchers have begun to combine different data sets.  An example of this is the joint 

inversion of surface wave group velocity dispersion and receiver functions for shear 

velocity structure near a broadband seismic station (Julia et al., 2000).



10

In order to reconcile different sensitivities of seismic data to velocity structure, a new 

methodology has been applied, called Markov Chain Monte Carlo (MCMC).  Rather than 

invert the data for velocity structure, MCMC uses stochastic sampling and extensive 

forward calculations to estimate velocity structure.  Shapiro and Ritzwoller (2002) 

employed an MCMC method along with a priori constraints, linearized inversion and 

simulated annealing to estimate S-wave velocity structure from surface wave dispersion 

measurements.  Recently, more extensive application of the MCMC method has been 

used to estimate three-dimensional velocity structure of the crust and uppermost mantle 

for a large region of eastern Asia (Pasyanos et al., 2004).  The MCMC method and its 

application to the models used in this study are described in Pasyanos et al. (2004).

3.2 MCMC Models for the Yellow Sea-Korean Platform Region

For the purposes of this study we used models of seismic velocity structure of the crust 

and uppermost mantle, because broadband regional seismograms are most sensitive to the 

P- and S-wave structure of this part of the earth.  The MCMC models parameterize 

seismic velocity in the Yellow Sea-Korean Peninsula region on a 2° grid of points.  At 

each point the depth-dependent structure is parameterized with 7 homogeneous layers.  

The MCMC method estimates the thickness and elastic properties (VP, VS and ρ, the P-

and S-wave velocity and density, respectively) of each layer.  The 7 layers considered at 

each point are: water, upper sediments, lower sediments, upper crust, middle crust, lower 

crust and uppermost mantle.  The water layer properties are fixed and the thickness is set 

using known topography/bathymetry.  Thus there are 4 parameters for 5 crustal layers 

and 3 parameters for the mantle half-space for a total of 23 parameters for each lateral 

grid point.  The MCMC models span a region of eastern Asia with latitude 23°-57° and 

longitude 109°-147°.

Figure 3.2.1 shows an example of the variability in crustal thickness for four models.  

Note that the large-scale features are similar, in that the oceanic crust is thin and the 

continental crust is thicker and thickens toward the interior.  However, the models 



11

demonstrate variability on scale of a few grid points, 2°-6°.  This smaller-scale structure 

leads to differences in the predicted waveforms, as will be shown below.

Figure 3.2.1  Crustal thickness for four different MCMC models.  Note that the large-

scale features, such as ocean-continent differences, are similar but smaller-scale details 

are different.  Also shown are the locations of the earthquake (red circle) and stations 

(green triangles) used in our study.

Under this LDRD project higher resolution (1° grid spacing) models were developed.  

This effort revealed some aspects of the MCMC application that required improvement, 

due to the higher computational demand of higher resolution models for the same broad 

area.  Future studies will benefit from this development.
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4.0 Small-Scale Stochastic Heterogeneity

The seismic velocity models described in the previous section characterize relatively 

long-wavelength structure (a 2° grid spacing corresponds to 222 km).  A Rayleigh wave 

with a period of 20 seconds has a wavelength of 60 km.  Higher frequencies (longer 

periods) have even shorter wavelengths.  Thus the MCMC models are too coarse to cause 

scattering of the higher frequencies of interest.  Studies by Frankel and Clayton (1986), 

Levander and Holliger (1992), Wagner (1996) and Pullammananipillil et al. (1997) 

employed finite difference modeling to explore the nature of stochastic crustal 

heterogeneity, finding a range possible scales lengths from 200m to 10 km. To address 

this issue we originally planned to add small-scale (10-220 km) stochastic heterogeneity 

to the large-scale (220 km) MCMC models.  Unfortunately, we were not able to 

implement this feature within the time constraints; however we were able to develop new 

codes and methodologies for stochastic heterogeneity that will support future efforts.

4.1 Fourier Method

The specification of stochastic seismic wavespeed heterogeneity is commonly done using 

Fourier transform methods described in Frankel and Clayton (1986) and Frankel (1989).  

This method can be implemented in two slightly different ways: one can either start with 

a random field, transform to the Fourier wavenumber domain, filter it according to a 

prescribed auto-correlation function then transform back to the spatial domain; or one can 

start with the auto-correlation function in the Fourier wavenumber domain, perturb the 

phase and transform to the spatial domain. 

We developed software to generate stochastic seismic velocity models using the Fourier 

method.  The code works in two- or three-dimensions and accepts a variety of correlation 

function types: Gaussian, exponential, von Karman (self-affine or fractal).  The code 

allows for different correlation lengths in different coordinate directions, so anisotropic 

heterogeneity can be represented.  Figure 4.1.1 shows two random seismic velocity 

models in 2D with Gaussian and exponential correlation functions and equal correlation 
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lengths of 5000 m.  Note that the field based on the Gaussian correlation function is 

smoother than that based on the exponential correlation function.  This has been observed 

previously and many studies find the exponential or von Karman correlation functions are 

more realistic for representing seismic velocity heterogeneity.

Figure 4.1.1 Examples of stochastic seismic velocity models generated by our Fourier 

method code.  The fields have (upper) Gaussian and (lower) exponential correlation 

functions and equal correlation lengths of 5000 m.

Stochastic heterogeneity affects the seismic wavefield.  Figure 4.1.2a shows a 2D random 

seismic velocity imposed on a background plane-layered model.  We computed nine 

realizations of the stochastic model using an exponential correlation function with root-

mean square (rms) amplitude of 4% and horizontal and vertical correlation lengths of 

4000 m and 1000 m, respectively.  The waveforms computed for a shallow explosion 

source at a distance of 100 km are shown in Figure 4.1.2b.  Notice that the seismograms 

have the same main P- and S-wave arrivals, but the details and coda of the main arrivals 

are different due to scattering of the wavefield by heterogeneity.
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Figure 4.1.2  (a) Stochastic seismic velocity model with anisotropic exponential 

correlation structure. (b) Vertical component velocity seismograms for shallow explosion 

source at 100 km using nine different realizations of the stochastic velocity model with 

the same correlation structure shown in (a).

4.2 Karhünen-Loève Method

We explored the Karhünen-Loève expansion as an alternative method to generate 

stochastic heterogeneity. This method uses an eigenvector decomposition of the 

theoretical covariance matrix linking all points in a grid.  As such the Karhünen-Loève

method can use very general forms of correlation structure, including non-stationary 

variation in the heterogeneity. In contrast, the Fourier method applies a constant 

correlation structure in each coordinate direction for an entire Cartesian domain.  

In practice the Karhünen-Loève method works in the following way.  First an ordered 

grid of points in specified and the covariance structure is defined.  Then the covariance 

matrix linking the correlations between all points is formed and decomposed into its 

ranked eigenvectors (in descending order).  Realizations of the stochastic heterogeneity 

are then created by summing the eigenvectors with random coefficients, weighted by the 

eigenvalues:
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An example of the generality of the Karhünen-Loève method, we show an anisotropic 

covariance structure in Figure 4.2.1 (a) with the orientation of the layers not parallel to 

the coordinate axis.  This structure can have a spatially varying (non-stationary) 

correlation structure as is shown in Figure 4.2.1 (b).  In this case the correlation length 

increases along the vertical axis and the structure becomes spatially more smooth as the 

vertical coordinate increases.

Figure 4.2.1 (a) Stationary anisotropic covariance structure with the symmetry axis not 

paralle to the coordinate axes. (b) Non-stationary covariance structure with the 

correlation length increasing along the vertical axis and the resulting stochastic 

heterogeneity showing smoother structure for large values of the vertical coordinate.

Finally, a kriging algorithm is used in order to render the stochastic field onto a dense 

grid for simulating the elastic response.  Figure 4.2.2 shows the effect of eigenvector 

truncation on the resulting stochastic field.  Ideally all eigenvectors should be used, 

however this is computationally intensive and it is appealing to truncate the eigenvectors 

to the most significant.  For example, a 2D grid with 10,200 points corresponds to 10,200 

eigenvector/eigenvalue pairs.  It was found that the first 50 eigenvectors included 76% of 

the total power and 200 eigenvectors included 95.5 %.  Figure 4.2.1 shows the stochastic 
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field generated using either 200 (a) or 50 (b) eigenvectors.  Clearly the case with 200 

eigenvectors has more variability in the structure.

Figure 4.2.2 Realization of the stochastic field with the Karhünen-Loève method using 

(a) 200 and (b) 50 eigenvectors.

In (a) the remaining 10,000 eigenvectors included only 0.5% of the total power, 

illustrating that truncation of the eigenvector expansion is appropriate and judicious.

While the Karhünen-Loève method allows for very general covariance structure of 

stochastic heterogeneity, in practice it is very computationally intensive because the 

covariance matrix for all points in the grid, as big as the total number of points in the grid 

must be stored in memory and decomposed into its eigenvectors.  These memory 

requirements limit the applicability of the method in 3D.  Michael Thorne started work 

on this as a summer student (July-August 2004).  He continued this effort and presented 

complete work on the Karhünen-Loève method in 2D at the Fall 2006 American 

Geophysical Union meeting (Thorne et al., 2006).  He is currently working on 

improvements of the method for efficient application in parallelized codes for seismic 

wave propagation.

5.0 Synthetic Seismograms
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Model-based signal processing requires the calculation of synthetic seismograms in three-

dimensional models, such as those described in the previous sections.  

5.1 The Spectral Element Method

We began by using the Spectral Element Method (SEM, Komatitsch and Villotte, 1998; 

Komatitsch and Tromp, 1999).  An open-source code for computing synthetic 

seismograms with the SEM in spherical geometry (called SPECFEM3D) was obtained 

from California Institute of Technology.  This code is able to represent all the important 

features required to model seismic waves.  It allows for fully 3D seismic velocities and 

density structure, surface topography and attenuation.  Spherical geometry, rather than 

Cartesian, is important for modeling seismic waves along paths longer than about 1000 

km.  The SEM works by combining the flexibility of finite element methods and the 

accuracy of spectral methods (e.g. pseudospectral methods).  Finite element methods are 

very flexible for representing complex geometries, including free surface topography.  

They are also very accurate because the boundary conditions at domain surface, the free 

surface in the case of the Earth, are applied before the equations are discretized.  This 

allows for very accurate handing of the free surface topography and structure along major 

internal discontinuities (i.e. where material properties change abruptly).  The equations 

are solved in the spectral domain using Legendre polynomials.  The SEM uses a finite 

element mesh, but rather than solve the equations at points evenly spaced along the finite 

element edges, the SEM uses Gauss-Labotto points judiciously chosen to be the locations 

of zero values of Legendre polynomials.  This provides improved accuracy over, say 

higher order finite element or finite difference methods, and also leads to diagonalization 

of the traditional mass matrix used in finite element methods, improving computational 

efficiency.  The code runs in parallel using the Message Passing Interface (Gropp et al., 

1994).  

Figure 5.1.1 shows the SPECFEM3D mesh for the entire globe.  The globe is composed 

of six chunks and the chunks are subdivided for domain decomposition parallelism.  The 
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different colors in Figure 5.1.1 indicate the domain treated by a single processor.  Within 

each processor’s domain are five-by-five mesh elements.  The SPECFEM code can be 

run with a single chunk for domains up to 90° by 90°.  Smaller chunks are possible using 

improvements developed by Brian Savage (University of Rhode Island) and included in 

more recent distributions of the code.

Figure 5.1.1 Spectral element method mesh used by the SPECFEM3D code for (a) all six 

chunks that compose the globe and (b) the global mesh with one chunk removed.

We obtained the code (http://www.gps.caltech.edu/~jtromp/research/downloads.html) 

and complied on Livermore Computing parallel computers (MCR, Thunder).  We 

modified the code to read our user-specified seismic velocity and density models.  

The MCMC models for the Yellow Sea-Korean Peninsula region are specified on a 2° 

grid of points.  For seismic wave propagation simulations we must render the material 

properties on a much finer grid.  Typically these methods require 5-10 grid points per 

wavelength of the highest frequency wave.  For 0.1 Hz (10 second period) waves this 

corresponds to 2.5 km spacing (assuming 2.5 km/s minimum wave speed).  For 1 Hz (1 

second period) waves this corresponds to 250 m grid spacing.  

We modified the SEM global code to read in models specified on a 2° grid, like the 

MCMC models. Figure 5.1.2 shows the region covered by the MCMC models. These 

models are specified to a depth given as a mantle half-space, usually less than about 45 

km.  In order to account for structure in the mantle, we merged the models with the 

global CUB2.0 model (Shapiro and Ritzwoller, 2002).  Also shown in Figure 5.1.2 is a 

cross-section through the CUB2.0 model showing variations in mantle shear velocities.  
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Note that the CUB2.0 model includes crustal structure, but that is not shown in the cross-

section.

Figure 5.1.2 (left) Map of eastern Eurasia, with the white lines indicating the coverage of 

the MCMC models.  (right) Cross-section through the CUB2.0 model showing shear 

velocity variations.

Figure 5.1.3 Illustration of the merging of MCMC and CUB2.0 models at a location in 

the Korean Peninsula.  The MCMC mean model and CUB2.0 shear velocity profiles are 

shown (blacked dashed and blue lines, respectively).  The merged velocity profile for this 

location is shown as the cyan line.
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The MCMC and CUB2.0 models were merged to smoothly transition the models at a 

given location over a depth range from the local Moho depth to 60 km.  Figure 5.1.3 

illustrates this process.  The SEM code requires the velocity and density model at 

unevenly spaced points, because the Gauss-Labotto points and Legenedre polynomials 

and the mesh are non-uniform.  In order to provide the velocity and density values we 

developed an algorithm to smooth the models using a 3D Gaussian smoothing operator.  

The eight models points surrounding a target location were weighted by the Gaussian 

width of 200 km.  This provided a smooth and continuous specification of the velocity 

and density model.  

Figure 5.1.4 Cross-sections and waveforms for two MCMC models (model_5000 and the 

mean model).  The observed (blue) and synthetic waveforms (green and red) are shown.  

Note that the models differ in the near-surface and this impacts the surface waves.
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We computed the SEM synthetics using “one-chunk” of the global mesh.  This covered a 

solid angle of 90°.  We ran the SPECFEM3D code on 144 CPU’s using 768 spectral 

elements along each side of the chunk.  This allows accurate simulation of the wavefield 

for frequencies 0.0-0.1 Hz (periods down to 10 seconds).  Simulations were mostly 

performed on the MCR cluster.  Figure 5.1.4 shows the observed and synthetic 

seismograms and the MCMC model cross-section along the path from our test event to 

station BJT.  Note that the models have slightly different velocities in the near-surface 

and this results in different surface wave response.  Specifically, the lower near surface 

velocities for model_5000 cause longer duration surface waves than the mean model.

5.2 Wave Propagation Program

A new elastic finite difference code has been developed by LLNL with funding from the 

LSTO, under LDRD project 05-ERD-079.  This code is based on a second-order node-

centered finite difference method in Cartesian geometry (Nilsson et al., 2007).  It solves 

the elastodynamic response to moment tensor and point forces with fully three-

dimensional varying velocity and density. We ran this code as an alternative to the SEM 

in order to try to increase the frequency content of the synthetic seismograms.  We found 

that we could only slightly increase the frequency content over the SEM synthetics, 

however this code will be useful for shorter-range synthetics (e.g. local to near-regional 

distances, less than 300 km).

6.0 Results

In this section we present the results of subspace detection analysis with model-based 

signals.  We started by running relatively low frequency synthetic seismograms computed 

with the SEM code.  

6.1 Test Event 

For this proof of concept study we considered a moderate sized earthquake occurring 

near the China-North Korea border.  The event occurred on January 11, 2002 and had a 

moment magnitude (MW) of 4.89.  Figure 6.1.1 (left) shows the study area, the event and 

station locations. 
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Figure 6.1.1 (left) Map of eastern Asia showing the earthquake (red circle, focal 

mechanism) we studied and regional distance stations (white triangles) that recorded the 

event. (right) Vertical component waveforms (filtered 0.0125-0.1 Hz) from the event at 

the four regional stations.  The station names and epicentral distances are indicated next 

to each waveform.

Focal parameters were determined by William Walter (personal communication).  Also 

shown in Figure 6.1.1 are the vertical component waveforms.  Broadband waveforms 

were obtained from four regional stations operated by the Chinese Digital Seismic 

Network (CDSN, stations BJT, MDJ, SSE) and the Global Seismic Network (GSN, 

station INCN).  These have good SNR for the surface waves at the frequencies of interest 

for this study.  The instrument response was removed, the waveforms were integrated to 

displacement and the horizontal components were rotated to radial and transverse 

components.  These stations are at regional distance 460 – 1056 km and are 

representative of typically monitoring conditions.  

6.2 Subspace Analysis With Low-Frequency Signals

We computed the model-based waveform signals (synthetic seismograms) using the SEM 

code for 9 MCMC models.  Figure 6.2.1 shows the resulting model-based and observed 
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waveforms.  Generally the model-based signals show very consistent body-waves, with 

only slight variations in the timing of arrivals.  However, the surface waves, especially 

the later arriving short-period energy, display differences likely related to dispersion and 

scattering.  Note especially the data and synthetics for station BJT.  This path (Figure 

6.1.1) crosses the sedimentary structure of the Bohai Basin and the data reveal a complex 

response.

Figure 6.2.1 Three-component observed (black) and synthetic (colored) waveforms for 

the four regional stations.  There are synthetic signals for nine different models.  Z, R, T 

corresponds to vertical, radial and transverse components, respectively.  Data and 

synthetics are filtered 0.01-0.1 Hz.  Note that the time scale is different for station SSE.

Subspace detection analysis was performed for each station separately.  The three-

component waveforms (observed and synthetic) were multiplexed into channel sequential 

order, forming a single vector with M total points.  The N model-based multiplexed 

vectors were formed a matrix of length M and width N.  Following the subspace 

methodology the matrix of template waveforms was decomposed into its singular vectors 

and sorted by most-significant singular value.  For this study we computed model-based 

signals for nine models (N=9).  The length of signal time windows for each station varied 

such that the entire surface wave and coda were captured (400-600 s, similar to Figure 

6.2.1).  
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The dimension of the subspace is a significant design parameter a strongly impacts the 

tradeoff between the probability of detection and the probability of false alarm.  The 

larger the number of significant singular vectors used to represent the observed waveform 

the better will be the fit to potential signals and the higher the probability of detection.  

However, using a larger subspace dimension increases the probability of falsm alarm, due 

to misleading correlations with noise.  Determination of the subspace dimension is made, 

in part, by considering the “energy capture”.  This is the fractional energy of each 

template waveform represented by the singular vector basis of dimension 1 to N.  When 

all singular vectors are used, each of the N design templates will be perfectly represented, 

due to the linear dependence of the eigenvectors on the individual templates. The energy 

capture is computed for each of the N original template waveforms and plotted as a 

function of the subspace dimension. 

Figure 6.2.2 shows the energy capture for the waveform templates computed for station 

BJT and using three different frequency bands.  The energy capture indicates that for the 

low frequency (80-20 seconds) case a subspace dimension of only one or two is needed 

to represent 95% of the power in each original template waveform.  However, the 

subspace dimension needed to represent the basis signals increases as the bandwidth 

increases.  For the bands 80-15 seconds and 80-10 seconds we use subspace dimensions 

of 3 and 5, respectively.  The subspace dimension must increase as additional complexity 

is added in the broader bandwidth waveforms.  The key for the subspace methodology to 

work effectively is for the subspace dimension to increase slowly as the bandwidth 

increases.
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Figure 6.2.2  The energy capture for templates computed for station BJT in three 

different frequency bands 0.0125-0.1 Hz (left), 0.0125-0.067 Hz (center) and 0.0125-0.05 

Hz (right).

The subspace representation is then applied to the observed waveforms.  To evaluate the 

performance of the subspace detector we compute the linear correlation between the 

three-component synthetics for the nine individual MCMC models and for the subspace.  

Figure 6.2.3  (left) Linear correlation between the observed waveforms and the nine 

individual MCMC model-based signals, the tenth model is the subspace result, using a 

subspace dimension of three.  The linear correlation is plotted for the three-component 

(black circles) and individual components (colored circles).  (right) The resulting fit 

between the observed (blue) and subspace detector (red) waveforms.

Figure 6.2.3 shows the linear correlations for the waveforms observed at BJT using the 

frequency band 80-15 seconds and a subspace dimension of 3.  The linear correlations 

between the observed and individual model-based signals (model indices 1-9) vary 

between about 0.0 and 0.7.  The subspace results in an improved waveform fit over any 

individual model.  While values greater than about 0.5 indicate fairly good waveform 

similarity the subspace result (about 0.7) should be compared with the average 

correlation for the individual models (about 0.4) because there is no reason to choose any 

single model from the MCMC model set.  Notice that the resulting waveform for the 

subspace has the proper surface wave dispersion.  For these frequencies the individual 



26

model-based signals do not reproduce the late-arriving scattered surface wave energy that 

was not present in the basis waveforms (Figure 6.2.1).

The performance of the subspace representation, as measured by the increase in the linear 

correlation between the observed and the individual model-based and subspace signals, 

improves as the bandwidth is increased.  Figure 6.2.4 shows the three-component linear 

correlations between the model-based and observed signals for three frequency bands.  

Increasing the bandwidth introduces additional complexity in the observed and model-

based signals and the improvement in linear correlation for the subspace is most dramatic 

for the broadest band comparisons (80-10 seconds).

Figure 6.2.4  Linear correlations between model-based signals (individual, 1-9, and 

subspace) and the observed three-component waveforms at three stations INCN (left), 

BJT (center) and MDJ (right).  For each station the analysis was performed in three 

different period bands 80-10 seconds (red), 80-15 seconds (green) and 80-20 seconds 

(blue).

The most dramatic increases in linear correlation between the observed and model-based 

signals are seen for stations INCN and MDJ.  The broadband (80-10 s) comparisons are 

quite poor for the individual model-based signals, but these all increase dramatically 

when combined with the subspace methodology.  
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Finally, we tested the effect of adding noise to the observed signals in order to lower the 

SNR and found that we can still obtain improvements in the linear correlation with the 

subspace representation over the individual model-based signals (Figure 6.2.5).

Figure 6.2.5  (left) Linear correlation between the observed and individual model-based 

and subspace signals for station BJT (80-15 s) with the addition of noise.  The observed 

waveform has a SNR to greater than 10:1.  The addition of noise degrades the 

correlations, however, the subspace still improves the representation of the observed 

signal over the individual model-base signals.  (right) The observed (blue) waveforms 

with noise added to overwhelm the signal and the subspace signal (red) show that the 

correlation is still possible.

6.3 Subspace Analysis With Higher Frequency 1D Signals

The results of the previous section show that the subspace method can improve the 

correlation performance of model-based signals with data.  However, the bandwidth of 

the 3D synthetics is limited and this inhibits the detection performance on continuous 

signals.  In order to improve the performance in realistic monitoring conditions we 

increased the frequency content of the model-based signals by taking 1D (depth varying) 

path-averages of the structure through each 3D model.  Synthetic seismograms for the 1D 

path-average models can be easily computed with the reflectivity method (Kennett, 1983; 

Randall, 1994).  
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Figure 6.3.1 Path-averaged 1D velocity models for the four paths considered.  There are 

50 models for each path (panel).

Figure 6.3.2 Synthetic seismograms for the radial component at station BJT for 30 1D 

path-average models.

This allowed us compute more synthetics with higher frequency content, which will 

perform better for low magnitude events.  We computed the 1D path-average models 

from 150 3D MCMC models for each of the four paths considered (Figure 6.1.1).  The 

model-based signals were computed to a frequency of 2.0 Hz.  This is much higher than 

was possible with the 3D SEM synthetics.  Figure 6.3.2 shows the radial component 

synthetic seismograms for 30 1D path-averaged models to station BJT.  Notice that the 
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arrival times of the body- and surface waves varies, reflecting variability in our estimate 

of the earth structure along the path.

We performed the subspace detection on continuous data streams using software 

developed by David Harris and Timothy Paik.  This software is described in the 

Appendix.  To begin, we performed the subspace detection on six days of three-

component single station data around the time of the January 11, 2002 event.  This event 

had several aftershocks, reported by the Annual Bulletin of Chinese Earthquakes.  The 

locations and origin times of these reported events should be reasonably good due to the 

relatively dense coverage of seismic stations in China.  

The subspace detector reads the continuous data stream (three-component single station 

in this case) and at each sample computes the optimal combination of template signals.  It 

outputs the detection statistic, which we show for each station in Figure 6.3.3.  The 

detection statistic is the squared correlation between data and subspace signal and varies 

between 0.0 and 1.0.  This shows that station INCN and MDJ detect the main event (mb

5.1) very clearly (above the background detection statistic).  These stations also detect a 

smaller aftershock (mb 4.4).  Stations BJT and SSE indicate a small peak for the main 

event.  Interestingly the subspace detector gives high detection statistic values for 

teleseismic events indicated in Figure 6.3.3.  This means that the teleseismic waveforms 

could be represented by the template waveforms for regional event.

When the four-station (three-component) data stream is treated coherently as a network, 

the detection performance improves.  Figure 6.3.4 shows the detection statistics for two 

days of continuous data and compares the single-station versus network performance.
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Figure 6.3.3 Detection statistic for single-station three-component subspace detection 

using the 1D synthetic seismograms based on MCMC models.  The plots shows six days 

of continuous data. 

Figure 6.3.4 (top) Detection statistic for four single station three-component detection 

(INCN, BJT, MDJ, SSE) same as Figure 6.3.3.  (bottom) The detection statistic for the 

four station network.  The plot shows two days of continuous data.

The detection statistic for the network is reduced for the teleseismic events that are 

detected in some of the single-station cases.  This illustrates the power of coherent 
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processing because the teleseismic events causes a disturbance across the four-station 

network that has different timing compared to the regional event.  This phase information 

is crucial for designing a subspace detector to have spotlight detection performance for a 

location and event of interest.

In addition to location power, Model-Based Signal Processing has identification power as 

well.  The template signals are computed for an event at a specific location and for a 

source with specific properties.  In the example shown above the templates were 

computed for an earthquake with a double-couple focal mechanism at 10 km depth.  To 

investigate the event identification power of Model-Based Signal Processing, we 

computed the template signals for an explosion source at 1 km depth at the same location 

as the January 11, 2002 earthquake.  

Figure 6.3.5 Detection statistic for subspace detection with a four-station three-

component network using template signals for (top) an earthquake and (bottom) ashallow 

explosion.  The detection statistic is shown for six days.
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When the explosion templates are used they fail to give a high value of the detection 

statistic when the earthquake and aftershocks occur.  They do however indicate high 

detection statistic values for the teleseismic events.  This is probably due to the spurrious 

high correlation of an impulsive P-wave from the explosion source at regional distance 

with the teleseismic event.  In realistic monitoring situations large teleseismic events will 

be easily detected by other means, such as a global seismic network.

7. Conclusions and Recommendations

In this study we have shown how Model-Based Signal Processing can improve seismic 

monitoring.  Template signals computed from 3D models with structural variability can 

be used to correlate with observed signals using the subspace detection method.  We 

found it difficult to compute template signals in fully 3D models with adequate 

bandwidth for the current monitoring challenges.  However, the reduction of 3D models 

to 1D path-average models allowed us to greatly increase the bandwidth of the model-

based template signals.  This shows promise to impact spotlight detection of events in 

regions of interest.

We suggest a two-pronged strategy for advancing this technology: 1) exploitation of 

increasingly realistic 3D stochastic earth models will improve correlation of theoretical 

templates with event signals; and 2) exploitation of larger networks of seismic stations to 

reject background events that from target source(s).  Both of these strategies take 

advantage of current trends in the broader seismology community to improve models, 

deploy ever-greater numbers of seismic stations and take advantage of a progressive drop 

in computational costs.  The results of this study established the framework for Model-

Based Signal Processing by showing that theoretical signals can be used in subspace 

detection and that network processing improves network detection performance.

While we did not fulfill all the accomplishments we had hoped to in our original project 

plan, we did establish that Model-Based Signal-Processing can detect small seismic 
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events and this technology will benefit from improved seismic models, densification of 

seismic networks and more powerful computers.

This project has enabled the development of important capabilities for seismic 

monitoring research, namely: 

• computation of synthetic seismograms in 3D models

• familiarization of the PI with high-performance computing;

• specification of 3D models into synthetic seismogram codes;

• development of software for generating realistic stochastic heterogeneity;

• further improvement of MCMC models of the Korean Peninsula.

These capabilities have provided improved visibility of the LLNL GNEM Program as 

taking a forward looking approach to nuclear explosion monitoring.

8.  Project Publications and Highlights

During the course of this LDRD project we actively presented results at scientific and 

programmatic workshops and conferences.  Among the highlights are a briefing to 

NNSA/NA-22 Headquarters in Washington D.C. and presentation the annual nuclear 

explosion monitoring meeting (the Seismic Research Review).  We gave presentations at 

national meetings of the Seismological Society of America (SSA) and the American 

Geophysical Union (AGU) Meeting.  At two AGU meetings we gave oral presentations 

during special sessions on seismological applications of advanced signal-processing.  We 

also presented elements of this effort at the Energy and Environment Directorate External 

Advisory Committee (March 2005) and the Directorate Review Committee Chairs (June 

2006).

Harris, D., A. Rodgers, M. Pasyanos, S. Myers, J. Levatin, A. Franz and J. Tromp (2006). 
Trends in detection in earthquake seismology, presentation at the 151st Meeting of the 
Acoustic Society of America, June 6, 2006, UCRL-PRES-222128.

Rodgers, A. and J. Tromp (2005). Simulations of Seismic Wave Propagation with the 
Spectral Element Method and High-Performance Computing, poster presentation at the 
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Energy and Environment Directorate External Advisory Committee, March 15, 2005, 
LLNL, UCRL-POST-210540.

Rodgers, A. and J. Tromp (2005). Modeling Nuclear Explosions and Earthquakes with 
the Spectral Element Method and High-Performance Computing, abstract and poster 
presented at the Annual Seismological Society of America Meeting, April 27-29, Incline 
Village, NV, UCRL-ABS-208922.

Rodgers, A. and J. Tromp (2005). What Will USArray Data Look Like?: Spectral 
Element Simulations on LLNL High Performance Computers, poster at Incorporated 
Reseacrh Institutions for Seismology (IRIS) Workshop, June 8, 2005, Dolce Skamania 
Lodge, Stevenson, WA, UCRL-ABS-211044.

Rodgers, A. (2005). Computational Seismology at LLNL: A National Lab Perspective, 
Joint Computational Infrastructure for Geodynamics (CIG) and Incorporated Reseacrh 
Institutions for Seismology (IRIS) Workshop, June 8, 2005, Dolce Skamania Lodge, 
Stevenson, WA, UCRL-PRES-212698.

Rodgers, A. (2005). Simulations of Seismic Waves on Livermore Computers with the 
Spectral Element Method, presentation to the Livermore Computing Monthly Users 
Meeting, June 14, 2005, LLNL, UCRL-PRES-213089.

Rodgers, A.,, D. Harris, J. Levatin, M. Pasyanos, S. Myers and J. Tromp (2005). A 
Model-Based Signal-Processing Approach to Seismic Monitoring: Stochastic Earth 
Models, Spectral Element Method Synthetics and Coherent Signal Processing, abstract 
and poster presented at the 2nd SPICE Workshop, September 4-10, Smolenice, Slovakia, 
UCRL-ABS-213711.

Rodgers, A, D. Harris, S. Ford and M. Pasyanos, (2005). A Model-Based Signal 
Processing Approach to Seismic Monitoring, abstract S32A-06, 2005 Fall American 
Geophysical Union Meeting, San Francisco, CA, UCRL-ABS-214846.

Rodgers, A., D. Harris and M. Pasyanos (2006). A Model-Based Signal-Processing 
Approach to Nuclear Explosion Monitoring, abstract and poster presented at the 28th

Annual Seismic Research Review, UCRL-ABS-222007, UCRL-CONF-222691

Rodgers, A., D. Harris and M. Pasyanos (2006). Detection of Seismic Events with 
Model-Based Signal-Processing, abstract, extended abstract and poster presentation at the 
Center for Advanced Signal and Image Sciences (CASIS) Workshop, November 16-17, 
LLNL, UCRL-ABS-225122 and UCRL-PRES-226177.

Rodgers, A., D. Harris, M. Pasyanos, S. Blair and R. Matt (2006). Model-Based Signal 
Processing: Correlation Detection With Synthetic Seismograms, abstract S11B-01, 2006 
Fall American Geophysical Union Meeting, San Francisco, CA, UCRL-CONF-224073.
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Seismic Scattering in Random Media Generated With the Karhunen-Loeve Transform, 
abstract S51E-05, 2006 Fall American Geophysical Union Meeting, San Francisco, CA, 
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Appendix. User Guide to LLNL’s Subspace Detector Software

There are two codes for performing subspace detection: a code for designing a subspace 
detector and another for running the detector on a continuous data stream.  The 
algorithms for these codes are described in Harris and Paik (2006).  This User’s Guide 
gives a brief summary of how the codes work.  It is expected that the user have some 
knowledge of waveform correlation and subspace detection.

Subspace Detector Design

The first code, called subspaceDesigner, designs the subspace detector.  It reads in 
a set of template seismograms that form the basis for creating a subspace detector, 
performs a number of calculations with the templates and outputs two files used by the 
detector.  The templates may be multichannel waveforms from multiple stations.  The 
code is written in JAVA.  To run the code on the LLNL GNEM LAN, simply enter:

s34> subspaceDesigner

This will run the script /usr/local/bin/subspaceDesigner and run the JAVA 
code.  Note that /usr/local/bin must be in your PATH environment variable.  Commands 
are executed from a Graphical User Interface (GUI)

The code has four processing steps.  It starts by prompting if you want to run on single or 
multiple events (Figure A.1).  Execute your choice by clicking on the text for either: 
“Single event” or “Multiple events”.  

Figure A.1 SubspaceDesigner GUI after launching the code.  This is the main window 
used in all stages of the detector design.  At this point the user must choose between 
single or multiple events.
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Regarding Data Format(s)

The template seismograms must be formatted in CSS or NDC format, and include at a 
minimum wfdisc and wftag tables.  They may optionally include site and origin tables.  

The wfdisc records must have unique wfid’s and the dir and dfile fields must point to 
the waveform files.  A partial listing of a valid wfdisc table has the following fields:

sta   chan                  time      wfid……..        dir         dfile
INCN   BHE        947634236.70000        0        MODEL_0      INCN.BHE 
INCN   BHN        947634236.70000        1        MODEL_0      INCN.BHN 
INCN   BHZ        947634236.70000        2        MODEL_0      INCN.BHZ 
BJT    BHE        947634236.70000        3        MODEL_0      INCN.BHE 
BJT    BHN       947634236.70000        4        MODEL_0      INCN.BHN 
BJT    BHZ        947634236.70000        5        MODEL_0      INCN.BHZ 

The wftag table provides a link between the wfid and the evid, that is all the 
waveforms must be associated to a single event through the wftag table.  The wftag file 
should have the following fields:
tagname     tagid     wfid     lddate
evid            0        0 2006/11/11       
evid            0        1 2006/11/11       
evid            0        2 2006/11/11
evid          1        3 2006/11/11       
evid            1        4 2006/11/11       
evid            1        5 2006/11/11
.
.

Event Editing Stage 

The main window for the GUI will appear as in Figure A.2.  There are three panels.  The 
panel in the upper left marked “Navigation” indicates the stages and allows the user to 
jump to different stages.  The panel on the lower left contains the dialogs for the current 
stage.  The large panel on the right side will contain tables and plots generated by the 
processing at each stage.

Figure A.2 Event Editing Stage.  The user must select the files for the template 
waveforms.
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The first stage defines and reads in the template waveforms, allows the user to window 
and filter the data.  To select the data, type the wfdisc and wftag files names, or 
alternatively, click the “Browse” button to locate and select the files.  Note that the data 
format must be defined correctly using the pull-down menu marked “Format:”.  
Optionally the user can define the origin and site tables, similar to the wfdisc and wftag 
tables (Figure A.2).

After selecting the files and format for the template waveforms the data are read by 
clicking the “OK” button directly below the File Selection dialog.  The code will write to 
the standard output “About to populate waveforms”.  The code will then display a 
table of channels (Channel View) with station and channel listed from the selected wfdisc 
table.  Alternatively the user can view the events (Event View).  The user can toggle 
between Channel and Event views by clicking the tabs on the lower center of the main 
window.  Waveforms can be viewed by clicking the “View” button on the right side of 
the Channel or Event view.  

It is recommended to view the data by event and include all station-channel data for one 
event.  This way the use can view the full duration of the signals and define time 
windows to include the signals of interest.  The menu in the upper right corner of the 
waveform viewing window allows the user to define how many waveforms are displayed.

Figure A.3  Event Editing Stage, showing filtered and windowed waveforms in the 
waveform viewer.  The file and filter selections can be seen in the text boxes on the left 
side of the main window.

At this point the user should enter the filter parameters, if filtering is desired.  First, enter 
the low-, high-frequency (in Hz) cuts and number of poles for the filter in the text boxes 
for “Cutoff 1”, “Cutoff2:” and “# Poles:” respectively.  At this point if filtering is 
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desired, click the radio button marked “Filter Waveforms” above the filter parameter 
text boxes and then click the button marked “OK” to the lower right of the filter 
parameter text boxes.  The filtered waveforms will appear in the waveform viewer at this 
point (Figure A.3).

The user must select the time window for all waveforms by sliding the cyan window to 
the desired start and ending times to capture the signals of interest.  

At this point the user can proceed to the next stage by clicking the button marked 
“Continue” in the lower part of the Event Editing Dialog.

Correlating Stage

The Correlating Stage computes the pairwise waveform correlations.  Before the 
correlations are computed the used can define the windows in the text boxes marked 
“Offset:” and “Window Length:”.  The offset is the time from the beginning of the 
waveforms and the window length is the window duration, both in seconds.  To set these, 
type the number the text box and click the button marked “Set” one-at-a-time.  Next, 
click the button marked “Correlate”.  This will initiate the calculation of (filtered) 
waveform correlations for all pairs of template seismograms and can take some time.  
When the calculations are completed the tool will display a histogram of all correlation 
values in the results panel (Figure A.4).

Figure A.4  Correlating Stage.  This figure shows the histogram of correlation values 
after correlating a large set of template waveforms.

The tool first displays the histogram of correlation values with a vertical bar at the value 
0.5.  The user then can click on this bar and slide it to the left or right to define a 
threshold correlation value for clustering.  In the case shown in Figure 4, the user has 
selected a value near 0.37.  This means that only pairs of waveforms that correlate with 
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cross-correlation values of 0.37 or more will be considered in the Clustering Stage (next). 
There is a menu for choosing the clustering algorithm.  Currently only the single-link 
clustering algorithm is available.

To proceed to the next stage, click the button marked “Cluster”.  

Clustering Stage

After clinking the “Cluster” button in the Correlating Stage the tool very quickly plots a 
dendrogram of the single-link cluster results (Figure A.5).  A dendrogram-like output is 
written to the standard output.

Figure A.5  Clustering Stage.  This figure sows the state of the tool after the dendrogram 
has been computed.

At this point the user must select a cluster by clicking on one of the events.  This is done 
by hovering the mouse over one of the black diamonds on the right side of the 
dendrogram.  When the cluster is selected it will change color to blue and a waveform 
viewing window will be launched.  This will take the tool to the next stage for designing 
the template.

Template Designing Stage

At this point the tool is nearly ready to create a subspace detector for the selected cluster.  
But before the detector files can be written a few steps must be completed.  In the 
waveform viewer window, the user should select the “Event View” tab on the lower left 
side.  This will display the waveforms for a single event.  Be sure to select the number of 
waveforms to be the total number of channels in order to view all waveforms for the 
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event.  Then select the window for all waveforms by sliding the cyan window to the 
desired start and ending times to capture the signals of interest.

The dialog for this stage allows the user to set the “False Alarm Rate” and “Degrees of 
Freedom”.  For cases with multiple stations, the tool reports the Degrees of Freedom 
(DOF) to be too small by 3/2 times the number of channels.  The correct DOF should be 
the time-bandwidth product times the number of channels.  The tool reports a smaller 
DOF because it assumes there are arrays which have redundancy and reduce the DOF.

The user can set the DOF in the text box marked “Degrees of Freedom” and click the 
button marked “Set”.

Figure A.6  Template Designing Stage.  Waveforms for the selected cluster are viewed 
and time windows are defined in the waveform viewing window launched after selecting 
the cluster.

After the time window is selected, the user must click the button marked “OK” in the 
upper right corner of the waveform viewing window (Figure A.6).  This defines the 
template waveform that will be used to form the matrix of basis templates.

The tool will generate a family of curves for the probability of detection at a fixed false 
alarm rate as a function of post-integration signal-to-noise ratio using a subspace 
dimension of 1-N, where N is the total number of template waveforms (Figure A.7).  The 
user can also display the energy capture by clicking the button marked “View Energy 
Capture” in the Template Design Parameters dialog.  The energy capture is displayed 
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in a separate window.  This plot shows a family of curves illustrating how each of the N 
basis templates is modeled by a subspace eigenvectors of dimension n.  The plot 
demonstrates that when n increases toward the total number of basis waveforms, N, more 
of the basis signal can be projected onto the subspace.  The energy capture window 
allows the user to select the subspace dimension by sliding the black vertical bar to the 
desired dimension.  The bar starts at dimension equal to zero and turns red when selected.

Figure A.7  Template Designing Stage.  The main window shows the Template Design 
Parameters and displays the Probability of Detection curves.  The Energy Capture is 
displayed in another window.  In this case, the user has selected a subspace dimension of 
20.

Finally, the user must write out two files that will define the subspace detector for use by 
the second (subspace detector) code.  This is done by typing the file name or browsing 
(with the “Browse” button) in the lower part of the Template Design Parameters panel.  
The Template File is a large binary file containing the subspace waveforms in a compact 
format and is conventionally given a suffix of “.def”.  The Detector Parameter file is  a 
small ASCII file with parameters and is conventionally given a suffix of “.par”.

The parameter file looks like: 

s34> cat all_dim20.par
#This is a parameter file
#Wed Nov 15 11:56:25 PST 2006
decrate=5
data-output-base-directory=./results
stations=BJT BJT BJT INCN INCN INCN MDJ MDJ MDJ SSE SSE SSE 
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fhi=0.5
channels=BHE BHN BHZ BHE BHN BHZ BHE BHN BHZ BHE BHN BHZ 
ford=6
SubspaceDetector1=SSD1 /datax/MBSP/NKCHINA/Continuous/ALL/all_dim20.def 0.021565259 
SubspaceDetector1
modfreq=0.30000000074505806
flo=0.10000000149011612
format=CSS
ftype=BP
delta=0.05000000075000001

Some of these parameters are fairly obvious, such as the low and high frequencies for the 
filter, the filter order, decimation rate, stations and channels, etc…

Subspace Detector

After a subspace detector has been designed by the subspaceDesigner code, the 
detector can be run on a continuous data stream with a simple command line.  There are 
two JAVA jar files: Detector.jar and Jampack.jar.  These can be placed in a 
directory and referenced in command line or with a C-shell script.  The detector takes two 
arguments the parameter file and the CSS wfdisc file for the continuous data.  The 
continuous data only requires a wfdisc table.  Be sure that the continuous data have the 
same sample rate as the template waveforms.  The detector writes the output (SAC file of 
the detection statistic and ASCII detections) to a sub-directory called results. 

s34> cat run_detector
#!/bin/csh

# Check for results directory, make it if it does not exist
if ( ! -d results ) then

mkdir results
endif

set JDIR = /datax/MBSP/JAVA
set PAR_FILE = all_dim20.par
set CONTDB = ALL_cont.wfdisc

/opt/java/jdk1.5.0/bin/java -cp $JAVADIR/Detector.jar:$JAVADIR/Jampack.jar llnl.gnem.
apps.subspace.detection.CmdLineProcessor $PAR_FILE $CONTDB 

The code will read in the parameter (.par) and subspace (.def) files and then start 
streaming the continuous data and computing the detection statistic.  When the detection 
statistic exceeds the threshold, determined by the false alarm rate, DOF and subspace 
dimension, it will declare a detection and write the time out to an ASCII file called 
null.detList.  The detection statistic is written to a binary SAC file and can be viewed in 
SAC as the detector is running.  When the detector has run on the complete continuous 
data stream it reports

Also, the SAC file of the detection statistic is re-written to have the correct absolute 
timing.  To determine the absolute times of detections one must account for the Finite 
Impulse Response nature of the subspace detector. 


