
UCRL-JRNL-220317

Nanoporous gold as a highly active
substrate for surface-enhanced Raman
scattering spectroscopy

S. O. Kucheyev, J. R. Hayes, J. Biener, A. V.
Hamza

March 31, 2006

Applied Physics Letters

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71307219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Prepared for Applied Physics Letters.

Nanoporous gold as a highly active substrate for surface-enhanced Raman scattering
spectroscopy

S. O. Kucheyev, J. R. Hayes, J. Biener, and A. V. Hamza
Lawrence Livermore National Laboratory, Livermore, California 94551

(Dated: March 28, 2006)

Colloidal solutions of metal nanoparticles are currently among most studied substrates for sensors
based on surface-enhanced Raman scattering (SERS). However, such substrates often suffer from not
being cost-effective, reusable, or stable. Here, we develop nanoporous Au as a highly active, tunable,
affordable, stable, bio-compatible, and reusable SERS substrate. Nanoporous Au is prepared by a
facile process of free corrosion of AgAu alloys followed by annealing. Results show that nanofoams
with average pore sizes of ∼ 250 nm exhibit the largest SERS signal for 632.8 nm excitation. This is
attributed to the electromagnetic SERS enhancement mechanism with additional field localization
within pores.

PACS numbers: 61.43.Gt, 68.43.Pq

Surface-enhanced Raman scattering (SERS) spec-
troscopy probes bond vibrations of molecules in the prox-
imity of metallic nanostructures.1 This technique has re-
gained considerable interest in recent years stimulated by
an explosive development of nanotechnology1 and supe-
rior sensitivity of SERS, in some cases possibly approach-
ing the single molecule detection limit.2,3

Despite numerous previous reports demonstrating the
SERS effect for different molecules and substrates, there
is still an ongoing search for better substrates for SERS-
based chemical sensors.1 Indeed, colloidal solutions of
Au or Ag with particle sizes in the submicron range are
currently among most studied SERS-active substrates.
However, such substrates are not reusable and, hence,
not cost-effective. This fact and the limited stability and
reproducibility of metal colloids often hamper their prac-
tical use.1

In this letter, we report on the development of
nanoporous Au (np-Au) as a highly active, stable, tun-

FIG. 1: Typical SEM images (primary electron energy is 5
keV) illustrating the surface morphology of as-dealloyed np-
Au (a) and np-Au annealed for 2 hours at 300 ◦C (b), 450 ◦C
(c), and 550 ◦C (d). The horizontal field widths are ∼ 2.4 µm
for images (a) and (b) and ∼ 6.0 µm for images (c) and (d).

FIG. 2: Dependence of the average pore size on annealing
temperature of np-Au. The inset shows the distribution of
pore sizes in np-Au annealed at 450 ◦C.

able, bio-compatible, reusable, and affordable (particu-
larly when used as a thin nanoporous Au film on a low-
cost substrate) SERS substrate. Additional attractive-
ness of np-Au comes from the fact that it is compati-
ble with well-studied self-assembled monolayers of thiols,
which can be used as linking layers in advanced sensor
applications. We show that the largest SERS enhance-
ment factors, with crystal violet as a test molecule and
632.8 nm laser excitation, are observed for np-Au with
an average pore size of ∼ 250 nm.

Nanoporous Au samples, ∼ 5.0×5.0×0.3 mm3 in size,
were prepared by free corrosion of a Ag0.7Au0.3 starting
alloy in an ∼ 16 molar aqueous solution of HNO3 for
48 hours at room temperature. Such a procedure results
in selective dissolution of Ag and the surface-diffusion-
limited self-assembly of the remaining Au atoms into
np-Au with a relative density of ∼ 30% and an open-
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FIG. 3: (Color online) Representative SERS spectra (for a
10−6 molar solution of crystal violet) from np-Au annealed
at different temperatures, as indicated. Spectra are offset for
clarity. A methanol-related peak is labeled “MeOH.”

cell sponge-like morphology with elongated pores with
an average width of ∼ 25 nm [see a scanning electron
microscopy (SEM) image in Fig. 1(a)].

Ligament and pore sizes were tuned by thermal anneal-
ing of as-dealloyed foams in an Ar atmosphere for 2 hours
in the temperature range of 100 − 600 ◦C, as illustrated
in SEM images of the surfaces of np-Au in Fig. 1 (for se-
lected annealing temperatures of 300, 450, and 550 ◦C).
The dependence of the average pore size, obtained from
statistical analysis of SEM images such as illustrated in
Fig. 1, on annealing temperature is shown in Fig. 2. It
is seen from Figs. 1 and 2 that, with increasing anneal-
ing temperature above ∼ 400 ◦C, the size of pores and
ligaments rapidly increases. In addition, the aspect ra-
tio of the pores intersecting the sample surface decreases
with increasing annealing temperature (i.e., pores and
ligaments become less elongated). The inset in Fig. 2
illustrates a relatively wide pore size distribution for a
sample annealed at 450 ◦C, which is representative of all
the other samples studied here and is consistent with a
previous report.4

Raman scattering was studied in a Jobin Yvon Ra-
man spectrometer (model HR800) equipped with a He-
Ne (632.8 nm) laser as an excitation source. Crystal vio-
let (CV) 10B was used as a test molecule, with methanol
as a solvent. After a linear background subtraction, all
spectra were normalized to the intensity of a methanol-
related Raman band centered on ∼ 1035 cm−1. Both
(exterior) sample surfaces and cross sections (prepared
by simple fracturing since np-Au is macroscopically brit-
tle) revealed overall the same data trends. Hence, in this
letter, we will show data from the surfaces only.

FIG. 4: Dependence of SERS intensity (defined as the inte-
gral intensity of the band centered on ∼ 1175 cm−1) on the
average pore (a) or ligament (b) size. Different data points for
the same pore or ligament size represent spectra taken from
different areas of the same sample. All data are for a 10−6

molar solution of crystal violet.

Figure 3 shows typical SERS spectra from np-Au an-
nealed at different temperatures. These Raman spectra
consist of a methanol-related peak centered on ∼ 1035
cm−1 and a series of CV-related SERS bands. Note
that no measurable SERS signal was observed from flat
Au surfaces (Au deposited on glass slides) even for the
largest CV concentration used (a 10−5 molar methano-
lic solution). It is seen from Fig. 3 that the SERS en-
hancement strongly depends on the annealing temper-
ature and, hence, on the average size of pores and/or
ligaments (see Figs. 1 and 2). In particular, samples an-
nealed at temperatures around 500 ◦C exhibit the maxi-
mum SERS signal.

To better correlate SERS signal enhancement with the
morphology of np-Au, Fig. 4 shows the dependence of
SERS intensity on the average pore [Fig. 4(a)] or liga-
ment [Fig. 4(b)] size. Note that, in Figs. 4(a) and 4(b),
different data points for the same pore or ligament size5,6

represent Raman spectra taken from different areas of
the same sample. Figure 4(b) reveals no clear correla-
tion between SERS intensity and the average ligament
size. For the same set of nanofoams as in Fig. 4(b), how-
ever, Fig. 4(a) shows that SERS intensity is maximum for
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foams with an average pore size of ∼ 250 nm. With this
pore size, we could readily detect SERS signal from 10−7

molar methanolic solutions of CV. Note that the length
scale dependence revealed by Fig. 4 suggests that np-Au
could be a tunable SERS substrate when the SERS re-
sponse is optimized for any given excitation source by
adjusting the pore size in a straightforward thermal an-
nealing step.

Data from Fig. 4 provides clear evidence that SERS
enhancement better correlates with the average pore size
rather than with the ligament size. Hence, we attribute
efficient SERS from np-Au to well-established electro-
magnetic SERS enhancement mechanism related to an
efficient excitation and trapping of surface plasmons and
the geometrical “lightning rod” effect,1 but with an addi-
tional effect of field localization in the pore regions. Our
experimental finding is, qualitatively, consistent with sev-
eral previous experimental1,3,7–11 and theoretical1,12–18
reports on the additional SERS enhancement resulting
from electromagnetic field localization in regions between
nanoparticles or in surface cavities/pores (with negative
curvature). However, the specific optimal pore size of ∼
250 nm, revealed in the present study, is unexpected. For
example, several previous experimental observations8,10
and theoretical calculations8,14 for isolated (but electro-
magnetically coupled) nanoparticles have suggested that
SERS enhancement generally increases with decreasing
average interparticle distance. Such results for nanopar-
ticles, however, cannot be directly applied for a com-
plex coupled system such as np-Au. Somewhat more
relevant calculations for a 2D lattice of buried spherical
voids recently reported by Teperik et al.17 have shown
that there are optimal conditions for the most favorable
light–plasmon coupling which depend on the properties
of the metal, the dielectric filling the pores as well as the
size, shape, and geometrical arrangement of nanovoids.
Hence, theoretical studies taking into account the specific
morphology of np-Au (illustrated in Fig. 1) are currently
needed in order to explain the pore size dependence re-
ported here.

It should be noted that the scatter in effective SERS
enhancement factors for different areas of the same sam-
ple, as clearly illustrated in Fig. 4, is not unexpected.
Indeed, most of the signal from np-Au appears to orig-

inate from so called “hot spots” whose size, according
to a very recent report by Dixon,19 is comparable with
the laser beam spot size used in our experiments (ideally,
∼ 2 µm, estimated based on the parameters of the micro-
scope objective used). The appearance of such hot spots
is also consistent with a relatively wide pore size distri-
bution in np-Au (see the inset in Fig. 2) and the fact that
the irregular, nanoscale morphology of the np-Au surface
could result in complex patterns of electromagnetic field
enhancement.1

Finally, SERS cross sections and, hence, SERS en-
hancement factors can be estimated by comparing the
intensities of the methanol Raman peak at ∼ 1035 cm−1

and a CV SERS band at ∼ 1175 cm−1. In such estima-
tions, we take into account that all methanol molecules
from the probed volume (whose minimum bound of ∼ 60
femtoliters is estimated as the volume of a cylinder with
the length equal to the depth of field and the diame-
ter equal to the ideal beam spot size) contribute to the
methanol Raman peak, while CV molecules from only a
thin layer of thickness h of the solution on the np-Au
surface contribute to the SERS signal.20 Assuming that
h is ∼ 300 nm (which is a very conservative assumption
based on experiments of Murray et al.,21 suggesting that
h could be ∼ 10 nm), one obtains enhancement factors of
∼ 109 − 1011 for data from Fig. 4. These numbers, how-
ever, should be viewed as a lower bound for the enhance-
ment factors given our conservative assumptions and the
existence of hot-spot effects in the SERS response of np-
Au.19

In conclusion, we have demonstrated nanoporous Au as
a highly active SERS substrate. Although as-dealloyed
np-Au shows a weak SERS signal, subsequent thermal
processing, increasing the average pore size to ∼ 250 nm,
dramatically improves the SERS response. This has been
attributed to effects of plasmon trapping and electromag-
netic field localization within pores.
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