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Abstract. We investigate solidification in metal systems ranging in size from 64,000 to
524,288,000 atoms on the IBM BlueGene/L computer at LLNL. Using the newly developed
ddcMD code, we achieve performance rates as high as 103 TFlops, with a performance of 101.7
TFlop sustained over a 7 hour run on 131,072 cpus. We demonstrate superb strong and weak
scaling. Our calculations are significant as they represent the first atomic-scale model of metal
solidification to proceed, without finite size effects, from spontaneous nucleation and growth of
solid out of the liquid, through the coalescence phase, and into the onset of coarsening. Thus,
our simulations represent the first step towards an atomistic model of nucleation and growth
that can directly link atomistic to mesoscopic length scales.

1. Introduction
Understanding the properties of matter under extreme conditions is fundamental to researchers
in fields as disparate as astrophysics, planetary science and nuclear physics. Scientists
increasingly rely on computer models to develop this understanding since experiments are often
impossible (or extremely difficult) at pressures and temperatures of interest.

Simulating complex systems (such as transition metals) under extreme conditions poses
several difficulties. As the disorder in the system increases, describing the relevant physics
requires increasingly large systems. Further, the length of time necessary to model non-
equilibrium behavior is also increasing. Systems with hundreds of billions of atoms have been
simulated but these typically use computationally inexpensive pair (or pair-like) potentials
that are inadequate for the complex systems that we are discussing. Billion atom simulations
are feasible using highly accurate many-body quantum-based interaction potentials, such as
MGPT[6, 7, 8, 9]. Ultimately, however, the required time scales to model non-equilibrium
behavior require a shorter wall-clock time to solution than has been previously achieved. The new
generation of massively parallel computers, such as the IBM BlueGene/L (BG/L) at Lawrence
Livermore National Laboratory, provide the computational power necessary to achieve that
improvement. This improvement entails reducing the size of the problem on each processor, a
severe test of the strong scaling limit for a code.

We developed a parallel classical molecular dynamics (MD) code (ddcMD) that achieves
the required strong scaling and efficiently implements the MGPT potentials on BG/L. Using
ddcMD on BG/L, we have modeled the pressure-induced solidification of molten tantalum.
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Our simulations have yielded the first determination of the minimum sized needed to model
solidification through the rapid nucleation and growth and phase, during which individual grains
are formed, to the coarsening phase, during which the metal solidifies into a characteristic
microstructure.

The rest of the paper is organized as follows: after a brief overview of the BG/L architecture
and the MGPT interaction potentials, we describe the features of ddcMD that enable simulation
of complex systems under extreme conditions (namely, a particle-based domain decomposition
algorithm), including a discussion of the performance and scaling of the code on up to 131,072
processors of BG/L. We then present our simulation results.

2. BlueGene/L Architecture
BlueGene/L (BG/L) is a massively-parallel scientific computing system developed by IBM
in partnership with the Advanced Simulation and Computing program (ASC) of the US
Department of Energy’s National Nuclear Security Agency [24, 25]. BG/L’s high-density cellular
design gives very high performance with low cost, power and cooling requirements. The 65,536-
node system at LLNL is at this writing the fastest computer in the world, having achieved a
performance of 280.6 Tflop/s on the Linpack benchmark in November, 2005.

Figure 1. High-Level Schematic of the BlueGene/L Platform

A compute node of BG/L is composed of only 10 chips: its 700 MHz compute ASIC plus nine
DRAM main memory chips. This highly integrated design drastically lowers power consumption
and space requirements while favoring communication and memory performance. The BG/L
ASIC has two independent PowerPC 440 cores, each capable of two floating point operations
per cycle including fused multiply-adds, yielding a theoretical peak of 4 FLOP/s per cycle,
several independent network controllers, three levels of cache, and memory controllers. The two
cores on each chip are identical, with their own dual floating point units (FPUs) and symmetric
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access to resources. Though each FPU is capable of two operations per cycle, the operations
are not independent: the second floating point pipe is usable only by 2-way SIMD instructions,
or by 2-way “SIMOMD” (i.e., single instruction, multiple operation, multiple data) instructions
[25]. The theoretical peak of a single node is 2.8 GFLOPs, hence 367 TFLOP/s for the current
65,536-node system.

The system software supports two modes for applications to use the cores. In communication
coprocessor mode there is a single MPI task per node, with one processor running the application,
offloading much of the work of message passing to the second processor. In virtual node mode,
two MPI tasks run on each node, one task per core. The MPI implementation, based on Argonne
National Lab’s MPICH-2, has been adapted to make efficient use of BG/L’s three independent
custom networks (whose controllers are integrated into the BG/L ASIC). Point-to-point and all-
to-all communications are handled by a three-dimensional torus. Broadcasts, reductions, and
barriers are performed over two tree-topology networks with high bandwidth and low latency
(e.g., a full-system barrier in under 2 µs).

3. Classical Molecular Dynamics and MGPT interaction potentials
Classical molecular dynamics (MD) modeling of atomistic processes requires specification of the
total potential energy of the system as a function of the coordinates of all particles (atoms). The
force on each particle is calculated from the gradient of the energy with respect to it’s position:

~fi = −∇iU{~ri} .

The equations of motion for a collection of interacting atoms is expressed as a simple set of first
order ODE’s:

d~xi/dt = ~vi

d~vi/dt = ~fi(x1, x2, . . . , xN ) ,

where ~xi, ~vi and ~fi are respectively the position, velocity and force of the ith atom. A variety of
finite difference algorithms can be used to numerically integrate these equations; for the most
part none are computationally intensive relative to the evaluation of the forces (fi).

The potential function chosen, U{~ri}, ultimately determines the physical accuracy of the
simulation. Common choices for interaction potentials fall into several classes. A pair-wise
potential, such as the well-studied Lennard-Jones potential, describes the energy of interaction
as simply U =

∑
i

∑
j φ(rij), where rij is the separation between atoms i and j. Although

pair-wise potentials were derived for the study of noble gases, their simplicity leads to their
use in a variety of systems. Potentials based on effective medium theory are only slightly more
complicated. The embedded atom method (EAM) potentials are the best known example of
this class, in which the energy of interaction is written in two parts:

U =
∑

i

∑
j

φ(rij) +
∑

i

Fi (ρi) , ρi =
∑
j

f(rij)

The additional term on the right is a many-body term – this term represents the energy Fi

to embed a particle at ~ri in local electron density ρi, which depends on the position of the j
neighbors of atom i. The EAM potentials are excellent models of metallic bonding for simple
(closed-shell) metals, such as copper or gold, and have been used extensively since their creation
in 1983 [13, 14].

Pair-wise (and most EAM-type) potentials produce forces that are radially symmetric on the
atoms [15]. This constraint is acceptable in modeling materials for which these potentials were
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designed, such as noble gases or closed-shell metals, since their bonding can be approximated
closely as spherically symmetric. However, metal elements containing partially-filled d−bands or
f−bands have more complicated bonding environments that result in angularly dependent forces
on the atoms. Accurate modeling of these elements requires a more sophisticated interaction
potential that accounts for these forces. In order to model solidification in these metals we
use MGPT potentials that are derived from first-principles generalized pseudopotential theory
(GPT) using density functional theory [6, 8, 9]. Using GPT, we write the total energy as an
explicit function of volume:

U = NV0(Ω) +
∑
ij

F (rij ,Ω)

+ V3(Ω)
∑
ijk

Tr(HijHjkHki)

+ V4(Ω)
∑
ijkl

(Tr(HijHjkHklHli)

where Ω is the volume per atom and V0, . . . , V4 are functions of Ω. F is a simple function of
Ω and the bond length r, and Hij is a hopping matrix along bond ij. H is either a 5 × 5
matrix for d−electron elements or 7 × 7 matrix for f electron elements, and the summation is
over all pairs, triples, quadruples, etc. . . of atoms. This series converges to the exact result.
For these simulations we retain terms to fourth order, explicitly including interactions up to
quadruples. Written in this way, the use of the above equation to calculate energies and forces
(which constitutes the kernel of the ddcMD code) is comprised of traces of products of very small
(no larger than 7×7) matrices. The extra expense of these potentials causes MGPT calculations
to be approximately a factor of twenty more costly than an equivalently sized simulation using
EAM potentials.

4. Domain Decomposition on BG/L
An innovative domain decomposition scheme is the key to the outstanding performance achieved
by ddcMD on BG/L. Our particle-based decomposition strategy allows the processors to compute
potentials for overlapping spatial regions, which is an essential property for an MD code
that supports arbitrarily low numbers of atoms per processor. In addition to this novel
scheme for assigning atoms to processors, the domain decomposition scheme of ddcMD was
designed to minimize redundant calculations in order to minimize time-to-solution. In this
section, we describe the domain decomposition scheme used ddcMD, including the details of its
communication strategy.

Traditional decomposition algorithms determine the atoms for which a given processor
computes potentials through a geometry-based (i.e., spatial) decomposition scheme [10, 11, 12].
The simulated region is divided into smaller regions or zones, each of which is assigned to
a processor. Communication is determined by proximity: typically only zones that share a
boundary (i.e., nearest neighbors within the simulated space) need to exchange locations of
the atoms. This limited communication is achieved through the use of the interaction cut-off
distance: provided that zones are at least as large as that distance in all three dimensions, then
atoms in non-neighboring zones do not interact. Although not an inherent limitation, MD codes
that use a geometry-based decomposition frequently assume this communication pattern, which
restricts the lower limit of particles per processor that they can support. Also, they cannot
achieve good load balance for simulations of systems with large density inhomogeneties, such as
cracks and voids.

The systems simulated with ddcMD would be especially impacted by these limits. Not only
do MGPT potentials have relatively long cut-off distances, but Further, solidification simulations
requires fairly long time-scales. Eventually, ddcMD will be used to simulate systems with many
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cracks and voids. Finally, ddcMD is intended to run on truly massively parallel systems,
such as BG/L, where load balance issues are important. These factors combine to require
a decomposition scheme that supports unprecedented strong scaling: the code must support
reduced run-times with very few atoms per processor.

dcInit()
Initialize function and data pointers and global quantities

ddcAssignment()
Specify locations of domain center Rd

Assign Particle ri to the nearest domain center
Send particle to remote domain if not local
Receive particles sent from remote domains
Wait for communication to finish
Determine radius of domain wd = Max |riRd|
Perform an all to all communication of domain information (Rd and wd ).

ddcSendRecvList()
Determine “interacting” domains:
Remote domain r interacts with local domain d if |Rr−Rd| < wr+wd+rcut

For each “interacting” remote domain r:

Determine local particles that interact with remote domain: Particle
i interacts with domain r if |ri − Rr| < wr + rcut

Communicate this list to remote domain r

Receive list from remote domain

Construct local-remote particle interaction list.

ddcUpdateParticle()
Communicate interacting particles with remote domain[s]

ddcUpdateForce()
Communicate and accumulate partial forces from remote domains

ddcUpdateGlobal()
Accumulate partial energies, pressures, etc.

Figure 2. Description of main ddc Routines

The ddcMD particle-based domain decom-
position scheme does not assume spatially-
implicit communication partners. Instead,
each processor maintains a communication list
that explicitly tracks the other processors with
which it must communicate. The processors
on the list are exactly the ones that own atoms
within the cut-off distance of an atom owned
by that processor. This list allows ddcMD
to limit communication to (almost) the min-
imum required during the normal simulation
step. This savings comes at the cost of com-
munication required to maintain the commu-
nication lists.

Figure 2 lists the routines used in dd-
cMD. The ddcInit() routine initializes ddc
and is called only once, at the beginning
of the code. The routine ddcAssignment()
assigns particles to domains. The routine
ddcSendRecvList maintains the communica-
tion lists. The actual per step communica-
tion is performed in ddcUpdateParticle().
The routine ddcUpdateForce() uses in-
creased communications to reduce redun-
dant calculations. Finally, the routine
ddcUpdateGlobal() accumulates various partial sums.

The distributed algorithm that ddcAssignment() uses to maintain the communication lists
begins with each processor calculating the center of its domain and a bounding sphere. This
information is exchanged between all processors through a call to MPI Allgather(), from which
we determine at each processor the set of processors that own domains that overlap with it. This
set is then pruned by a communication that determines which intersections of the bounding
spheres actually contain particles, thus limiting the communication lists to processors that
actually have particles separated by less than rcut. This set would be exactly those processors
with interacting particles, except that we increase the cut-off distance beyond the interaction
distance to allow the communication list to be used for multiple time steps.

Spatial decomposition schemes must periodically update ownership of atoms while the explicit
communication lists allow a simulation to proceed without changing ownership. However, the
communication list can become unacceptably large as the particles move over time. Thus, the
ddcAssignment routine should be called periodically to limit communication costs. Initially,
this routine uses a spatial assignment. Similarly to traditional decomposition schemes, it assigns
atoms to the closest domain center. Currently, subsequent calls reassign atoms to the processor
with the closest domain center. By adjusting the domain centers one could in principle provide
load balancing, which would support hardware systems with heterogeneous processors as well
as simulated systems with cracks and voids.

The ddcUpdateForce() routine is not strictly part of the ddcMD particle-based domain
decomposition strategy. As already stated, it is used to eliminate many of the redundant
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calculations typically present in MD simulations. Every force calculation is symmetric; when the
particles are not owned by the same processor, either both processors compute the same force
or one must communicate its result to the other. For simple pair potentials, the communication
costs outweigh the computation cost, and redundant computation leads to the fastest time-
to-solution. However, the redundant computation increases time-to-solution with complicated
many-body potentials, such as the MGPT potential. The ddcUpdateForce() routine handles
the communication of forces in this case.

The following snippet of pseudo-code demonstrates the use of ddc calls to parallelize an MD
calculation:

main(){
ddcInit()
read_input()
ddcAssignment()
ddcSendRecvList()
ddcUpdateParticles()
loop {

Evaluate_Energies_Forces()
ddcUpdateForces()
ddcUpdateGlobal()
Time_Step_Equation_of_Motion()
if (I/O) Write_Snapshot()
if (finished) break
if (need_better_efficiency) ddcAssignment()
if (needed) ddcSendRecvList()
ddcUpdateParticles()

}
}

The particle-based domain decomposition strategy provides the strong scaling behavior
required by ddcMD, as we demonstrate in a later section.

5. Performance of ddcMD on BlueGene/L
This section describes the performance of our MGPT MD simulation code on BG/L. We
start with the application-oriented scaling performance numbers, which are the most important
measure of performance since they reflect the time to solution, and show how we have achieved
our code design objectives. The code exhibits excellent scaling in both the weak and strong
scaling limits. Next, we describe how we compute the floating point operations (Flops) required
for each simulation, and then apply this methodology to compute overall performance in our
benchmark calculations and production runs. This leads us to a sustained overall performance
of over 100 TFlop/s in our largest run.

Although the total flop rate varied with the number of tasks and the number of particles per
task, ddcMD exhibited excellent weak and strong scaling behavior. Figure 3 demonstrates that
time-to-solution is consistent over a variety of particles per node as the number of processors
is increased. Even more impressive, we saw continuous speedup during strong scaling, a shown
in Figure 3. Wall clock time (or time to solution) for a 16,384,000 particle system decreased
as more processors were added, up to and including the entire system. The code achieves its
objective of scaling to very low particles per processor. In the end, we saw speedup on a classical
MD calculation with only 8 particles per processor - such scaling is unprecedented.

Table 1 shows the breakdown between various routines for our full system run discussed in
the following section. These results demonstrate that our particle-based decomposition scheme
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Figure 3. (a) Weak scaling performance of ddcMD on BlueGene/L, demonstrating how well
the code enables a scale-up in the problem size by running on more processors (with the average
number of particles/processor held constant). Perfect linear scaling would appear as a horizontal
line on this plot. (b) Strong scaling performance of ddcMD on BlueGene/L. Speedup achieved
by running a fixed size job (16M atoms) on an increasing number of processors.

limits communication costs, as intended. This low communication cost occurs despite the large
fraction of every domain that must be communicated to remote domains due to the small spatial
size of the domains.

I/O Output 4.10%
MD Force 86.57%

Verlet 4.76%
DDC Barrier 3.06%

DDC computation 0.94%
Communication + misc. 0.57%

Table 1. Breakdown of time spent during
ddcMD simulation on 128K CPUs. This
profiling data is averaged over the sustained
101.7 TFlop calculation described in the text.

Load balance is a more significant concern
for efficient parallelization of ddcMD. One
measure of the lack of uniformity in the
computational load is the percentage of time
that domains spend waiting for the last
domain to finish. This time is denoted as
Barrier time in Table 1 and is about 3% of
the total wall clock time. For our largest
tantalum simulations, this routine accounts
for approximately 7% of the run time, which
indicates that load balance could be a problem
at even larger node counts. The flexibility of
the ddc algorithm allows us to implement a
dynamic load balancing algorithm to mitigate

this effect, however this has not been exploited yet.
In the extreme strong scaling limit, we find that the time to solution decreases with the

number of particles per processor all the way down to 8 particles per processor. Such strong
scaling enables us to utilize the ddcMD code on BlueGene/L to access not only extremely large
systems (billions of atoms) but, when necessary, smaller systems for extremely long times. Our
ability to scale strongly down to very few particles per processor is all the more remarkable when
one considers how much communication must take place - in the strong scaling limit there are
more than an order of magnitude more remote particles per domain than local!
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Although we have demonstrated that the performance of ddcMD running on BG/L has been
exemplary, we have also uncovered some shortcomings in our initial approach to working in this
environment. The restartability of our algorithm allowed us to recover successfully from the
occasional hardware failure that is to be expected with this number of CPUs. After running
on 32,768 processors for approximately 60 hours (including a non-stop run of 22 hours), we
encountered a week-long challenge of manipulating (changing permissions, copying/moving,
consolidating, etc.) and post-processing this highly distributed data set. Due to file system
limitations (notably the inability of NFS to handle large amounts of meta-data), these tasks
were much more cumbersome than anticipated. We have since mitigated these problems by
writing out fewer (but larger) data files, instead of the one file/CPU paradigm used in the initial
runs. Surprisingly, writing and reading from a single large data files also proved non-ideal. In
this case, contention arising from the shear number of processes attempting to access the file
proved to be the issue.

6. Simulation results
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Figure 4. Percentage of the simulation cell
that has solidified as function of time, along
with the compression ratio. The melt curve
for Ta is shown in the inset, which also depicts
the isothermal compression path (black arrow).
The labeled points refer to (*) the crossing of
the equilibrium melt curve, (a) the onset of
nucleation, (b) the period of explosive growth
and (c) the onset of coalescence.

The nucleation and growth of a solid out
of a liquid is a ubiquitous phenomenon
that though well-studied, is hardly well
understood. One of the difficulties associated
with this process is the broad range of
applicable time and length scales: although
the initial nucleation of solid-like regions
occurs on the atomic scale, the subsequent
rapid growth of these nuclei takes a large
fraction of a nanosecond and produces grain-
like objects which can involve hundreds
of thousands of atoms. The eventual
coalescence of these objects results in an
interconnected network of grains and grain-
boundaries which span the entire structures.
Computer simulations are a natural way
to study this process, but the necessarily
finite size of such models is known to color
the results. The expectation has always
been that a sufficiently large simulation cell
would circumvent these issues, producing an
accurate model of reality. Researchers have
disagreed on exactly how large such a cell
must be, with estimates ranging from a few
hundred[2] to tens of thousands[4, 5]. To
address this question, we performed a series
of calculations investigating solidification in
metals using MGPT potentials in systems
ranging from 64,000 atoms to 525,828,000
atoms. We implemented an NVT ensemble
(fixed Number of particles, Volume and Temperature) for these simulations, with temperature
control provided by application of a Langevin thermostat[17, 16]. We used the symplectic
integration scheme (with a time step of 1.5 fs), as described by Martyna and co-workers with
a slight modification to incorporate the stochastic thermostat[18, 19, 20]. The thermal time
constant was set to 1 ps. We use a slightly modified version of the the Q6 local order parameter
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Figure 5. Cross sections of the 16M-atom (a-c) and 64k-atom (d-f) simulation taken at
equivalent times during the solidification. Labels refer to points shown in Figure 4.

as defined by ten Wolde et al. in order to discriminate between “liquid” and “solid” atoms in the
cell [21]. This quantity is a measure of the correlation in local bond angles between neighboring
atoms, which has a value near unity in a crystalline solid (see Appendix). The initially liquid
collection of tantalum atoms was isothermally compressed by exponentially ramping the volume
from an initial value of 121.6 au to 74.6 au with a time constant of 100 ps. We show in Figure 4
the evolution of the solid fraction of the system, as well as the compression. The point marked
(*) notes the crossing of the equilibrium melt pressure for this temperature (43 GPa). Nucleation
is seen to occur at (a), nearly 100 ps after the equilibrium melt pressure was reached.

Rapid growth of the solid grains then occurs (b), with the solidification rate far exceeding
the compression rate. This high growth period ends at (c) when the grains have grown into each
other (the onset of coalescence). At (c), approximately 65% of the material has solidified - the
remaining material comprises an extensive, percolating network of liquid and disorder separating
grains of differing orientation[26]. The percolation threshold is reached from above, as liquid is
consumed by the growing solid. From this point forward the continued growth of grains is no
longer accomplished by the speedy conversion of free liquid atoms but rather by the assimilation
of smaller grains by larger grains - a far slower process mediated by the network of disorder
which spans the simulation cell [27].

We display in Figure 5 (a-c) a time sequence of cross-sectional images obtained from slices
of a 16M-atom simulation cell at the points marked (a-c) in Figure 4. In Figure 5 (d-f) we
show the same sequence for a 64k-atom simulation. The atoms have been colored according to a
parameter that is a measure of the correlation of local symmetry - liquid (blue) atoms have local

9



Simulating Solidification in Metals at High Pressure UCRL-CONF-223218

symmetry which is poorly correlated, while solid (red) atoms posses a local symmetry which
is highly correlated with their neighbors [21]. Yellow atoms identify a distinct population of
“intermediate” atoms that occupy the interfaces and grain boundaries. The images for the 64k-
atom simulation were created by tiling the original slices (using periodic boundary conditions)
so that the spatial extent for each of the images approximately matches that of the 16M-atom
images. (The images are 6 × 6 tiles of the original; the exact ratio of simulation box lengths
is 6.35:1). Homogenous nucleation in the larger sample is seen to occur earlier and across the
entire sample, producing a heirarchy of nucleus-nucleus separations and sizes that lead to the
rich grain structure seen in Figure 5(c). By contrast, the early grains nucleated in the 64k-
atoms simulation grow very rapidly to fill the simulation cell, so that the grains are interacting
with their images. Coalescence in this system produces a very artificial final grain structure,
dominated by grains which now spans the entire structure.

Figure 6 displays cross-sectional images obtained from slices of our simulation cells at 250 ps.
The three smaller samples have been replicated using periodic boundary conditions (PBC) so
that their linear extent is approximately the same as the 16M-atom sample. By the end of the
coalescence phase, the 64,000-atom and 250k-atom simulation have each developed a periodic
grain structure, which appears rather artificial when compared with the structure seen in the
16M-atom sample. A similar investigation of the structure at coalescence for the 2M atom
simulation does not reveal system-spanning grains - the structure appears (to the eye, at least)
similar to that shown in Figure 5(c), for the 16M atom simulation. A more careful investigation
reveals that even in the absence of such a clear “periodic boundary effect,” the distribution of
grain sizes in this system has also been cut-off at at an artificially small size. We display in
Figure 7 the average size of the largest grains as a function of time for sample sizes spanning
over 2 orders of magnitude. Although the grains evolve in similar fashion (i.e, explosive growth
followed by a slow coarsening after coalescence), the size of the largest grains at the percolation
threshold (as the system transitions from fast to slow growth) exhibits a strong size dependence,
with the smaller samples unable to attain the larger grain sizes[29]. The dependence of grain
size to system size can be described using finite size scaling theory - close to the percolation
threshold the total number of atoms (or mass, M) in the largest grains should scale as the linear
size of the system L with a fractal dimension df [28]

M ∝ Ndf /d ≈ N0.84 .

We plot the size at percolation (the points marked in Figure 7) against simulation-cell size
in Figure 7. Also shown in Figure 7 are the results expected from finite size scaling (solid
line). (The power-law scaling is highlighted in the inset.) We find that for samples smaller
than 8,192,000 (8M) atoms, the results can be closely described using finite size scaling, so that
the finite size of the simulation cell is determining the size of the largest clusters. Simulations
utilizing cells larger than 8M atoms would not produce larger grains at the percolation threshold,
as evidenced by the behavior of the 16,364,000 (16M) and 32,768,000 (32M) atom simulations.
For these simulations, continuous nucleation of solid (in the vanishing liquid spaces) and growth
of the existing solid grains ultimately serve to limit the grain size. The growth of the largest
grains for the 16M atom cell is seen in Figure 7 to follow almost identically the growth observed
in the 8M-atom simulation, while the size of the largest grains at percolation are seen to have
significantly departed from the finite size scaling prediction. We performed a similar simulation
on a 1M-atom cell using an NPT ensemble by applying a time-varying hydrostatic stress to
contrast with the NVT simulations. (This datum is shown as the magenta square in Figure
7.) We saw little difference in the growth behavior while using this compression technique to
follow substantially the same thermodynamic path. The size scale for solidification is thus not
influenced by the simulation details. We expect that in general, it is the competition between
nucleation rate per volume and growth rate that affects the characteristic size at percolation -
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Figure 6. Cross sectional images displaying the microstructure obtained in simulations
containing (a) 64,000 atoms (b) 256,000 atoms, (c) 2,048,000 atoms and (d) 16,384,000 atoms
after the start of the coarsening process. The three smaller sample images have been replicated
using periodic boundary conditions to appear approximately the same size as the 16M atom
simulation.

any solidification process which leaves these two rates unchanged would result in similar scaling
behavior.

We might expect the average size of the largest grain at coalescence to be independent of
system size since it is determined entirely by the nucleation rate per volume per time and the
growth rate. Neither of those rates vary with system size in a macroscopic system. In a simulated
sample that is too small, however, the largest cluster sees an image of itself which is artificially
close due to the periodic boundary conditions. The largest cluster in this case will grow until it
reaches a certain limiting size that scales with the volume of the box.
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Figure 7. (a) The size of the largest cluster in the system, as a function of time, plotted for
simulation cells containing 64,000 (green), 250k (blue), 2M (red) and 16M (black) atoms. (b)
Maximum cluster size at the start of coarsening as a function of simulation size. The maximum
cluster size should scale with the size of the cell if the scale of growth is dictated by the volume
of the simulation box, as demonstrated by the 64,000-, 250k- and 2M-atom simulations. The
maximum cluster size at the end of coalescence in the 16M simulations, by comparison, is seen
no longer to scale with cell volume, suggesting that growth in this simulation occurred with no
interference from the cell boundaries.

Figure 7 shows the size of the maximum cluster at the start of the coarsening process as a
function of simulation size. We find that the sizes for our three smaller samples scale linearly with
system size - an indication that the coarsening process has occurred too early for these systems.
The largest grain in the 16M-atom simulation is clearly no longer scaling with cell volume in
the same way as the smaller samples. We believe that it is the distribution of nucleation sites
during the early stages of the simulation, not the presence of PBC, which limits the grain size
in this case.

ddcMD will allow us to deepen our understanding of solidification in a wide variety of materials
that have to date posed great challenges for atomistic simulation. The results obtained to date
suggest that system size is the dominant factor determining not only the growth process but the
resulting structure for simulations which are too small.

7. Conclusions
The 16M-atom calculation that we performed on tantalum is significant because it provides the
first model of metal solidification from the melt made with no approximations due to finite system
size. This simulation represents a crucial first step towards our goal of creating a mesoscale
model of solidification with input from atomistics, as it demonstrates an ability to directly link
accurate atomistic simulations to meso- and higher-scale models – a feat never before achieved
for a liquid/solid transition. In addition, our calculations (the largest simulation ever attempted
using quantum-based interaction potentials) proves that BlueGene/L’s unique architecture can
scale as advertised with real-world applications, attaining a performance of 101.7 TFlops. Given
the weak scaling of ddcMD we could simulate well over a billion atoms, both in order to verify
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directly the size independence of our earlier result and to begin an unprecedented atomistic-scale
investigation into grain coarsening.

Appendix: Calculation of Q6 local order parameter
The identification of liquid-like and solid-like atoms is made by using a a slight modification of the
Q6 order parameter described by ten Wolde et al. which is itself based on the shape spectroscopy
parameters introduced by Nelson and Toner.[21, 30] The concept is simple - characterize the
angles made by each bond associated a nearest neighbor of atom i using spherical harmonic
functions:

~ql(i) = 〈Y m
l (φij , θij)〉Ni

where ~ql(i) is a 2l+1-component complex vector whose elements are dependent on the symmetry
of the local bonds as well as the choice of coordinate system, and the average is over atoms j
that are nearest neighbors of i.

Figure 8. Distributions of Q6 measured in a
compressed liquid, a compressed liquid during
solidification and in a compressed solid at the
point of coalescence.

We define a dot product:

~ql(i) · ~ql(j) =
l∑

m=−l

qlm(i)q∗lm(j)

which produces a spherically symmetric quan-
tity that is now independent of the choice of
coordinates [31].

The q6 parameter has been widely used
to characterize incipient order in liquids [31,
32, 33], since it has approximately the same
value for most cubic structures. By itself, it is
difficult to use as an order parameter due to
the broad distribution of values present in an
ordering liquid. However, by characterizing
the correlation of values between neighboring
atoms, we can easily identify those atoms
whose bond angles are highly correlated with
their neighbors (i.e., are solid-like) and those
whose bond angles are poorly correlated with
their neighbors (i.e., are liquid-like). We
define for each atom i a scalar quantity Q6:

Q6 =
〈~q6(i) · ~q6(j)〉Ni

~q6(i) · ~q6(i)

which is an average of such correlations among nearest neighbors of i, normalized by |q6|.
We show in Figure 7 the distributions of Q6 measured in a compressed liquid, a compressed

liquid nucleating crystals, and a sample at the point of coalescence. Making use of the clear
separation of values present in the distribution, we arbitrarily assign the label ”liquid” or the
color blue to atoms with Q6 < 0.67 and ”solid” or the color red to atoms with Q6 > 0.87. Yellow
or ”interface” atoms are those with middle values of Q6 - corresponding to a distinct population,
as demonstrated by the small peak in the distribution around the value Q6 = 0.8.
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