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Abstract: A particle swarm optimization (PSO) 
algorithm is combined with a gradient search method 
in a model-based approach for extracting interface 
positions in a one-dimensional multilayer structure 
from acoustic or radar reflections. The basic 
approach is to predict the reflection measurement 
using a simulation of one-dimensional wave 
propagation in a multi-layer, evaluate the error 
between prediction and measurement, and then update 
the simulation parameters to minimize the error. 
Gradient search methods alone fail due to the number 
of local minima in the error surface close to the 
desired global minimum. The PSO approach avoids 
this problem by randomly sampling the region of the 
error surface around the global minimum, but at the 
cost of a large number of evaluations of the simulator. 
The hybrid approach uses the PSO at the beginning to 
locate the general area around the global minimum 
then switches to the gradient search method to zero in 
on it. Examples of the algorithm applied to the 
detection of interior walls of a building from reflected 
ultra-wideband radar signals are shown. Other 
possible applications are optical inspection of 
coatings and ultrasonic measurement of multilayer 
structures. 
 
 A one-dimensional model-based 
reconstruction code was constructed using a 
simple analytical model for the radar reflection 
from a sequence of layers. The reflection model 
generated reflected pulses from a sequence of 
walls, then white noise added to create simulated 
data. An iterative inversion procedure is then 
used to back out wall positions, thicknesses, and 
material parameters from the simulated data. The 
wall estimation procedure begins with the wall 
closest to the transmitter/receiver. Time gating is 
used to select only the initial reflections to 
process for the first wall. After the first wall is 
determined, a later time gate is used to estimate 
the parameters of the second wall. By selecting 
later time gates, wall parameters are estimated in 
sequence from the outermost wall to the 
innermost. Using this progressive estimation 
approach, only a few parameters need to be 
estimated at a given time.  

 
Figure 1: One-dimensional layer stack 

 
 The one-dimensional reflection model 
is based on the propagation model found in the 
text by Chew [1].  Consider a stack of N layers 
perpendicular to the z axis, the z=0 the top of the 
first layer (Figure 1). Given an electric field 
pulse E0(,t) launched from a point zs above the 
surface, the reflected field at z=zs can be written 
as 
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where Reff is the effective reflection coefficient 
for the stack of layers and 0

ˆ ( )E ω  is the Fourier 
transform of the transmitted pulse. The effective 
reflection coefficient is obtained by solving the 
backwards iterative equation 
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starting with 1, 2 0N NR + + = , and ending 

at . The coefficients  are the 
Fresnel reflection coefficients for each layer 
interface: 
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Each layer is characterized by relative 
permittivity jε , conductivity jσ , and 
thickness , with n nj 0 1 1N += = . Figure 2 shows 
an example of three walls separated by 3 meters 
with a pulse emitted from a point one meter from 
the first wall. The walls are 10 cm thick concrete 
with 5.593ε =  and 0/ 0.0246σ ε = . The 
reflected pulse train in Figure 3 shows both 
direct returns from each wall and returns from 
multiple reflections between walls. The wall 
separations were chosen so that the direct 
reflection from the third wall would be 
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superposed on the return from multiple 
reflections between the first two walls, making 
the inversion for the third wall depend on the 
fidelity of the inversion of the first two walls.  

 
 

Figure 2: Three wall configuration and 
transmitted pulse (ns). 
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Figure 3: Reflected pulse train from three wall 
example. 
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Figure 4: Error as a function of range (x –axis) 

and thickness (y-axis) for second wall. 
Reconstruction algorithm estimate of minimum 

is indicated by the “x”. 
 
 The reconstruction algorithm estimates 
the range, thickness, permittivity, and 
conductivity of each wall in the model. Starting 
from an initial guess, it evaluates the forward 
simulator (Eq. 1) to obtain a predicted reflected 
return, compares it with the data within a 
specified time window, then calculates updated 
parameters. This procedure is repeated until the 
mean-squared error between predicted data Eest 
and actual data Edat in the specified time window 
is minimized: 
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where ts and tf are the start and end times for the 
time window. Figure 4 shows an image of  Q as 
a function of wall range and thickness for the 
time window that includes the return from the 

second wall in Figure 3. The error has a 
prominent, well-defined minimum at the location 
of the true values for range and thickness. 
However, there are other local minima visible in 
this slice that would pose problems for any 
gradient descent minimization algorithm. One 
way to overcome this problem is to genetic 
algorithms or simulated annealing that randomly 
sample the error in the expected ranges of the 
parameters. Unfortunately, these algorithms can 
be computationally inefficient, making them 
difficult to use by themselves. After 
investigating simulated annealing and various 
ways to bootstrap a gradient search using various 
kinds of data preprocessing, we discovered that a 
combination genetic/gradient descent algorithm 
was most reliable. The particular genetic 
algorithm that we chose is the particle swarm 
optimization (PSO) method [2]. A Matlab 
implementation of this algorithm written by 
Brian Birge is available in the user-contributed 
functions area of the Mathworks website 
(http://www.mathworks.com/). This implements 
the common PSO algorithm which begins by 
choosing a set of random sample points 

{ }: 1,2,...,x ii = N  within the parameter space. 

The error functional is calculated at these points. 
Displacement vectors are calculated for each 
sample point (particle) using the following 
formula for the kth iteration: 
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where ( )kφ is a linearly decreasing inertia factor, 

1α  and 2α are acceleration constants, and 1 ( )i kγ , 

2 ( )i kγ  are random number uniformly distributed 
in the interval between zero and one. The point 

is the position with minimum error found 
by particle i on its trajectory through the kth 
iteration. The point G(k) is the current global 
minimum over all the particle trajectories up to 
iteration k. Once the updated displacement 
vectors are calculated, new sample points are 
determined by adding them to each sample point, 

( )ip k

( 1) ( ) ( 1i i ix k x k v k )+ = + + . The error functional 
is evaluated at the new sample points and the 
process is repeated until all the particles 
converge on the global minimum. The 
convergence of the algorithm depends on the 
choice of acceleration constants, inertia factor, 
number of particles, and initial size of the 
parameter space. For our case we chose 24 
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particles for searching a four-dimensional 
parameter space for each wall. 
 After investigating the convergence 
behavior of the PSO algorithm, we discovered 
that the estimate of the global minimum found 
after only 20 iterations was close enough to the 
true global minimum that a gradient descent 
algorithm or a simplex could be used without 
encountering a local minimum. We implemented 
both methods, using the Matlab function 
fminunc for the simplex method and lsqcurvefit 
for the gradient descent Levenberg-Marquardt 
algorithm. These are found in the Matlab 
Optimization Toolbox. The gradient descent 
algorithm has the advantage of allowing the 
computation of the Cramer-Rao lower bounds of 
the variances of each parameter from an estimate 
of the noise variance in the data. The simplex 
method allows more general definitions of error 
Q that might be better if the noise is non-
Gaussian.  
 

 
Figure 5: Simulated data for three thick walls, 

SNR = 20 dB. 
 
 As an example of the reconstruction 
process, consider the case of the three walls in 
Figure 2 except we change the wall thickness 
from 10 cm to 30 cm. The resulting reflected 
pulse with -20 dB of white noise added is shown 
in Figure 5. We start by estimating the 
parameters of the first wall using only the 
reflected pulse in the window between 5 and 30 
ns. After 20 iterations of the PSO algorithm and 
10 iterations of the gradient algorithm, we 
obtained the values found in the first column of 
Table I for the first wall. Next we select the time 
window between 30 and 55 ns, which includes 
the return from the second wall. Using our 
parameter estimates for the first wall, we search 
for the set of second wall parameters that 
minimizes the error between model and data 
(second column of Table I). Again, the algorithm 
starts with 20 iterations of the PSO algorithm 
and finishes with 9 iterations of the gradient 
method. Finally, we select the time window 
between 55 ns and 100 ns to estimate the third 
wall parameters, which converges after only 7 
iterations of the gradient algorithm. The error 
bounds for each parameter are lower bounds 

determined from the data noise variance. We see 
that the range and thickness estimates agree quite 
well with the true values 0.3 m for thickness and 
1.0 m, 4.3 m, and 7.6 m for ranges to each wall. 
Estimates of the relative permittivity and 
conductivity are less precise but still reasonable 
close to the true values of 5.593 and 0.0246. 
 

Table I: Estimated parameters for 3 walls. 
Exact ranges are 1 m, 4.3 m, and 7.6 m. Wall 

thicknesses are 30 cm. 
Permittivity is 5.593, and σ/ε0 = 0.0246. 

 
 To date we have investigated the 
sensitivity of the reconstruction algorithm to 
noise level, wall attenuation, and wall thickness. 
We have also investigated the case where the 
algorithm tries to estimate the parameters for a 
wall that is not actually present in the data. From 
the noise study we determined that we could get 
reasonable estimates of wall thickness and 
position for SNR greater than a few dB. This 
carried over to the study of highly attenuating 
walls. As long as the SNR for the return of a wall 
was greater than a few dB, the algorithm gave 
fairly accurate results for range and thickness. 
However, the estimates of permittivity and 
conductivity were more sensitive to SNR. Thus 
geometrical parameters for walls behind thick 
attenuating outer walls could be estimated as 
long as the returns from the interior walls were 
above the noise level. The material parameter 
estimates are less of a concern since they do not 
contribute directly to the extraction of the 
geometry. 
The final studies of the one-dimensional MBT 
were Monte Carlo simulations designed to find a 
statistical indicator that could be used to test for 
a false wall. We used a two wall configuration 
where half the simulated data contained 
reflections from the inner wall and the other half 
only from the exterior wall. Each ensemble 
consisted of over 2000 data series, each member 
generated by a different realization of noise. For 
each wall, the MBT estimated its range, 
thickness, relative permittivity, and conductivity. 
Histograms of these parameters were compiled 
to determine which were good indicators if a 
wall was real or false. From this analysis, we 
found that the histograms of wall thickness and 

 Wall 1 Wall 2 Wall 3 
Range 0.999 ±0.0003 4.2963±0.0003 7.5878±0.0003 

Thickness 0.299±0.002 0.291±0.002 0.294±0.001 
Permittivity 5.65±0.06 5.95±0.06 5.84±0.05 

σ/ε0 0.031±0.003 0.035±0.003 0.024±0.023 
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permittivity differed noticeably between the true 
and false wall cases. Figure 6 shows a scatter 
plot of permittivity and thickness for the second 
wall when the first wall is composed of 10 cm 
thick concrete with low attenuation. We can 
combine permittivity and thickness by 
calculating the optical path difference (OPD) for 
the wall: ( 1w
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SNR = 20
SNR = 10

)t ε= −OPD . Histograms of OPD 
show excellent separation between the real and 
false wall (Fig. 7). Figure 8 plots the probability 
of a false wall given the probability of a real wall 
(ROC curve) derived from the histograms. This 
shows that the OPD is an excellent indicator of 
the presence or absence of a wall. Figure 9 
shows the ROC curves for other combinations of 
wall thickness and attenuation. The OPD is a 
good indicator of whether a wall is actually 
present except when the SNR of the reflection 
from the second wall is less than unity (20 dB for 
the first wall reflection). When the SNR is 
increased to 30 dB, then the second wall 
reflection becomes visible above the noise and 
the OPD can be used to determine the presence 
and absence of a wall. 
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Figure 6.  Scatter plot of thickness and relative 
permittivity of the second wall 
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Figure 7.  Histogram of OPD of the second wall. 

 
Figure 8.  Probability of no wall as a function of 
the probability of a wall for SNR of 20 dB and 
10 dB. 



 
Figure 9. Curves of probability of no wall versus 
probability of a wall for SNR of 20 dB for thick, 
low attenuation walls (top); thin, high 
attenuation walls (center); and thick, high 
attenuation walls (bottom). The latter requires 
SNR >30 dB for good performance. 

Summary 
 We have combined a gradient search 
algorithm with a non-gradient based genetic type 
search algorithm (particle swarm optimization) 
for extracting the properties of layers in a one-
dimensional medium from simulated radar data. 
The PSO algorithm is used to calculate an initial 
guess for the gradient method that is close to the 
global minimum of the mean-square error. The 
hybrid algorithm shows good performance for a 
sequence of three walls of various thicknesses. It 
also was used to determine whether one could 
detect the presence or absence of a wall based on 
the optical path difference. 
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