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Abstract 
 
One of the final steps in building a numerical model of a physical, mechanical, 
thermal, or chemical process, is to assess its accuracy as well as its sensitivity to 
input parameters and modeling technique. In this work, we demonstrate one 
simple process to take a top-down or integral view of the model, one which can 
implicitly reflect any couplings between parameters, to assess the importance of 
each aspect of modeling technique. We illustrate with an example of a 
comparison of a finite element model with data for violent reaction of explosives 
in accident scenarios. We show the relative importance of each of the main 
parametric inputs, and the contributions of model form and grid convergence. 
These can be directly related to the importance factors for the system being 
analyzed as a whole, and help determine which factors need more attention in 
future analyses and tests. 

 
Nomenclature 

 
DFSS Design For Six Sigma 
FEA Finite Element Analysis 
FEM Finite Element Method 
PDF Probability Distribution Function 
RSM Response Surface Model 
S Simulation Output (Quantity of Interest) 
S’ Simluation Output sensitivity to a data input d 
ud Standard Uncertainty in data inputs d 
uD Standard Uncertainty in data output D (determined experimentally) 
uIVAL Standard Uncertainty from regression of model output S vs. data output D  
uSDP Standard Uncertainty in model output S due to Data Parametric uncertainty ud 
uSMA Standard Uncertainty in model output S due to Modeling Assumptions (Model Form) 
uSN Standard Uncertainty in model output S due to Numerical errors (solution verification) 
V&V Verification & Validation 
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Introduction 
 
Model validation is the process of determining whether a model of a physical process is 
adequate from the perspective of the real world use of the model. This is true whether the 
model is a simple curve fit or a nonlinear finite element solution. Quantitative model 
validation typically involves uncertainty quantification, in order to develop quantitative 
measures of confidence intervals and prediction intervals over the range of validation of 
the model (comparison against test data), and outside the range of data (predictive 
capability estimates1). Two forms of validation are commonly used. These may be called 
Hierarchical and Integral validation. Hierarchical validation (also called bottom-up2) is 
described as a process where the model is built in steps, with uncertainty quantification at 
each level. Integral validation (also called top-down) is a process where a model of the 
top-level quantity of interest is built, and the model assessed against top level data. The 
hierarchical method provides more information about the way that subsystems and 
parametrics affect the final quantity of interest. Furthermore, hierarchical models are 
often less ad-hoc, so it is possible to achieve a highly physics-based model instead of a 
top level curve fit. The downside of the hierarchical method is time, cost, and possibly 
even drift, as bias errors in the hierarchical path may stack up to form a bias in the top 
level solution. Because of this, it is of value to use both hierarchical and integral model 
validation and uncertainty quantification. We find that integral models, while they may 
contain more free parameters, can be quickly compared to available referent data, and top 
level confidence bounds can be constructed if we account properly for the existence of 
free (fitting) parameters in the model3,4,5,6. The integral model is useful as a screening 
tool or a pilot to guide future work on more detailed, physically based hierarchical 
models. The integral model also provides a bias check; ideally, the mean and confidence 
bounds on the hierarchical and integral models should align very closely. If not, one or 
the other (or both) contain bias errors or uncertainties not properly quantified. 
 
Even while using these “integral models” as screening and planning assessment tools, we 
desire to gain a feeling for the components of uncertainty contributed by each major 
factor in the model. For example, a finite element model will have uncertainties due to: 
 

• [A] Plan simulations: Assess existing output data uncertainty, codes, code errors 
• [B] Solution Verification (spatial, temporal, iterative convergence) 
• [C] Parametric Variability (experimental scatter in the input quantities) 
• [C] Parametric Uncertainty (lack of information – not enough data) 
• [D] Model Form or Physics Uncertainty (lack of knowledge about the physics 

nature) 
 
We have denoted each of these aspects with the letters A, B, C, or D, corresponding to an 
“ABCD” process for Model Verification & Validation (V&V) described in previous 
works17. The letters “ABCD” can represent both the process used for model V&V, but 
also reflect specific types of uncertainty terms which may be quantified using the same 
“ABCD” breakout. We can make a direct analogy between our interpretation of the 
“ABCD” process for assuring accurate FEA simulations, and one proposed process by 
Coleman and Stern8 for validation with uncertainties at confidence. For clarity we follow 
the nomenclature as proposed8, but will use standard uncertainties (u) instead of 
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expanded uncertainties (U) in this work, resulting in the following analogs and 
nomenclature8: 
 
 A ~ uD  ~ Data uncertainty, experimental and measurement uncertainty in 

available output quantity data; may include small sample coverage factors9 
or other corrections 

 B ~ uSN  ~ Simulation Numerical uncertainty, determined from spatial, temporal, 
and iterative convergence studies10 

 C ~ uSPD  ~ Simulation uncertainty in the model output quantity due to parametric 
uncertainties ud in the model input quantities 

 D ~ uSMA ~ Simulation uncertainty due to Modeling Assumptions, or model form or 
model physics uncertainty 

 
In this work, we use uncertainty quantification at the integral level to establish the overall 
uncertainty as a standard deviation of fit at the mean of the top level referent data 
available. We denote this quantity as uIVAL, or the standard uncertainty of fit between the 
top level model and data output quantity. We assume a bias correction at the top level 
and so only consider explicitly the uncertainty terms above. In this simple treatment we 
will also assume for simplicity that the “ABCD” uncertainty terms can be assessed 
independently of each other. In the problem we present in this work that assumption is 
legitimate; however, such is not generally the case.  
 
With an example in the main text and a description of a Crystal Ball example in the 
Appendix, we will show that “Six Sigma” principles are not just for production process 
control; there is an easy procedure to get started in applying Design For Six Sigma 
(DFSS) in FEA as well11. Along the way we will obtain the relative importance of our 
parametric inputs, grid convergence, and model form. 
 

Example of the “DFSS” process for FEA 
 
The problem selected involves the assessment of high explosive safety in possible 
accident scenarios. The assessment involves use of the Steven impact test12 (Figure 1). A 
steel shape impacts a sandwich assembly containing high explosive. At or above a certain 
impact velocity, the HE will begin to react. This “threshold” velocity is predicted by 
simple regression response surface models (RSM), and also by complex finite element 
models (FEM). The result is a plot of the mean threshold velocity versus, for example, 
the temperature of the assembly during impact (Figure 2). Confidence intervals (shown), 
prediction intervals, the integral validation uncertainty term uIVAL, and reliability of the 
model of the system11,13 can be assessed from the top level with this type of integral 
model and validation14.  
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We then overlay probabilistic tools over our simulations to examine the separate 
contributions of solution verification (uSN) and parametric uncertainty (uSPD) estimates. 
Typically, during the development of either simple regression models or complex 
nonlinear finite element models, we find that the largest uncertainty contributor is the 
model physics or model form uncertainty. This point is illustrated in Figure 3. We assess 
the total standard deviation of fit, confidence interval, and prediction interval using the 
integral validation method, and plot this as the bar marked “all” as the total standard 
deviation of the fit versus the referent data, or uIVAL. The probabilistic simulator is then 

 
Figure 1. Steven Impact Test: 30mm (Steven, Head #1, shown) and 6mm (Duff R/T, Head 
#2, not shown) projectiles. 
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Figure 2. Integral Model Validation plot for PBX 9404 impact threshold, using 0D 
Regression model, showing mean and confidence intervals. 
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used to sample known (or various assumed) probability distribution functions (PDFs) of 
the physical data used as input to the model. Each probabilistic simulation gives a 
slightly different reaction threshold velocity and hence a slightly different standard 
deviation of fit will result. This simulation parametric data uncertainty uSPD is already 
affecting the integral model result uIVAL, so we must be careful not to double count. 
However, if the effect of the uSPD is small compared to the total uncertainty uIVAL, we can 
assess it in this manner and then subtract out independent terms in quadrature. As shown 
in Figure 3, the contribution to threshold velocity of the experimental variability due to 
input uncertainties ud in test temperature (Texpt in Fig. 3), and in explosive energy 
content (HMX% in Fig. 3), and in the output quantity of interest data (uD) experimental 
velocity measurement (Vexpt in Fig. 3), are all very small compared to the total standard 
deviation of fit (uIVAL). For a linear model, the input uncertainties ud could be simply 
multiplied by the respective sensitivities (S’) of simulation model output (S) on change u 

d in model input, giving, when added in quadrature: 
 

u2
SPD = (S’Texpt) 2(ud,Texpt) 2+ (S’HMX%) 2(ud,HMX%)2  [1] 

 
For models where inputs affect the output in a nonlinear way, we can link a probabilistic 
tool to the simulation (FEA or RSM) model, and obtain the components of uSPD without 
needing a constant sensitivitity S’ to propagate uncertainty from input to output. 
 
Assessments of the solution verification (grid convergence) uncertainty (uSN) can be 
performed using methods described by Roache10, or more complex methods described by 
Nitta and Logan15 and elsewhere. For our example problem, the terms in uSN are also 
small16. This leaves the Model bar in Figure 3, representing uSMA as the single remaining 
and dominant contributor to the overall estimate of the standard deviation of the model of 
the system. Given the assumptions discussed above and in previous works, we can obtain 
one possible numerical assessment of model form uncertainty uSMA from our extension of 
the previous nomenclature8 as: 
 

u2
IVAL = u2

D + u2
SN + u2

SPD + u2
SMA  [2] 

 
Since we have quantified each remaining term (with our assumptions as given above for 
this simple explanation), we can obtain an assessment of uSMA directly from subtraction 
in quadrature: 
 

u2
SMA = u2

IVAL - u2
D - u2

SN - u2
SPD   [3] 

 
Note that such an assessment is only possible because we have done the integral level 
validation to obtain uIVAL; otherwise we would be unable to quantify either term or 
separate either term. This method represents one simple way of estimating model form 
uncertainty in the integral method. It is valuable to compare uncertainty analyses such as 
the one summarized in Figure 3, using alternate model forms, as a check that the estimate 
of model form uncertainty encompasses that actually observed when using alternate 
plausible models. 
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The fact that the Model term dominates the experimental and solution verification terms 
tells us that lack of knowledge about the physical, chemical, and mechanical aspects of 
the physical impact problem are the largest limitation of the model. The compelling next 
phase is to improve the physics in the model and drive down the model uncertainty term 
until it is about the same magnitude as the other terms in Figure 3. It may or may not be 
possible to do this with the integral model. If it is not, then at least the integral model, 
combined with the ability to separate out the effects of variability using the probabilistic 
simulator overlay, has allowed us to show the relative magnitudes and that the model 
form or model physics uncertainty should be a top priority. This type of analysis may not 
enable the integral model to be improved; however, it makes a compelling and 
quantitative case to proceed with development of a detailed, albeit costly, hierarchical 
model, so that we may drive down the height of the model uncertainty bar in Figure 3. 
 

Conclusion 
 
We have divided the uncertainties during a non-deterministic FEA into four major terms, 
and shown an example method to quantify three types of terms in a top-down or integral 
analysis for the uncertainty present in the FEA model of the system. These three types of 
terms (solution verification, parametric uncertainty, and model form uncertainty) can be 
quantified to give a first but quantitative assessment of their relative importance. We 
offer an integral validation example (system level model versus data response) as a way 
to obtain an envelope estimate for model form uncertainty and recommend that this 
estimate be compared to that obtained using alternate plausible model forms. There will 
of course be many cases where many or most of the simplifying assumptions we follow 
here will be violated and cause inaccuracies in assessments of the model and system 
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Figure 3. Uncertainty Quantification during integral validation: Model Physics 
uncertainty term dwarfs the other terms when they are extracted from the integral 
validation process. 
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output. However, the simplicity of the treatment as presented elsewhere1-3,7-11 and 
followed here enables a clear comparison to more complex model analyses that may 
follow. Doing this type of analysis also enables each type of uncertainty at confidence 
(the “ABCD” or uD, uSN, uSPD, uSMA terms) to be followed through to get a feel for their 
importance, notwithstanding coupling effects addressed in subsequent analyses. In 
addition, the breakout of the “ABCD” process and its analogy to the terms (uD, uSN, uSPD, 
uSMA) reminds us to remember not to lose sight of the model form uncertainty term uSMA; 
whether uSMA is quantified using integral validation as in this example or using 
hierarchical validation, the model form uncertainty uSMA is always elusive, often 
dominant, and assessing it is paramount to the credibility of the use of the model in 
subsequent predictions. 
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Appendix A: An Example with Crystal Ball 

 
Crystal Ball1® is “a user-friendly, graphically oriented forecasting and risk analysis 
program that takes the uncertainty out of decision-making” (Quote from the user’s 
manual). Briefly, Crystal Ball is a Sampling-Based (Monte Carlo or Latin Hypercube 
methods) probabilistic simulator that enables quantification, at a given Monte Carlo 
confidence level, of uncertainties propagated through Microsoft Excel2 based models. 
 
The Crystal Ball Example File, “Simulation with DoE.xls” can provide a simple example 
of the first use of the principles in this work. The example is described on the first 3 of 
the attached pages. On the next two pages, the actual spreadsheet is shown. For this 
weakly coupled problem, it is possible to examine the effects of the three parametric 
inputs, time, temperature, and pressure, do a simple root-sum-square combination, and 
get nearly exactly the same contribution as each is used in a Monte Carlo analysis 
separately or in combination. This gives us the estimate of parametric uncertainty. The 
model form uncertainty can be estimated via an integral least squares comparison of the 
model results versus experimental results. In this example we will neglect the solution 
verification uncertainty term.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1: Simulation Parametric Data Uncertainty Quantification during integral 
validation: This example, supplied with the Crystal Ball example set, has the same 
method of construction as the Steven Test example in the main text. This figure shows 
the Excel spreadsheet in the Crystal Ball example “Simulation with DoE.xls”. 
 
The resulting values are given in Figure A-2 for this Crystal Ball example. A similar 
procedure can be followed with direct links to a finite-element model instead of a simple 

                                                 
1 Crystall Ball, © 1988-2004, by Decisioneering, Inc., 1515 Arapahoe St., Suite 1311, Denver, CO 80202 
2 Microsoft Excel, © Microsoft Corporation. 

 Simulation with Design of Experiments

Factor Name
Test: Low 

(-)
Test: High 

(+)
Nominal 

Value Std Dev
Lower 
Spec.

Upper 
Spec. Dist.

Simulation
Trials Results

1 MoldTemp 100 200 155 10 135 165 Normal 1000 Mean = 63.34 1 0.83
2 CycleTime 60 140 100 5 90 110 Normal StdDev = 0.92 1 0.23
3 HoldPres 120 140 130 3 125 135 Normal Sigma Capability= 3.96 1 0.55

LSL USL Cpk = 1.32 rss= 1.02
Response: Length 63.352 59.00 67.00 Cp= 1.44

1.0000 1.0000 DPMO = 1636 I think there is an error in this fo

Transfer Function: Rel. per ExamplMath 99.836% in this DPMO formula
Length = 
0.082MoldT Rel. Per RWL 99.996%

X Y X Y
LCL 59 0 LSL -4.69606325 0

59 0.02 -4.69606325 0.02
USL 67 0 USL 3.962439556 0

67 0.02 3.962439556 0.02

F-Statistic: Good T-Test: Review

Experimental Matrix Response Variable: Length

Run MoldTemp CycleTime HoldPres
MoldTemp
CycleTime

CycleTime
HoldPres

MoldTemp
CycleTime
HoldPres Y1 Y2 Y3 Y4 Y5 Mean

Test 
Stdev 1s

1 -1 -1 -1 1 1 -1 54 56 55 55 57 55.400 1.140
2 -1 -1 1 1 -1 1 59 60 58 58 60 59.000 1.000
3 -1 1 -1 -1 -1 1 62 61 58 60 59 60.000 1.581
4 -1 1 1 -1 1 -1 63 62 61 62 62 62.000 0.707
5 1 -1 -1 -1 1 1 66 62 64 64 64 64.000 1.414
6 1 -1 1 -1 -1 -1 66 68 70 71 65 68.000 2.550
7 1 1 -1 1 -1 -1 72 70 68 69 71 70.000 1.581
8 1 1 1 1 1 1 71 69 73 72 70 71.000 1.581

avgstdev= 1.444
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analytical model as shown here. Such procedures are best followed using for example 
software such as NESSUS, DAKOTA, LS-OPT, or iSIGHT as noted in (Nitta and Logan, 
2004)1. 
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Figure A-2: Uncertainty Quantification during integral validation: This example, supplied 
with the Crystal Ball example set, has the same method of construction as the Steven Test 
example in the main text. The Crystal Ball Excel sheet shown in Figure A-1 can be used 
with a Response Surface Model of (or instead of) the FEA results, to quantify the 
components of the uSPD uncertainty term as standard uncertainties at 1-sigma confidence. 
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