
UCRL-JRNL-225446

Performance of low-rank QR
approximation of the finite
element Biot-Savart law

D. White, B. Fasenfest

October 20, 2006

IEEE Transactions on Magnetics

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

1

Performance of low-rank QR approximation of the
finite element Biot-Savart law

Daniel A. White and Benjamin J. Fasenfest

Abstract—
In this paper we present a low-rank QR method for evaluating

the discrete Biot-Savart law. Our goal is to develop an algorithm
that is easily implemented on parallel computers. It is assumed
that the known current density and the unknown magnetic field
are both expressed in a finite element expansion, and we wish to
compute the degrees-of-freedom (DOF) in the basis function ex-
pansion of the magnetic field. The matrix that maps the current
DOF to the field DOF is full, but if the spatial domain is prop-
erly partitioned the matrix can be written as a block matrix, with
blocks representing distant interactions being low rank and hav-
ing a compressed QR representation. While an octree partitioning
of the matrix may be ideal, for ease of parallel implementation we
employ a partitioning based on number of processors. The rank of
each block (i.e. the compression) is determined by the specific ge-
ometry and is computed dynamically. In this paper we provide the
algorithmic details and present computational results for large-
scale computations.

Index Terms—
Maxwell’s equations, Biot-Savart law, eddy currents, electro-

magnetic diffusion.

I. INTRODUCTION

The computation of magnetic fields from a prescribed elec-
tric current is a common problem in magnetic design and anal-
ysis. One approach is to formulate the problem as a Partial Dif-
ferential Equation (PDE) for the unknown field with the pre-
scribed electric current as the source term. Regardless of the
particular PDE formulation, e.g. a magnetic vector potential
formulation or a mixed B-H formulation, a large volumetric
mesh must be employed, and some boundary condition must
be applied on the outer boundary of the mesh. In contrast to
the PDE approach, the Biot-Savart law can be employed to di-
rectly compute the magnetic field due to the prescribed current
[1]. The advantage of the Biot-Savart law approach is that a full
volume mesh is not required, and no boundary conditions need
be applied. The disadvantage of the Biot-Savart approach is
the computational cost, if there are O(N) magnetic field obser-
vation points and O(M) current samples the cost is O(N ∗M).
In this paper we review a fast low-rank QR method for com-
pressing the M×N Biot-Savart matrix. The approach is similar
to low-rank QR methods developed for boundary element elec-
trostatics [2] [3] and for low frequency electric field integral
equations [4]. The key difference with our approach is that we
are concerned with volumetric current densities and implemen-
tation on parallel computers.

This work was performed under the auspices of the U.S. Department of En-
ergy by the University of California, Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48,

Defense Sciences Engineering Division, Lawrence Livermore National Lab-
oratory, white37@llnl.gov

II. FORMULATION

The law of Biot and Savart is given by

�B(x) = ∇ ×�A =
µ

4π

Z
Ω′

�J(x′)× (x− x′)
|x− x′|3 d3x′. (1)

where J(x′) is the known current density at the source point x ′,
and B(x) is the desired magnetic flux density at the observation
point x. We assume that we have a finite element representation
for J over the volume Ω ′, and a finite element representation for
B over a surface Γ,

�J =
N

∑
i=1

ξi�W
2
i ,�B =

M

∑
j=1

β j�W
1
j , (2)

where ξ j and β j are the ith degree-of-freedom (DOF), and �W 2
i

and �W 1
j are vector basis functions. Inserting the basis function

expansions (2) into (1) yields the discrete Biot-Savart law

M β̄ = Zξ̄, (3)

where

Zi j =
Z

Γ

Z
Ω′

µ
4π

�W 2
i (x′)× (x− x′) · �W1

j (x)

|x− x′|3 dΩ′ dΓ, (4)

and
M i j =

Z
Γ
�W 1

i (x) · �W 1
j (x) dΓ (5)

and where ξ̄ and β̄ are the arrays of DOF. The matrix M is a
“mass matrix” due to the fact that the basis functions are not
orthogonal. The mass matrix is extremely sparse and the com-
putational cost for forming and solving this matrix is negligible.
In many applications the problem of determining the B-field can
be posed in terms of the magnetic vector potential A = ∇ ×B
with

�A(x) =
µ

4π

Z
Ω

�J(x′)
|x− x′|d

3x′. (6)

Using a finite element representation for A yields another ver-
sion of the discrete Biot-Savart law

�J =
N

∑
i=1

ξi�W
2
i ,�A =

M

∑
j=1

α j�W
1
j , (7)

M ᾱ = Yξ̄, (8)

where

Yi j =
Z

Γ

Z
Ω′

µ
4π

�W 2
i (x′) · �W1

j (x)
|x− x′| dΩ′ dΓ. (9)

2

We will refer to the M×N matrices Z and Y as Biot-Savart ma-
trices. The computation of these matrices involves singular and
near-singular integrals. The surface integration is performed
using standard Gaussian quadrature points for each surface ele-
ment. The volume integration uses an adaptive integration rule,
which varies the order of Gaussian quadrature based on the dis-
tance between the source point x ′ and the observation point x.
When the surface element containing x is a face of the volume
element containing x′, a highly accurate height-based singular-
ity cancellation quadrature rule is used [5]. The matrices (4)
and (9) are constructed using 2-form or “face elements” for the
basis functions W 2 and 1-form or “edge elements” for the basis
functions W 1, see [6] for details on the construction of the basis
functions.

Our primary application for the discrete Biot-Savart law is
providing boundary conditions for finite element solution of
multi-conductor eddy current problems. In each conductor we
solve the time-dependent vector diffusion equation using an
edge element based A-φfinite element formulation [7]. Clearly
the B-field in the air surrounding the conductors is critical. The
finite element formulation requires that either n̂× �A or n̂× �B
be specified on the conductor boundaries, corresponding to in-
homogeneous Dirichlet or Neumann boundary conditions, re-
spectively. Our approach for dealing with the B-field in the air
surrounding the conductors is to use the discrete Biot-Savart
law (3) or (8) as the boundary condition on each conducting
surface.

III. PARALLEL IMPLEMENTATION

We assume that the volume Ω has been partitioned into K
partitions, where K is the number of computational proces-
sors, with each partition having an equal number of volume
elements. The volume elements are distributed via the parti-
tioning. The surface Γ is also partitioned into K equally sized
surface partitions. Note however that the surface elements
are not distributed via the surface partitions, each processor
can access the entire surface mesh. The Biot-Savart matrix is
then decomposed into a K ×K block matrix, with every block
Zpq, p ∈ {1 : K},q ∈ {1 : K} representing the interaction of sur-
face partition Γ p with volume Ωq. The qth processor computes
blocks Z pq, p = 1 : K, i.e. a column of blocks. Note that the
matrix is decomposed via a partitioning of elements, hence the
matrices Z pq are overlapping in DOF space. The specific par-
titioning algorithm used to partition the elements is not criti-
cal, in the examples below we employ a graph-based algorithm
[8]. The key point is that if the partitions Γ p and Ωq are well-
separated then the sub-matrix Z pq will have a low-rank QR de-
composition. The procedure for computing the low-rank QR
decomposition is described below. We define “well-separated”
as follows: the bounding spheres for the element partitions Γ p

and Ωq are computed, if the bounding spheres do not intersect
then the partitions are considered well-separated and a low-rank
QR representation of Z pq is computed. We employ a recursive
procedure for computing Z pq when partitions Γ p and Ωq are
not well-separated. This results in a hierarchical representa-
tion for Z. If Γ p and Ωq are not well separated, Ωq is divided
into eight equally sized sub-partitions, Γ p is divided into four

equally sized sub-partitions, and the “well-separated test” is
applied to the sub-partitions Γ pi and Ωq j, i = 1 : 4, j = 1 : 8.
A space-filling curve algorithm is used for creating the sub-
partitions. The process is applied recursively, with a low-rank
QR representation computed for well-separated sub-partitions.
The recursion is halted when a volume sub-partition contains
fewer than some number of elements, for example 64 elements.
If at the lowest level of recursion the interaction is not well
separated, it is simply represented by a dense matrix. This is
illustrated in Figure 1.

No parallel communication is required in the construction of
the hierarchical Biot-Savart matrix, each processor has the el-
ements that it needs to perform the integrals. Each processor
has the same amount of work hence the computation of is load
balanced. Note, however, that in the low-rank QR approxima-
tion the rank k is computed dynamically, and the rank k de-
pends upon the geometry. Hence the application of the hierar-
chical Biot-Savart matrix, i.e. the matrix-vector multiplication
β̄ = Zξ̄, may not be perfectly load balanced. Also note that the
application of the hierarchical Biot-Savart matrix does require
parallel communication. This communication is as follows: (1)
each processor q does a gather operation to get the values of ξ̄
that it needs, (2) each processor q loops over the sub-matrices
Zpq, p = 1 : K and computes β̄q = Z pqξ̄q, (3) each processor
participates in a global reduction on β̄q.

Fig. 1. Hierarchical partitioning of the Biot-Savart matrix. The highest level of
partitioning is based on the number of processors. Some of the the interactions
at any Level l will be full rank (black boxes), and these interactions are sub-
partitioned by decomposing the corresponding sub-volume and sub-surface to
create Level l+1.

IV. LOW-RANK QR DECOMPOSITION

When Γ p and Ωq are well separated the matrix Z pq will have
a low-rank representation

Zpq
m×n ≈ Qm×k ×Rk×n, (10)

where k is the rank. We do not want to form the entire Z pq

and then compress it, rather we sample the matrix by picking
s rows and columns of Z pq, where s is some predetermined
number based on an estimate of the rank. The procedure for
picking the sampled rows and columns is ad-hoc, the procedure
that we employ is described in [4]. The sampling procedure
is solely linear algebra, it does not depend upon the particular
Green’s function, finite element basis functions, etc. For the ad-
hoc sampling procedure to be effective we must have s greater

3

than the expected rank. The algorithm for computing Q m×k and
Rk×n is as follows:

1: Form the sampled column matrix Sc
m×s and the sam-

pled row matrix Sr
s×n.

2: Compute the rank-revealing QR decomposition
Q̃m×sR̃s×s = Sc

m×s using LAPACK routines DGEQPF
and DORGQR. The rank k is determined by the crite-
ria R̃kk < thresh·R̃11 where thresh is a threshold value.
Keep only k columns of Q̃, denote this as Qm×k, and
discard R̃.

3: Form a new matrix Q̂s×k by taking s rows of Qm×k,
the exact same rows as used to construct Sr.

4: Compute the least-squares solution to Q̂s×kRk×n =
Sr

s×n using LAPACK routine DGELSS.
At this point we have the desired matrices Qm×k and Rk×n

which approximate Z pq
m×n. To perform a matrix-vector mul-

tiplication with the compressed matrix it is necessary to in-
clude the permutations due to the column and row sampling,
Zpq

m×n ≈ Pc ×Qm×k ×Rk×n ×Pr, where Pr and Pc are permuta-
tion matrices. The quality of the approximation, and the amount
of compression (the rank k), are determined by the value of
thresh used in Step 2 above. Our approach, being based on
highly tuned LAPACK routines, is efficient both in terms of
FLOPS and memory usage. The complexity of a single QR de-
composition is O(m ·s)+O(s ·n), using a fixed value of s yields
a linear complexity in m and n.

The two key parameters in the QR decomposition are the
threshold used to determine the rank k in Step 2, and the num-
ber of sampled rows and columns s in step 1. In practice we
have found 0.01 < thresh < 0.001 to yield acceptable results,
meaning the the error in the QR compression is less than the in-
trinsic error of the finite element computation. Of course this is
application dependent. For the parameter s we use a table look-
up, where the argument is the normalized distance between the
volume and surface regions. This normalized distance is de-
fined as the distance between the centroids of the two bounding
spheres divided by the sum of the radii of the spheres, a value
of d = 1 means that the two bounding spheres are just touching.
A table of computed ranks vs distance, generated by running a
dozen different problems, is shown in Figure 2.

2 4 6 8 10

5
10
15
20
25
30
35
40

Fig. 2. Rank vs distance. The Black curve is the maximum rank, which is
used to determine s. The Gray curve is the minimum rank.

V. EXAMPLES

In these examples we compute a hierarchical low-rank QR
approximation of the matrix defined by Equation (9). For the
first example consider the geometry shown in Figure 4. This
geometry consists of 19000 volume elements and is partitioned
for 16 processors. Therefore the Biot-Savart matrix will be
a 16 × 16 block matrix. Each block Z pq has roughly 1200
rows and 4000 columns. Using a value of thresh = 0.005
gives the parallel rank map shown in Figure 3. The compres-
sion is significant, each 1200× 4000 matrix is compressed to
Q1200×k +Rk×4000 where k is the value shown in Figure 3. Note
that the black blocks represent near interactions and have full
rank. These near interaction blocks were decomposed further
as explained in Section III above. The total compression was
60× for this specific example.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Fig. 3. Rank map for the highest level 16 x 16 partitioning of the three coil
problem. Black=full rank, Dark Gray = 20 < k < 30, Light Gray = 10 < k < 21,
White = k < 11.

The second example is shown in Figure 5. The geometry
consists of three conducting coils, the center coil is driven with
an independent current source, and we wish to compute the
eddy currents in the coils due to the B-field in the surround-
ing air. The problem consists of 20736 volume elements and
was partitioned for 24 parallel processors, therefore the Biot-
Savart matrix is a 24×24 block matrix. Each processor had 24
matrices to compute at the highest level, on average 19 of these
corresponded to well-separated regions and were compressed
with an average rank of 10. The remaining 5 full-rank matri-
ces were further partitioned into 4 · 8 = 32 sub-matrices, and
on average 29 of these corresponded to well-separated regions
and were compressed with an average rank of 25. At the lowest
level of the hierarchy, the near interactions were represented,
on average, by dense matrices of dimension 335× 439, there
were a total of 24 ·3 = 72 of these. The total compression was
109×. This compression represents both the memory savings
and the reduction in CPU time required to apply the Biot-Savart
interaction.

We performed a scalability study by refining the computa-
tional mesh. As the mesh is refined, more processors were used
to keep a constant number of mesh elements per processor. The
results are shown in Figure 6, with a Nlog2(N) performance

4

for the memory usage. The CPU time for applying the com-
pressed Biot-Savart matrix at every time step is proportional
to the memory usage. The CPU time for computing the com-
pressed Biot-Savart matrix is amortized over many thousands
of time steps and is not dominant. Note that in Figure 6 the data
for the uncompressed case is theoretical, since the memory us-
age was prohibitive.

Fig. 4. Computational mesh for a linear induction motor partitioned for
16 parallel processors. This partitioning gave a compression o 60×.

Fig. 5. Computational mesh for an inductive coupling application parti-
tioned for 24 parallel processors. This partitioning gave a compression of
109×.

VI. CONCLUSIONS

Hierarchical low-rank QR compression of far interactions
significantly decreases the cost of applying a finite element

10
3

10
4

10
5

10
6

10
6

10
7

10
8

10
9

10
10

10
11

Size N

M
em

or
y

U
sa

ge

Uncompressed
Compressed

Fig. 6. Compression of the hierarchical low-rank QR algorithm. The y-axis is
words, the x-axis is number of volume elements, on a log scale. The solid line
is 50 ·Nlog2(N) for comparison.

Biot-Savart law. The advantage of the proposed algorithm,
which uses the parallel partitioning of the volume elements as
the first level of the hierarchy, is that no parallel communica-
tion is require in the QR computation. Ideally the computa-
tional cost of computing the far-interactions will be less then
cost of computing the near interactions, resulting in an O(N)
algorithm since the cost of the near interactions is O(N). But it
can be shown [3] that the cost of the far interactions will grow
as O(Nlog2(N), and this was confirmed by our experiments.
In addition, for a given mesh the performance will degrade as
the number of processors p is increased. Given a volume par-
tition of n elements and a surface partition of m elements, the
QR work is n · k + m · k. If each of these partitions is cut in
two (by doubling the number of processors p) the QR work is
4(n/2 · k + m/2 · k), the work is increased by a factor of 2.

VII. ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by the University of California, Lawrence
Livermore National Laboratory under contract No. W-7405-
Eng-48.

REFERENCES
[1] J. D. Jackson. Classical Electrodynamics. 1962.
[2] S. Kapur and D. Long. IES3: Efficient electrostatic and electromagnetic

solution. IEEE Comp.. Sci. Eng., 5(4):60–67, 1998.
[3] D. Gope and V. Jandhyala. PILOT: A fast algorithm for enhanced 3d para-

sitic capacitance extraction. Micro. Opt, tech. Lett., 41(3):169–173, 2004.
[4] D. Gope and V. Jandhyala. Efficient solution of EFIE via low-rank com-

pression of multilevel predetermined interactions. IEEE Trans. Ant. Prop.,
53(10):3324–3333, 2005.

[5] M. A. Khaya and D. R. Wilton. Numerical evaluation of singular and near-
signular potential integrals. IEEE Trans. Ant. Prop., 53(10):3180–3190,
2005.

[6] P. Castillo, J. Koning, R. Rieben, and D. White. A discrete differential
forms framework for computational electromagnetics. Computer Modeling
in Engineering & Sciences, 5(4):331–346, 2004.

[7] R. Rieben and D. White. Verification of high-order mixed FEM solution of
transient magnetic diffusion problems. IEEE Trans. Mag., October 2005.
article in press.

[8] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering. J. Parallel Distr. Comp., 48(1):71–95,
1998.

