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Abstract

This survey gives an overview of popular generative modsekdun the mod-
elling of stochastic temporal systems. In particular, thisvey is organized into
two parts. The first part discusses the discrete-time reptagons of dynamic
Bayesian networks and dynamic relational probabilistidels, while the second
part discusses the continuous-time representation ofirtanis-time Bayesian
networks.

1 Introduction

Dealing with uncertainty in complex dynamic environmerst&ibasic challenge to the operation
of real-world autonomous systems. These systems are hightplex, involving large numbers of
stochastic variables and many interacting nonlinear sibgys of possibly different time scales. An
autonomous system must be able to reason about the statecaiiponents and environment in
order to create informed plans of intelligent action. Toiaeh this goal, system analysts have to
iterate between modelling and reasoning. First, one muglde a tractable model of the complex
system. This model will ideally extract out irrelevant distand encode information only about the
components that are central to the reasoning task. Nex@ndhe model, one must design efficient
reasoning algorithms that exploit the information presdrin the model to answer a variety of
gueries about the system. These questions can be related to:

e State estimation and predictiov/hat is the system state at the current and any other future
timesteps?

e Event reconstructionVhat past events triggered the phenomenon observed atitént
timestep?

o Anomaly/novelty detection®When was the onset of this new system behavior?

Depending on the performance of the inference, the modelbeag-evaluated and updated to en-
code new information or features that emerged in the tenhpooaess. Inference is then performed
to reason about the updated model. This iterative proceepeats until some terminal time point.

In this survey, we will examine three popular Bayesian meadltemporal processes: dynamic
Bayesian networks, dynamic probabilistic relational misdand continuous-time Bayesian net-
works. These models were developed by the artificial iggelice community, where the terafy-
namicis often used to describe a process whose state may changtinoeeln these models, only
the state of the system variables changes, while the caeistibnships between the variables are
assumed constant. These causal relationships are madetearphe graphical structure of these
Bayesian models, where nodes represent variables andetiriétks between nodes represent the
flow of influence from one variable to another. These modatséa how variables evolve over time
and encapsulate conditional independencies between tiad ess.



This survey is organized as follows. In Section 2, we inticthe notation that we will be using
throughout this survey. In Section 3, we describe the basidating assumptions. In Section
4, we discuss discrete-time representations of tempooalgsses, namely the dynamic Bayesian
network and its relational counterpart, the dynamic prdistic relational model. In Section 5,
we discuss the continuous-time representation of contisdione Bayesian networks. In Section 6,
we conclude with related works on social networks and ogtreicturally dynamiaepresentations
that can model temporal processes, in which causal retdtipa between variables can change with
time.

2 Notation

In this section, we introduce the notation that will be usedur discourse. We use uppercase
letters to denote random variables, lowercase letters notdetheir instantiations and uppercase
calligraphic letters to denote the variable domains. Fangxe, given a binary variablé € {0, 1},

the domain ofZ is Z = {0, 1} andZ can either take on the value=0orz = 1.

We use boldface when referring to a collection or set of similems. For example, given two
variablesZ; andZ,, the collection of the two variables is referred tdzas- {71, Z,}. We also use
boldface for vectors, as vectors are usually the colleatfanore than one element.

Subscripts and superscripts are heavily used in this sumieye will always be indexed as a sub-
script. We useZ; to denote a random variabfat a specific time, andZ.; to denote the sequence
of the Z’s state from time) to timet. When referring to a particular variabk in a collection of
variablesZ at a given time, if Z occurs as the" variable inZ, then the said variable will be
referred to a<Z,, ;, where the variable index occurs as a subscript.

In general, superscripts are often reserved for indicesatespecific to an inference algorithm.
When this is the case, the superscripts are usually enclogstentheses. For example, when an
inference algorithm represents the system state as a sahgiss, then the index to a particular

sample will occur as a superscript, e 4,,= zt(i) means that variablg at timet is instantiated with

the value of theth sample. In addition to having a superscript to denote theplmimdex, some
algorithms, that employ clustering in their procedure, raksp have a cluster index. To illustrate, if
a set of variableZ belongs to a particular clusterthen these variables at timevill be referred to
asZs.

Unless otherwise stated, the system state at tim@l be denoted a$5;. The system stat8 may
consist of discrete-state random varialfescontinuous-state random variablEsor a mixture of
the two. Observations are noisy measurements of the randoables and these observed variables
are denoted by .

Lastly, we use(+) to denote probability densities ait-) to denote probability mass functions.

3 Basic assumptions

The system state at timds represented &, = {Z,;, X, }, where the state can consist of discrete

variablesZ, and continuous variableX;. To ground our discussion, let’s first assume that all

variables evolve at the same fixed time granularity, so tietémporal sequence of states is equally
spaced in time, i.eSq, S1, ..., S;_1, S¢. This assumption can be relaxed later on, when dealing with
discrete-time processes of multiple time granularitie @ntinuous-time processes.

The system evolves according to a first-order Markov progesfich the current state captures all
of the memory in the process, so that there is no additiofatrimation in the past that can be used
to predict the future. This property is expressed as follows

P(St[So:t—1) = p(Se[Si-1), t=1,2,... 1)
In addition, observations depend only on the current states
p(Yt|S0;t) = p(Yt|St)7 t= 17 2, (2)
Moreover, we assume that the probabiliti€S,|S,_;) andp(Y:|S;) are stationary:
p(SelS¢—1) = p(Ss+¢[Ssyi-1), s>0 3)
p(Y¢[S¢) = p(Ysit|Ssye), >0



With these assumptions, we can characterize the process tognisition modep(S:|S:—1) and its
observation model(Y,|S,).

The last assumption (Equation 3) is especially importanahbse the invariance ofS;|S;_1) and
p(Y,|S;) allows one to model the system using a static representatiarh as the ones that we
will be examining in this survey. However, it is also a limij assumption, since the process and
measurement mechanisms for a real-world system may defttime, thus violating this assump-
tion. In Section 6, we will discuss alternative represeatetthat lift this assumption. But for now,
we will assume that our temporal processes satisfy the miméoned assumptions, as outlined in
Equations 1- 3.

4 Discrete-time representation

A common approach to modelling dynamic systems is to asshatesystems evolve and are mea-
sured at equally spaced time steps. As a result, most systamsodelled by a fixed time step
representation and estimation on these models is done allgpaced time steps corresponding to
when state transitions or measurements may occur. This lthidea behind representing dynamic
systems using discrete-time Markov processes.

Figure 1: A simple discrete-time Markov process

Figure 1 shows a simple discrete-time Markov process with state variable and one observed
variable. At each time stef the previous stat§; ; transitions to the current statg and a noisy
measurement af; is generated through the observed varidjle The assumptions in Equation 1
and 2 directly apply here.

As we generalize to multivariate processes, we need a wagprésenting these processes in a
compact manner.

4.1 Dynamic Bayesian networks

In most multivariable processes, each variable is typi¢afluenced by only a subset of the variables
in the system state. As a result, one can compactly représetransition modeb(S,|S;—1) by the
product of each variable’s transition model:

N
p(Se[Si-1) = ] p(Sn.c[Pa(Sn0) 4)

n=1

where N is the number of variables in the steéie andPa(S,, ) are theparentsof a particular
variables,, ;. A variable’s parents are defined as the subset of the statbles that affects that
variable. If a variable has parents, then its probabilistribution will be conditional upon the
values of its parents. The variables at each time step avenaskto be topologically sorted, such
thatPa(S,, ;) C {S1,1-1, s SN—1} U {S1.4,-.-,Sn—1,.}. In other words, a parent of the variable
Sp,+ can be any variable from the previous st8ie, or a variable in the current stee that would
not induce any cyclic dependencies.

Dynamic Bayesian networkegNs)[Dean and Kanazawa, 1988llow for compact representations
of discrete-time Markov processes in the manner as prestiibEquation 4. A0BN is a temporal
version of a Bayesian networlgi{). BNs are directed graphical models that encode conditional



dependencies between state variables via graphical wsteuciState variables are represented as
nodes and causal influences between variables are reprdssnarrows between nodes. Each node
S; is associated with a given conditional probability disttibn p(.S;|Pa(S;)) that encapsulates the
conditional probability of that variable given its parel®s(S;). In essence, a node is conditionally
independent of its non-descendant nodes, given the vafutssimmediate parents.

Bt|At

a p(Di| By, i)

Figure 2: A simple Bayesian network

Figure 2 shows an example of a simple. In thisBN, the variableA; affects the variable®; and
C;, which in turn influences the variablg;. Given B, and(C}, the variableD, is independent of
A;. This idea that the conditional distribution of a varialdeompletely specified by its parents is
important in simplifying the representation of the joinstlibution of the variables. Applying the
chain rule of probability, the joint distribution is giveryb
A N
p(St) = HP S tlS1ts ey Sn—1,t) = H Sn,t|Pa(Sn.t)) (5)
P(At, By, Cy, Dt) = (Dt|At7 B, Ct) : (Ct|At7 By) - (Bt|At) : (At)
= p(Dyi|By, Cy) - p(Ci|Ar) - p(Bi|Ar) - p(Ay)

where the last line follows from the conditional indepencehetween the variables.

The set of nodes representing the system state at a poimbénigi called dime slice In aBN, all
nodes belong to the same time slice because anly models a probabilistic process at a particular
point in time. To represent the temporal evolution of a dyitapnocess from one time point to
another, a>BN has two sets of nodes, one that belongs to the current time afid another that
belongs to a previous time slice. Nodes in the previous tilice san only have parents from the
same time slice while nodes in the current time slice can Ipavents from both time slices. To
illustrate, we extend then from Figure 2 into BN and present its graphical structure in Figure 3.

From the figure, we see that the graphical structure 8& inherits the graphical structure of its
underlyingsN and includes extra structure that represents the temptdha¢nce from the previous
time slice to the current time slice. Specificallypan is defined by two components: a prior
Bayesian network that represents the probability distiglour, over the initial state, and 2time-
slice Bayesian networf2-TBN) that represents the transition distribution from statesae ¢ — 1

to states at time. Graphically, a 2FBN is a fragment of a Bayesian network in which the nodes
belonging to the previous time slice have no parents. In sample, the 2rBN for the DBN in
Figure 3 is shown in Figure 4. In a®BN, only the nodes in the current time slice are associated with
conditional probability distributions. The 8N represents the conditional distributip(S;|S;_1)

that encodes the transition model of the Markov processasives from the previous time slice
to the current time slice. In particulas(S;|S;—1) is represented in a product form, as given in
Equation 4. For any terminal tiniE of a process, the joint distribution of its state from timeoQ't

is given by:

T
p(SOZSo,Sl :Sl,...,ST:ST) = Wo(So)'Hp(St :st|St,1 :Stfl) (6)
t=1

In practicep(-) is assumed to be a discrete probability distribution or asSiam distribution.
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Figure 3: Graphical structure oftzBN

Dt

Figure 4: The 2-time-slice Bayesian network of then in Figure 3



4.1.1 Empirical investigations

For simplepBNs with only a small number of variables and sparse intercctiity between the
variables, it may be possible to apply exact inference tieclas—the most popular of which are
variable elimination YE) [Zhang and Poole, 199@nd junction tree propagationTF) [Lauritzen
and Spiegelhalter, 1988; Kjaerulff, 199Dne can apply either of the two algorithms to compute the
answer to a probabilistiquery; of the form “What isp(U = u|V = v)?” whereU is commonly
referred to as the set of query variables &hds the set of observed variables.

The conceptual difference between andJTPis as follows:VE is a query-specific algorithm where
nodes that are irrelevant to a query can be pruned away, whilés a more suitable algorithm
for answering multiple queries because the junction tregtire allows caching of computations,
which can be used to answer different queries but at the eepehhigher memory requirements.
A comparison of these two methods is presentefZimang, 1998 for the inference of Bayesian
networks; the results of which also applydens. In particular, the study used tk@scnetworks
[Pradharet al,, 1994, which are multi-level and multi-valued Bayesian netwattksigned for med-
ical diagnosis, as the basis for the experiments. Ba@ttandJTpP were tested on foucPsGtype
Bayesian networks that differ in the number of nodes, theaamenumber of parents for a node,
and the average number of possible values for a node. Sithalgmrithms are exact methods (in
that, they yield the sameorrect probabilities for a given probabilistic query), they areially as
accurate and the only difference between their performamnite runtime. As a result, the runtime
is used as the performance metric in this study.

In general, it was found thate takes less or roughly the same runtimeyasto compute the pos-
terior probabilities of twenty or less query variables,ggia set of observations with twenty or less
observation variables. Moreover, as the network complexdreasesyE is preferred ovesTp be-
causeJTp simply cannot run in real time due to its immense memory megquént. Lastly, it was
found thatve’s runtime increases with the number of observations wiileés runtime decreases
with the number of observation variables. Although the iraes ofve andJaTpboth increase with
the number of query variables, it was found th&s runtime increases at a faster rate than that
of JTP. The reason is due to thEePs junction tree structure that allows computations forvpre
ous queries to be cached and be shared among different sjuéisea result, in the case ofp,

the expected time for answering the next randomly geneigedy decreases with the number of
previous queries. Thus, as the number of observation asaind the number of query variables in-
crease)TPs average runtime for each separate query is faster wigieaverage runtime is slower.
However, the limiting factor for usingTpis that its immense memory requirement may render it
infeasible for real-time inference.

For bBNs with many number of variables, approximations to exaatrarice are the only way
to achieve real-time results. A popular approximationyt® is the Boyen-Koller k) algo-
rithm [Boyen and Kollera, 1998 where the posterior distribution is approximated as a pcod
of marginals ovet’ clusters,
c
p(Selyre) ~ ] p(Sflyr0) 7

c=1

whereS¢ C S, is the subset of state variables that belongs to clust€he clusters may be disjoint
or overlapping. The algorithm was tested on two realifens: theBAT network[Forbeset al.,
1993 and thewATER network[Jenseret al,, 1989, as shown in Figure 5.

Both DBNS are popular benchmarks foBN algorithm evaluation, where tteaT model was devel-
oped for monitoring highway traffic and tiveaTER model was for monitoring a water purification
plant. Each model was decomposed based on different dhugseand the performance metrics
were accuracy and runtime. Since the findings for both moslets quite similar, we present only
a subset of the results for the 10-n@ta network in Table 1.

AlthoughBk works well in practice for small-sizedBNs, the algorithm is ultimately hampered by
the underlying structure of the junction tree, which oftem@nds an exorbitant amount of memory
as the complexity of theBN scales up. To address this isslMurphy and Weiss, 20qintroduced
the factored frontierF) algorithm. Therr algorithm is similar to the fully factored form @&k,
which assumes a separate cluster for each variable Deke For a process that spaiidime steps
and is modelled by @BN that hasN @Q-ary state variables, whet€ is the maximum fan-in (the
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Figure 5: Two popular discreteBNs used for benchmarkingsN algorithms: theBAT network
(left) and thewATER network (right). The dotted lines correspond to the cluster used in th&k
experiments. Reproduced frdfBoyen and Kollera, 1998

Table 1: Empirical results of the Boyen-Koller algorithmtbieBAT network. The clustering scheme
denotes how the state variables were partitioned into grougustersused in the experiments from
from [Boyen and Kollera, 1998

Clustering scheme Average error from true valu¢ Speedup in runtime
5+5 0.0006 15
3+2+4+1 0.015 20
3+3+4 0.13 20

number of incoming arcs) of any node, it tak@g T NQ* ) time for FF to computeP(S¢|y1.7),
while it takesO (TNQ\/N) for the fully factorized version ofK.

Aside fromBk and FF, another interesting approximation is presentedFaskin, 2008 where
the framework ofthin junction treess presented for approximate inference in the robotic tdsk o
simultaneous localization and mappirgg. AM). SLAM is an important problem in mobile robotics,
because an autonomously mobile robot must map its surrogsdind localize itself within its own
map. InsLAM, the hidden state of the syste&Snrepresents the robot’s internal map, which includes
the state of the robot at timeand the locations of the, landmarks encountered by the robot up to
timet. The posterior distributiop(S;|y1.+) is approximated by a multivariate Gaussian distribution
N (ue, 31), wherep; represents the best estimate to the map¥ani$ the error covariance to the
estimate. For each time step, standargwould requireO (NkQ) space an@® (Nk:3) time, where

k is the width of the junction tree, defined as the size of thgdsirclique in the junction tree minus
one. In comparison, the thin junction tree filter requirelydd (n,) space an® (n;) time, due the
constant thinning of the junction tree that reduces its lidih terms of accuracy, the thin junction
tree filter achieves similar results as the Kalman filter,olihs the state-of-the-art method for exact
inference insLAM, but with superior improvements in the computational resesi demanded for
space and time.



4.2 Hybrid-state systems

A hybrid-state system is a system that contains interactisgrete and continuous dynamics. The
discrete dynamics are described by probabilistic tramsitto a countable (but usually finite) set of
discrete states. The continuous dynamics are describedfbyedtial or difference equations. In
most cases, the discrete state dictates the set of equatideswhich the continuous state evolves.
In return, the continuous state, upon satisfying some pasalition, may cause the discrete state
to autonomouslyransition from one state to another.

In a hybrid-state system, the state is denotedby= {Z:, X:}, whereZ; denotes the discrete-
state variables ani; denotes the continuous-state variables. Yetlenote observed variables. To
facilitate discussion, we focus on a concrete hybrid-staidel, as shown in Figure 6.

Zq —> 4

Figure 6:DBN of a hybrid-state system

For simplicity, we assume that the stochasticity in the fd/Bystem stems purely from additive
white noise. Thus, the system is described by the following:

Z, ~ P(Z|Zi—1,X_1) 8
X, =Fz,(Xi—1) + Vy 9
Y, =Hgz, (X;) + W, (10)

where the process noi3é; ~ N (0, Q) and the measurement noi$€; ~ N(0,R) are mutually
independentfz, (-) is equivalent tdf(-|Z;) but we have chosen the formBg, (-) to make explicit
the parametrization bi,. The same applies fdifiz, (-). For each distinct instantiation &, Fz, (-)
andHz, (-) comprise a unique set of equations that describes how th&oons variableX; and
Y evolve at each timéfz, (-) andHz, (-) are not assumed to be linear.

At each time, the discrete sta#g is influenced by botlZ, ; andX;_;. But what does it mean for
a discrete-state variablé to be influenced by a continuous-state variakie In many real-world
applications, the continuous-state varialie ; causes amutonomous transitioof the discrete
state fromZ,_; to Z; if X, satisfies some preset condition. Let's take for example avithr
automatic transmission. A car is a hybrid-state systemusec# has continuous-state quantities,
such as speed, and discrete-state quantities, such asauisentssion gear ratio. A car at rest starts
from first gear and transitions to second gear when the sp@egds 15 mph. If the speed is further
increased to 27 mph, the car will shift from second gear taltbear. In more precise terms: Let
X andZ represent the speed and the gear ratio respectively. Feea iistantiation o, 1, there

is aguard functionon X;_; that determines a probability distribution over the disergtates for
Zy. In our car example, when the car is operating at first geamgttard function over speed checks
whether the speed exceeds 15 mph:

| False if X;_1 <15
9(Xi1) = { True if X;—1 >15

If the car is in first gear4;—, = 1) and the speed does not exceed 15 mptX(_1) = False),
then the gear will stay in first geaZ{ = 1). This can be expressed as a probability distribution over



the gear ratidZ;:

P(Zt|Zt_1 =1,X; 1< 15) = P(Zt|Zt_1 = 1,g(Xt_1) = FCLZS@) (11)
(1 #Zi=1
N { 0 otherwise (12)

In essence, the guard functigrdiscretizes the continuous-state par&ht ; into a finite number
of states. As a result, the transition probabilyZ;|Z; 1, X;—1) can now be defined as a Markov
transition matrixP(Z:|Z:—1, g(X¢-1)), whereZ,_, andg(X;_1) are both discrete. For each in-
stantiation of(Z;—1,9(X¢-1)), P(Zi|Z:-1,9(X:-1)) defines a vector of transition probabilities
over possible states fdf;.

4.2.1 Empirical investigations

Due to nonlinear dynamics and complex coupling between iberete and continuous variables,
it is not always obvious how one should proceed with exaaragrice when it comes to hybrid
DBNS. As a result, most applications resort to some form of M@ado sampling techniques. The
most popular of these techniques for hybbigN inference is the Rao-Blackwellized particle filter
(RBPF) [Doucetet al, 200d. The idea ofRBPFis that, given a>BN with atractable substructure
such that some of the variables can be marginalized out lgx@om the posterior distribution,
sequential Monte Carlo methods, such as the particle fitt{ Andrieuet al, 200(, can be applied
to estimate the distribution over the rest of the variabiegarticular, for hybrid-state systems, only
the discrete-state variables are sampled and the distnibaver the continuous-state variables is
computed analytically, conditional on the sampled vald¢isediscrete-state variables. To illustrate,
let's re-examine the hybrid-state system shown in Figuré$.shown in thedBN, the transition
model can be factored:

P(St|Si—1) = p(Xt|Zy, Xi—1) P(Ze[St-1) (13)
Conditional onZ;, the conditional posterior distributionX;|Z:, y1.:) can be approximated by a
Gaussian distribution and the approximation can be condaralytically. (Under linear dynamics,

this approximation is unnecessary becap€¥;|Z;,y1.;) is exactly Gaussian.) Thus, the belief
state can be expressed as follows:

P(Selyre) = p(Xe|Zi,yit)P(Zelyre) (14)
N (e, 2¢)P(Zit]y1:t) (15)

Q

wherey; £ E(X:|Z¢,y1.:) and¥; £ cov(X;|Zs, yi.¢), which are estimated from variants of
Kalman filtering techniques, such as the extended Kalmaar flirewal and Andrews, 200-and
the unscented Kalman filtddulier and Uhlmann, 1997; Wan and van der Merwe, 200%s for
P(Z|y1.), itis estimated by a set of weighted particles drawn fropraposal distributiof:

M
P(Zilyve) = Y w™ 8, 0m (Z1) (16)
m=1

whered(-) is the Dirac delta function.

A comprehensive empirical study eBPF for state estimation of a hybrid-stab@n is presented
in [Anderseret al, 2004. This study examined the effectivenessrafPr for fault diagnosis on a
simulated two-tank model, as shown in Figure 7. This modeftsn used as the benchmark model
for fault diagnosis due to its simple physical interpreligband interesting nonlinear dynamics. In
addition, this model encapsulates common faults:

e Measurement faults: These faults occur when a sensor &aikieg measurements to be-
come extremely noisy.

e Burst faults: Thesabruptfaults occur when a pipe bursts, causing the pipe’s resistam
change to some unknown value.

o Drift faults: Thesegradualfaults occur as a result of normal wear-and-tear on a pipe, in
which the pipe’s resistance may drift to a non-calibratddea
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Figure 7: Schematic of the two-tank system. Reproduced famlerseret al., 2004.

Figure 8: Hybrid-stat®sN of the two-tank system. Reproduced frgAnderseret al., 2004.

The bBN from Figure 8 shows the connections between the continugaters variables and the

discrete fault variables (shown &' for burst/drift faults andV/ F' for measurement faults). To

simplify the model, the pipe connecting the two tanks is t@msed to not burst, which reduces the
discrete state space from 32,768 states to 18,432 statestiddess, the model is still too complex
for exact inference methods to be feasible, so approxinmdgéeence is the only solution to state
estimation.

The fault diagnosis task is to estimate the value of the eisdiault variables. Since the dynamics
between the continuous variables and the discrete vasiapéecoupled in this two-tank model, an
accurate state estimate for the continuous variables woakek it easier to track the discrete fault
variables, and vice versa. The main goal of this empiriaad\stis to explore the possibilities of
RBPFfor hybrid state estimation. In each experiment, the discvariablesZ; are sampled using
the standard particle filter, then the marginal probabdiistribution of the continuous variables,
p (X¢|ze, y1:1), IS estimated either by a variant of the Kalman filter, or bpecialized particle filter.

1Any probability distribution is a valid proposal distrilioin as long as it has the same support as the target
distribution, which in this case i®(Z:|y1:¢). In other words, if the proposal distribution gsand the target
distribution isp, theng(x) > 0 for anyz such thap(z) > 0. In general, the closer the proposal distribution is
to the target distribution, the better the approximatiothag sampling method.
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In the specialized particle filter, the Kalman filter variatised to update the proposal distribution,
which is assumed to be Gaussian, so that the proposal distribwould incorporate the information
from the most recent observation. This is in contrast to thedard particle filter, where the entire
stateS; is sampled from the proposal distributi@S;|S;_1), which is stationary and does not
change with incoming observations.

The following algorithms were compared in terms of the ro@am square error and the average
number of wrong failure estimates:

e PF. Standard particle filter in which boffi, andX; are sampled
e EKF: Rao-Blackwellized particle filter using the extended Kainfilter to estimatéX,
e UKF: Rao-Blackwellized particle filter using the unscentedriain filter to estimaté&,

e PFUKF. Rao-Blackwellized particle filter using a particle filtaihose proposal distribution
is updated by the unscented Kalman filter, to estimte

The general recommendation from this study is #rtKF is the most preferred method for highly
nonlinear models, whose measurements are highly biasedigy and whose process and measure-
ment models may be inaccurate. This recommendation is wastrek following findings:

e PF andEKF could only estimate with reasonable accuracy the contiswawiables that
are directly connected to the observation variables. IrtrestjukF does not have this
limitation.

e UKF and PFUKF are more affected by noise in the measurement model thareipri+

cess model, due to the fact that estimates of the state defdendy on estimates of the
observed variables. In generakukF outperformsukFr for high levels of measurement

noise, as shown in Figure 9.

e When using an inaccurate measurement model for state ¢istimerUKF is capable of
making more accurate estimates thaer. Nonetheless, both methods outperfarm

RMSE using UKF RMSE using PFUKF
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Figure 9: Surface plots of root mean square error and fatithason error for theukr and the
PKUKF methods. Reproduced frofAnderseret al., 2004.
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4.3 Relational dynamic Bayesian networks

For domains with much repetitious structubgNs are not always the most efficient form of rep-
resentation. For example, in a university setting, wheesettare many students and professors,
each of thesentitiesare usually related to one another through similar relatigus. If one were to
model every single aspect of student-to-student, fadoktgtudent and faculty-to-faculty dynamics
using abBN, one would need to spend much time initializing tieN fragments that represent each
and every faculty and student, along with their inter-dyieamit would be much more convenient if
one could represent general principles about their relakigps with statements such as “For all pro-
fessors who are famous and well-funded, their studentsduwale a higher likelihood of academic
success.” This generality can be achieved by extenongs with the power of relational logic.

Relational logic allows one to reduce a large set of profost statements into a single one that
encodes the same information with the concepts of entitidselations. With relational logic and
the use of quantifiers (such as the existential quantifiand the universal quantifiéf), one can
now lift the restriction on Bayesian networks—the inakilib represent general principles about
multiple similar objects, which can be applied in multiptentexts.

Probabilistic relational model§rPrms) [Getooret al., 2001 are the relational analogs to Bayesian
networks 8Ns). WhileBNs define probability distributions over setguwbpositionalinterpretations,

in terms of instantiations to attributes or random varial#ems define probability distributions over
sets ofrelationalinterpretations. In particular, one can views as a special case BRMs, whereby

a BN is a stripped-dow®RrRM with only one class of entities and no relationships betwedities.
To ground our discussion of dynans&ms, we will first explainPRMs in detail, then extendrRms

to dynamicPRMs the same way we extendeds toDBNs. To simplify our discussion, we will only
be examining models with discrete-valued variables.

A schemas a relational specification of a system. Given that a systesomposed of basic entities
that are partitioned into classes, this set of clagses{C}, Cs, ..., Ci } constitutes the schema for
the system. Each clagsin a schema is characterized by:

e a set ofpropositional attributes4(C') that encode the variables that comprise the algss
each proposition attributd.C' € A(C') assumes values from a fixed dom&ipA.C).

e a set ofrelational attributesR (C') that encode the connections between c@ssd other
classes; each relational attribuieR € R(C') defines a mapping from the clagsto the
power se2? of a target clas€’ € C. These relational attributes are also known as
reference slotand can be composed together to faiot chainsto define functions from
entities to other entities to which they are indirectly teth

For example, thé& niversity schema might represent the student/faculty body of a usityewith

the classes corresponding to different types of denizetiseruniversity, such as tenured profes-
sors, tenure-track professors, adjunct professors, gtadgtudents and undergraduate students. The
propositional attributes of an undergraduate student ningiude his/her major, his/her GPA, and
his/her interest in research and graduate school. Thearddtattributes of an undergraduate stu-
dent might include the graduate student who is acting as Ahdor a course taught by a adjunct
professor, who is in the same department as the undergesstuaient’s major.

AninstanceZ of a schema is a set of entities, where each entity belongslésain the schema, with
all propositional and relational attributes of each engipecified. Going back to our example, an
instance of thé/niversity schema might be a particular university, with all studentarofessors,
their characteristics and their relationships complesgplycified.

Formally, aPRM specifies a probability distribution over a set of instancka given schema. In
essence, it is a template: given a set of entitiesrR& defines a probability distribution over a set
of interpretations that involve these entities. But sifttere are infinitely many possible instances
to a given schema, it is more instructive to constrain thati@hal model by assuming artial
instantiation and compute the marginal distribution ober temaining variables. This partial in-
stantiation is an incomplete specification of an instanca ®fhema. One such partial instantiation
is arelational skeletorr, that specifies the set of entities for each class, with &tignal attributes
specified and all propositional attributes unspecified.hla framework, s?Rm defines the proba-
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bility distributions over completions of any given skeleton, using the same principléoaflity of
influence—the idea that most variables are influenced by only a sewot/éiables.

Thus, aPrRM for a schemab is formally defined as follows. For each classe C and each proposi-
tional attributed € A(C):

o The set of variables that influenceA is the set of parenBa(C.A) = {Uy, ..., U, }. Each
U € Pa(C.A) can either be a variable within the same class (i.e., hasotime . B) or
is an aggregation of variables outside the class that are referenced by alsén¢ (i.e.,
has the formy(C.v.B))

e The conditional probability distributio®(C.A|Pa(C.A)) quantifies the causal effect that
Pa(C.A) has onC' A.

Putting all this together, we can derive an equivalent esgiom to Equation 5, foPRMs specified
by the skeletomw:

H H P xT. AlIPa(m A)) (17)

€0 Ac A(x)

whereZ, 4 andZp,(,. 4) denote the respective valuesiofd andPa(x.A) in the completior?.

Having definedPRM in detail, we are now ready to transform the static reprediem of PRMS into
the temporal representation dffnamic probabilistic relational model®PRMs) [Sanghaiet al.,
200d. This extension is completely analogous to the extensimm Ns toDBNS. Just as @BN is
defined in terms of its prior Bayesian network (that represtre probability distribution at time)
and a 2-time-slice Bayesian network (that describes thiigwon of states between time slices), a
DPRM for a relational schemd& is defined similarly by relational structures:

e aprior PRM M, over I, that represents the probability distributiem(l,) over the initial
instance ofS

e a2-time-slicePRM (2-TPRM) M_,, that represents the transition distributi®i/;|1;—1)
which describes the temporal evolution of instances fromtone to the next.

A 2-TPRM is the relational analog for a 2BN. A 2-TPRM is a speciaPRM, for which each class
C has been augmented with an extra relational attrilbuje-evious, with domainC. This extra
attribute allows one to capture the effect of time on a paldicclass. Specifically, for each clags
and for each propositional attributee A(C'), a 2-TPRM consists of:

o Asetof parentvariableBa(C.A) = {Uy, ...,U, }, where eacly € Pa(C.A) can either be
a variable within the same class (i.e., has the f6fiR) or is an aggregation of variables
outside the class that are referenced by a slot chéie., has the formy(C.y.B)). The slot
chain~ can only contain the attribufgreviousat most once. This enforces the first-order
Markov property of the temporal process.

e The conditional probability distributio®(C.A|Pa(C.A)), which quantifies the causal ef-
fectthatPa(C.A) has onC. A.

Thus, a DPRM defines a probability distribution over a temporal sequewfeinstances
{Zov,Z4,...,I7}, as follows:
T
P(Zo,Th,.... Ir) 7o) [ [ P(@IZe-1) (18)
t=1
(19)
To relateDBN to DPRM: aDBN is a special case of@PRM, whose schema contains only one class of
entities and there are no relationships between entities titan the relational attribupgevious As

a resultprRPMs are more general thaBNs, but because of this fad@prMs pose more difficulties
in inference, as techniques foBN inference may not scale well @PRMS.

13



K-L Divergence

14

12

10

4.3.1 Empirical investigations

Currently, the state-of-the-art methodology for infegraboubPRMs is to apply Rao-Blackwellized
particle filterslDoucetet al., 2004, along with clever tricks to efficiently cache probabilitgctors
using abstraction tree structuf@anghaet al., 2003.

In [Sanghaiet al, 2003, prPrRMs were applied to fault detection in complex assembly plans.

The study compared the performance of the particle filte) [Andrieu et al, 2004, the Rao-
Blackwellized particle filter gBPF), and therBPF with abstraction trees, in monitoring plan exe-
cution. The performance metric is the Kullback-Liebler J distanceCover and Thomas, 1991
which is a distance function between two probability dizitions, usually from the true or reference
probability distribution to an approximate probabilitysttibution estimated by non-exact methods.
Since the problem domain is too complex for exact methode tagplied, an approximation of the
KL-distance is used, which is adequate for measuring theveldifferences between the approxi-
mate algorithms:

S .
Dpllp) = —g D logp(ai”) (20)
=1

wherep is the probability of the'th sample computed from either or RBPF and S is taken to
be 10,000 in the experiments. Figure 10 shows the compabistweenpF andRBPF, in terms of
the approximat&L -distance as defined in Equation 20, with varying fault plolitst and varying
number of objects in the problem domain.
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Figure 10: Comparisons afBPF with 5000 particles anér with 200,000 particles. The left plot
shows the results for 1000 objects and varying fault prditgbidenoted ag; in the graph. The
right plot shows the results for varying number of objectslevkeeping the fault probability fixed
atps = 1%. Reproduced fronbSanghakt al., 2003.

The efficiency ofRBPF was further improved by the use of abstraction trees. In tihdysit was
found that the use of abstraction treesRiBPF reducedrBPFs runtime and memory requirement
by a factor of 30 to 70. In contrast ®F, each sample from the abstraction-tree-basgelF took

6 times longer and 11 times the memory, compared to a samptegsed byF. But since much
more samples are needed bx¥yto reach a comparable accuracyRBPF, the total amount of work
done byrBPFstill takes less time and memory.

Aside from fault detection, relational models have alsonb&eccessfully applied to the modelling
of online user behavior in cyberspace.[DiAmbrosio et al, 2003, PRMs were used to model the
relationships between entities that interact within aerin¢t environment. Online user modelling
is interesting because it poses special challenges, suttiedact that much data violate the iid
assumption on which most traditional machine learningrdtigms are based. To illustrate: requests
(in the form of mouse clicks) are often dependent on previegsiests; sessions for a visitor are
dependent on other sessions; and page types are also taatrejatheir link structure and by the
navigation sequence of the online user.
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The study by[D’Ambrosio et al, 2003 examined the effectiveness of various models, from
Bayesian networks to increasingly sophisticat@®kms, in the prediction task of assessing whether
or not the current mouse click is the last click in a sessidre @xperiments were based on a sample
web log of 6900 mouse clicks from a small e-commerce websitelze performance metric was the
AUC ROC, defined as the area under the receiver operating curvehwshagraph of theensitivity
(Equation 21) as a function of one minus thgecificity(Equation 22), for a binary classification
test.

number of true positives

(21)

sensitivit
Y number of true positives + number of false negatives

number of true negatives

(22)

specificit
P Y number of true negatives + number of false positives

The first modelling attempt, in the form of a Bayesian netwledened from the data, is shown in
Figure 11. This model performed extremely poorly, resglimonly aroc Auc of 0.274, which is
even less than what could be achievedrest Auc OF0.5—by random guessing.

PageR| ; eurld

PageRequett. sessior). visitor.ip3 PagaRe urle

Figure 11: A static Bayesian network for predicting the [zege of an internet session. Reproduced
from [D’Ambrosioet al, 2003.

By usingDPRMS, one can incorporate temporal dependencies into the miodgarticular,DPRMs
allow for a more expressive representation of complex &ired data and the recognition of user
behavior at different time scales. The initizRM (not shown) achieved akoc Aucof 0.71 and an
extension of thiDPRM (Figure 12) that includes a few additional links to model tlependencies
between page attributes, improved thec Aucto 0.78.

5 Continuous-time representation

By representing a dynamic system as a discrete-time Markoeegs, one makes the implicit as-
sumption that the process evolves and is observed at régalacked time steps. However, this
assumption is unrealistic because events in the real warldccur at random times, thus violating
the fixed time step assumption, or gradually, in which caseribt clear how to fix the time steps to
adequately capture changes in the system.

In addition, the discrete-time representation with fixedgtisteps is simply inadequate for represent-
ing systems of multiple time granularities, which abounthia real world. These complex systems
often consist of multiple subsystems that operate at @ifferates or time granularities. In order to
capture all state transitions and observations in theelisgime representation, the time steps would
have to be fixed at the finest time granularity, which can beefalbecause inference would be per-
formed on the entire system at every time step even thougsystem remains unchanged during

15



PageReques sgsitertype
PageRequ @ Wisifor.ip2 @ \
N 7 .. PageReq @ visitor.ip3
agcequ visitor.ipl 2% - VISTEO: -
@ PageRequ h.visitor.ip4

PageRE

PageReqliest. 'sitor.hrowser @ npurpose
PageRequ @ fPage.urle .

PageRequd . visitor.bot

Pag statc PageReq on.revisit PageRe ion.

@ PageReqpage.urIb

page.cluster

PageReq @: age.bytes
PageR:q page.urle

PagcRequ fPage.urlb
PageRequ fPage.urla

P a last
PageR ount PageReq @ Phge. cluster
Pag ount
PageRc .elapsed Page @ apsed
PageReg @

ge. cluster PageRe{] ge. cluster
PageRel Fage.urlc
PageR @ ge.utle

PageR ‘;
PageRe Sl E
Page '4@ ge.urle
PageRe: @ age.urlb PageR ge.urlb

Figure 12: An extendedpPRM for predicting the last page of an internet session. Repredrom
[D’Ambrosioet al,, 2003.

most of these finely grained time steps. One solution woultbbmaintain separate discrete-time
representations for each time granularity. But this onlyksaf the time granularities are known
beforehand and that subsystems evolve at fixed time stepsdaug to their own time granularity.

An alternative approach is to avoid the issue of time graitida all together and consider time
as a continuous-state random variable instead of a preetiised quantity. In this framework, we
can represent processes whose state transitions and atises\occur at random times. In essence,
if we were to take a discrete-state Markov process and atécliock” so that time points arrive
randomly, according to an exponential distribution, thies tesulting process is a continuous-time
Markov process.

In this section, we will discuss continuous-time repreagaois: continuous-time counterparts to the
discrete-time Markov process angns. There is a large body of work on stochastic processes that
provides various calculi for reasoning about continudoetstochastic processes. For a thorough
introduction to continuous-time stochastic processessémthastic calculus, readers should refer to
[Karlin and Taylor, 1975; Karatzas and Shreve, 2004; Stro2@RJ.

5.1 Continuous-time Markov processes

A continuous-time Markov process is a process that obeyMtm&ov assumption and treats time

as a non-negative, continuous quantity. The state spaceaftinuous-time Markov process can

either be discrete-valued, real-valued or hybrid. Depegdin the nature of the state space, the
process is characterized by a matrix of transition rategoaradset of differential equations. These

representations are analogs of the transition probaliggrix and the difference equations that

characterize discrete-time processes.

In the continuous-time paradigm, discrete-state systamsnadelled by continuous-time Markov
processes in the form of jump processes. A jump process is@gs that makes instantaneous
transitions from one state to another at random times. 8palty, a continuous-time Markov jump
process is a random variablg parametrized by time € [0, o). Z; starts in an initial state, and
remains in this state for a random amount of time before itesaktransition to a different state.
The time thatZ, stays in a particular state is exponentially distributec tb the Markovian nature
of the process. A generic Markov jump process is depictedgarg 13.
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Figure 13: A generic Markov jump proce&s

Mathematically, a Markov jump procegs, with finite state spac€ = {1, 2, ..., M}, is character-
ized by aM -by-M intensity matrix

-q1 qi12 ... Q1M
21 —492 ... 42Mm
Qz = . . . (23)
qnmr gm2 - —qMm
where
. PZyne=jlZi=0) .,
¢ij = [lim Y » AF ] (24)
qi = Z qij (25)
gt j#i

in which thetransition rateg;; defines the probability per time unit that the system makesssition
from states to statej; andg; defines the total transition rate out of stat®©nce the process enters a
particular stateé, the amount of time that the process stays in stéaedistributed according to the

exponential distribution
fi(t) = qi exp(—qit). (26)

When the process leaves staté enters the next stagewith the transition probability:

qij . .
<  ifq
Py = { qi 7 (27)

0 otherwise

An intuitive way to interpret this representation is to assuhat we have a continuous-time clock,
where each tick, denoting the passage of time, is modellednbgxponential random variable.
After an exponentially distributed amount of time has pdssiee clock will tick and triggers the
system to jump to its next state according to the transitimbabilities shown in Equation 27.
These probabilities are the same as the transition praotiebih a discrete-state Markov process. If
instead, our clock ticks at regularly spaced time steps the process would reduce to a discrete-
time Markov process.

This representation can be easily generalized to muléteprocesses. When the discrete state
consists of more than one varialffe then we can either maintain separate jump processes for eac
7, if the Zs represent independent processes; or, repré&sbyta single jump process, whose state
space is the joint space Bfand whose transition intensities would be given by a difienetensity
matrix Qz. Thisjoint intensity matrixQz is defined similarly af), (Equation 23), where the
intensities inQz are now defined over transitions from one joint statéo another joint state,; .

For obvious reasons, continuous-time Markov processésredl-valued state space cannot be rep-
resented as jump processes. To capture all transitionsitieshbetween states, the intensity matrix
would need to be of infinite dimensions. Moreover, contiratstate systems rarely jump from one

state to another. Instead, their states form a continuunttemdvolution of these states are better
described by a set of equations.
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In discrete-time representations, continuous-statesystre modelled by a set of difference equa-
tions, of the form shown in Equations 9 and 10. In the contirsdtime version, these difference
equations are replaced by differential equations, whichdescribe the state evolution at any point
in time, not just at fixed time steps. We denote the contintious, continuous-state process by the
state vectoX;, wheret € [0, c0). X; evolves according to the following dynamics:

dXi

and is observed througi,;, which depends on the current state:
Y, = H(X,) + W, (29)

[F andH are functions that describe the deterministic parX gé transition and observation models.
The process and observation noises are giveiVpbyand W, respectively, and their means and
covariances are defined as follows:

E[Vt] = 0, E[VtVI] = Qt 6(t - T)
EW; = 0, EW,WI| = R,6(t—7) (30)
E[V,WI] = 0

whereQ; andR; are positive-definite covariance matrices, @& ) = lim0 do(X) is the Dirac
delta function that assigristo anyz # 0.

In either case of discrete or continuous state space, it threimpler to assume that the continuous-
time Markov processes are time-homogeneous, meaninghthgrocess evolves according to the
same intensity matrix or the same set of differential equmatiat any time. This assumption greatly
simplifies the representation, because only one set ofitineiant parameters is required to charac-
terize the process. This is acommon assumption used in sf&entations of temporal processes,
including those that are discrete-time.

5.2 Continuous-time Bayesian networks

A continuous-time Bayesian networktBN) [Nodelmaret al, 2007 is the continuous-time analog
of a discrete-stateBN. In the same way that@BN provides a factored representation of a discrete-
time Markov process, aTBN provides a compact representation for continuous-timerelis-state
Markov processes.

Let Z denote the discrete-state variables in the system. Inales¢ime, the transition model

P(Z:|Z:_+) is defined by the transition probability matrix over the joitates of the system. Using

a discrete-stateBN, one can represetit(Z;|Z;_,) compactly in a factored form, as a product of
conditional probability tables:

P(Z4|Zy 1) = [ [ P(Zn4|Pa(Z04)) (31)

whereZ,, , is then!h variable in the network anBa(Z, ;) are the parent variables %, ;.

In a similar manner, one can do the same with intensity negliiit a continuous-time representation.
In continuous time, the joint intensity mati@z parametrizes the transition model:

P(Z|Zs) = exp(Qz(t — s)) (32)

Assume that each variablg, ; is a continuous-time Markov jump process, characterizethby
intensity matrixQ, . Then one can write the continuous-time equivalent of Eqo&1, as follows:

P(Zi|Zs) = exp(Qz(t—s)) (33)

= exp (H Qz,pa(z,)(t — 5)) (34)
where

Qz = H@znma(zn) (35)
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The termQyz, pa(z,) IS known as the&onditional intensity matriXcim) for the variableZ,,. Like

a conditional probability table, aim encodes information about how a variable evolves given the
values of its parents. In particular, |8t be aM-ary random state variable and 6t = Pa(2)

be the set of parent variables that influeteA cim Q7 is a set of intensity matrices, where for
each unique instantiation of the parent varialdlesthere is a corresponding intensity matrix over
the states of:

—q1 ([I;J) fm(%) e %M(E)
QZ‘U: Q21F ) _QQ:( ) Q2M:( ) (36)
a1 (U)  qa2(U) ... —qu(U)

As shown in Equation 35, we need a product operation that cwsbiMs together to form the joint
intensity matrixQz. The product operation over twoiMs is known asamalgamation denoted
by the symbol(x). Let Qz,c, andQz,c, be twociMs and denoté. = Z; U Z; andC =

(Cy U C2)\Z.2 The productim
Qzic = Qz,|c, * Qz,|c, (37)

is an intensity matrix whose:

o off-diagonal elements are zeros or intensities fl@g) ¢, or Qz,|c,
e diagonal elements are negative sums of the rows’ off-diabglements, as shown in Equa-
tion 25
Adapting from[Nodelmaret al, 2004, the formal definition of amalgamation is as follows. Let:
o Qz\c(zi — zjlci) be the elementifdz ¢ that corresponds to the transition intensity from
Z = z; 10 Z = z;, conditional onC = c;

e z[Z,] be the projection of. onto the variable&,;, so thatz[Z,] contains only the instantia-
tions toZ, that are consistent with;

e (z;,ck) be the joint instantiation given i = z; andC = cy;

e dy(zi,z;) be the Hamming distance between stateandz;, which represent the number
of single-variable transitions that it takes ito get fromz; to z;.

Then:
Qz,|c, (2i[Z1] — 2j[Z1]| (zi, ) [Ch])  if di(2i[Z1],55(Z0]) = 1
Qz,c, (2i[Z2] — 2[Zo] | (24, ck)[Ca)) i dr(zi[Z2],8(Z2]) = 1
QZ\C(Zi - Zj|ck) = — Z QZ‘C(Z@' — Zj|Ck) ifi=j (38)

gt g#i )
0 otherwise

In the last case, the intensity is se(td there are more than one transition betwegandz;. This
is because the probability of simultaneous transitions bitiple variables in the same infinitesimal
point in time is zero.

The notion ofciMs allows for factored representations of the joint intgnsiatrices and is central
to thecTBN representation. £TBN is defined similarly to @BN, where there are two components:

e A prior Bayesian network that represents the initial digttion over the initial state.

e A continuous transition model that encodes graphicallyfiogored representation of the
continuous-time transition model: it is a directed, polgsdyclic graph, where each node
Z, has incoming arrows from its parent nodes(7,,) and each node is associated with a
cIM that encodes hoWa(Z,,) affects the transition rate ¢f,,.

The (\) operation denotes set subtraction, where given d4etsd B, an element: is in setA\ B if and
only if cisin A but not inB.
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An obvious way to perform exact inference is to consider tietjsystem as a whole and operate
on the joint intensity matrix. However, this requires coripg the joint intensity matrix, which is
exponential in the number of variables in the system. Thsssheer size prohibits practical use
of exact inference for continuous-time monitoring. Altlgbuone might try to exploit the TBN’s
graphical structure to decompose the task of exact inferems in the case farBNs, the notion
of temporal dependence, or entangleni&uyen and Kollera, 1998between variables makes this
impossible. Instead, approximate techniques, based aniguntree propagatiotL_auritzen and
Spiegelhalter, 1998nd expectation propagatifiinka, 2001, have been proposediNodelman

et al, 2002; 2005 for cTBN inference.

5.2.1 Empirical investigations

Since the introduction of TBNS as a new modelling framewor&TeNs have been applied to many
interesting problem domains, including fault diagnos$iability analysis and activity recognition.
Aside from the inference methods referenced above, therediao been attempts in adapting par-
ticle filters tocTBNs for efficient and scalable inference of these continuous-systems.

The first of these attempts was presentefNg et al, 2005, where the continuous-time particle
filter (cTPF) was introduced and applied to the fault diagnosis of an exy@atal Mars rover. The
fault diagnosis task was to detect wheel faults that mightgexr the mobility of the rover. The rover
system was modelled as a hybrid-stat®N (Figure 14) and theTPFalgorithm was applied on the
cTBN model. The state estimation results are shown in Figure hBreveach wheel'’s true elevation
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Figure 14:cTBN of the experimental Mars rover used in tiég et al, 2004 study. Reproduced
from [Ng et al., 2004.

from ground level is plotted along side the estimate derivech CTPF. In general, it was found
thatcTpFis quite effective in tracking the rover system, despiténithly nonlinear dynamics and
intermittent observations, which makes inference espgdéficult because the state is observed
only at very sparse time points.

While cTPFupdates the state at irregular intervals, as determinedéoglgorithm’s prediction of
events, the discrete-time particle filtermPF) performs an update at equally spaced intervals fixed by
a preset time granularity. To contrast the performance éet@TPFandDTPF, the study compared
the two algorithms empirically on a smaller model, the ressof which are shown in Figure 16. The
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Figure 15: State estimation results frampFplotted against the true wheel elevations. Reproduced
from [Ng et al,, 2009.

top two plots of Figure 16 show the results@fPFandDTPF, where both were ran using the same
parameters: the same number of samples and the same nurpeiatés. Comparing the two plots,
it is obvious thatcTPFis better equipped to track oscillary behavior becauseabls to allocate
updates to where it is most needed, i.e., when the stateidlyapanging. But since the runtime of
cTPFis higher tharoTPF (due to the increased complexity from working with the coatius-time
dynamics), it is only fair to compareTPF with cTPF only if they have similar runtimes. In the
bottom two plots of Figure 16, the resultsofPF with similar runtime a<TPFare shownDTPF2

is the version oD TPF with the increased number of samples but the same numberdaitesp as
that of CTPF In contrastpTPF3 is the version obTPFwith the same number of samplesEsPF3

but increased number of updates. FrombheF2 plot in Figure 16, one can see that the increase
in the number of samples only drove down the variance of thi sstimate, but was ineffectual
in reducing the state estimate error. On the flip side, theea®e in the number of updates helped
the state estimate significantly, as shown in ther3 plot in Figure 16. Nonetheless;TPF still
outperformDTPF3 because its state estimate is more accurate and is witkrhighfidence.

Further investigation betweezTBNs andDBNSs is presented ifBoudali and Dugan, 20Q@vithin
the framework of reliability modelling and analysis. Thiady extends previous work in reliability
modelling using discrete-time Bayesian networssgNs), which generalizesns in the sense that
time intervals can vary depending on the onset of eventsasdf fixed according to a given time
granularity. The study presents a methodology for convgidi dynamic fault tree into@rsn, and
outlines the advantages affBNs overDTBNs for reliability modelling and analysis, as shown in
Table 2.

Aside from fault diagnosis and reliability analys@stBNs have also been applied to activity mod-
elling and comparisons betweemBNs andbBNs have also been made on that front[Nodelman
and Horvitz, 2008 cTBNs were applied to the prediction task of forecasting a coenuger’s pres-
ence and availability. The focus of the research was to madetommon classes of user behavior:
the presence of a user at the computer, and if the user isnpréke application that the user is
currently engaged in. To answer event-based and duragiated questions such as:

e When is this user next expected to be present at the computer?
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Figure 16: Comparisons betweempFandDTPF. DTPF1 is parametrized with the same number of
samples and the same number of updatestas, while DTPF2 is parametrized with more samples

truth
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andDTPF3 is parametrized with more updates. Reproduced fidget al., 2003.

Table 2: Qualitative comparison betweemeNs andcTBNs. Adapted fron{Boudali and Dugan,

2004.

Time representation

DTBN | t € N (discrete)

CTBN | t € R* (continuous)
Staterepresentation

DTBN | Z; = failure 2 The fault occurred within the time intervalt — 1)A, tA]

CTBN | Z; = failure £ The fault occurred instantaneously at time
Advantages

DTBN | Can be solved using standasd inference methods

cTBN | Close-form solution for system reliability, memory sawrfgom representing
conditional probability distributions as parametric ftions
Disadvantages

DTBN | Approximate solution, high memory needs from storing ctadal probability
distributions as multi-dimensional tables

CTBN | No general-distributioBN inference engine

e When is the user expected to use a particular application?
e How much time is the user expected to stay at the computer?
¢ How much time before the user is expected to switch to a diffeapplication?

CTBNS were extended to work with a large class of phase distdbstithus generalizingTBNs

beyond the exponential distributions to handle a widersctdgrobabilistic queries.

To comparecTBNs with DBNS, the expected loss is used as the performance metric. Peetex
loss is defined as the expected value of the loss functiomghedistribution over when a transition
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will take place, and is used in place of the log likelihood;dngse the likelihoods afTBNs andbBNS
are not directly comparable. The study compared standaeis and Erlang-basedTBNs with
DBNs parametrized by different time granularities. For theaggtbasedTBNS, the experiments
used both 2 phase and 3 phase Erlang distributions. In deit@ras found that the Erlang-@TBNS
performed the best, followed yBNs, then standardTBNs. The Erlang-3XTBNs were found to
perform the worst. But since these models were learned bymizrg the log likelihood of data,
the learned parameters were not optimized for minimizirgetkpected loss. As a result, one must
examine other factors before deciding which model is indbedest.

For this particular problem domain, the study found thats with larger time granularities out-
perform those with smaller time granularities. In fact, las time granularity approaches 0, the
performance obBN should approach that @fTeN. This is shown in Figure 17, where the expected
loss is plotted against the transition time for the diffénaodels.

3 ke

Expected Loss

— DBN Delta .5
— DBN Delta 1

0.5 1 —DBN Delta 1.5
—CTBN
— CTBN-erlang
0
0.025 1.025 2.025 3.025 4.025 5.025

Transition Time

Figure 17: The expected loss as a function of the transitioa for cTBNs andpBNs of different
time granularities, with mean transition time for all distitions equal to 2. Reproduced from
[Nodelman and Horvitz, 2003

6 Conclusion

This survey provides an in-depth introduction to populayd&aan models of temporal processes.
These Bayesian models have been well-studied and are coyemsed to model temporal pro-
cesses, due to their easy interpretability and more imptiytathe existing wealth of reasoning
and learning tools that have already been developed for.thawever, one limiting restriction of
these models is that dynamics between variables are assurbdnging over time. This is clearly
not practical in real-world applications, such as the stoekket, as different entities may emerge
while others disappear, or as the nature or frequency ofaatiens between existing companies
may change over time due to economic trends. Unless thessBaymodels are updated as neces-
sary to reflect changes in the system dynamics, they woulBeeery useful for temporal process
modelling of dynamic real-world processes.

As a result, we conclude with related works that directly elathanging dynamics as part of their
representation. This idea of representing changing dyecguasing graphical models is directly re-
lated to the theory of dynamic graphs, in which the strucbfrgraphs change over time. Graph
theorists have studied the computational complexity afadgms for these dynamic grapH3eme-
trescuet al, 2004. In addition, others have also studied dynamic graphs irctimeext of social
networks. In[Wasserman, 1980strengths of relations between individuals or organizegiare
represented by weighted links that evolve as a Markov psocked Sarkar and Moore, 2005the
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evolution of relationships within a social network is exaed using an extension of the latent space
model[Hoff et al, 2004 to predict whether two entities will form a connection at tufe timestep,
conditional on the relations that they had over past tinpsstdn terms of applications, dynamic
graphs have been used to model communication networkslémot®munications fraud detection
[Volinsky et al,, 2003 and to study the spread of epidemic disedsksvman, 200R
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