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Present-day nonlinear microstability codes are able to compute the saturated fluctuations of a 

turbulent fluid versus space and time, whether the fluid be liquid, gas, or plasma.  They are there-

fore able to determine turbulence-induced fluid (or particle) and energy fluxes.  These codes, 

however, must be tested against experimental data, not only with respect to transport, but also 

characteristics of the fluctuations.  The latter is challenging because of limitations in the diagnos-

tics (e.g., finite spatial resolution) and the fact that the diagnostics typically do not measure ex-

actly the quantities the codes compute.  In this work, we present a system based on IDL® analysis 

and visualization software in which user-supplied “diagnostic filters” are applied to the code 

outputs to generate simulated diagnostic signals.  The same analysis techniques as applied to the 

measurements, e.g., digital time-series analysis, may then be applied to the synthesized signals.  

Their statistical properties, such as rms fluctuation level, mean wave numbers, phase and group 

velocities, correlation lengths and times, and in some cases full S(k,ω) spectra can then be com-

pared directly to those of the measurements. 
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PACS codes:  02.70.-c, 07.05.Tp, 47.11.+j, 52.65.Tt 

 

Introduction 

A “grand challenge” of magnetic confinement fusion research is to be able to predict the trans-

port in next-step magnetic fusion devices from first-principles theory.  Plasma microstability 

theory has advanced to the point of being able to solve the nonlinear gyrokinetic / Maxwell equa-

tions including trapped particles, plasma shaping , multiple species, profile variation within the 

simulation domain, etc.  Because the equations are extremely complex, they can be solved only 

on massively parallel supercomputers.  Different solution schemes – Lagrangian or Eulerian, 

flux-tube and global – have been employed, and most have and are being benchmarked against 

each other (e.g., the “Numerical Tokamak”1  and “Cyclone”2 projects) by comparing predictions 

of thermal diffusivities for a given set of input plasma profiles. 

 

The ultimate benchmark, however, is real-world experimental data, and not only thermal and 

particle diffusivities (fluxes), but also turbulence parameters (fluctuation amplitude, wave-

number spectra, etc.).   Unless the theory (as contained in the numerical algorithms and hereafter 

referred to as the “code”) can predict all these features, the theory is incomplete at best.  Com-

parisons of code results for the turbulence with measurements are difficult because of limitations 

in the diagnostics (e.g., finite spatial resolution) and the fact that the diagnostics typically do not 

measure exactly the quantities that the codes compute.  For example, in the realm of plasma di-

agnostics, beam-emission spectroscopy (BES)3 measures emission from a beam of neutral atoms, 

Langmuir probes measure ion saturation current and floating potential, electron-cyclotron-

emission radiometry measures a mix of electron temperature and density depending on the opti-
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cal thickness, etc.  The traditional approach has been to infer local densities, temperatures, etc. 

(parameters the code calculates) from the measurements,3,4,5,6,7 or to model8,9,10,11,12,13 the diag-

nostic, which usually requires assumptions about the nature of the turbulence.  The alternative, 

presented here, is to apply the diagnostic’s sensitivities (parameter detected and spatial resolu-

tion) to the code output and to generate simulated signals, i.e., a “virtual diagnostic.”  The statis-

tical properties of the simulated signals can be compared directly with those from the diagnostic, 

say through time-series analysis. 

 

Virtual diagnostics are valuable not only to help benchmark codes against experimental data, but 

also for interpretation of turbulence measurements, design of experiments (i.e., if the available 

diagnostics will be able to resolve the fluctuations predicted by numerical computation in a pro-

posed experiment) and design of diagnostics (i.e., if the proposed diagnostic will be able to re-

solve the fluctuations predicted by numerical computation in an existing experiment). 

 

A virtual diagnostic for an initial-value turbulence computation is composed of four components: 

i) an anti-aliasing filter, ii) calculation of the measured parameter (line or black-body emission, 

phase shift of transmitted or reflected radiation, fluid velocity, etc.) from the code outputs, iii) 

the effects of finite spatial resolution, and iv) the effects of noise.  We address these individually, 

with examples, in the following sections. 

 

Anti-aliasing 

Sampling a continuous function at a frequency fs can generate spurious features in the frequency 

spectra due to a phenomena known as aliasing.14  An oscillation at frequency f greater than the 

Nyquist frequency fN = fs/2 will appear in the frequency spectrum at fs - f.  Therefore, the signal 
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being sampled must be low-pass filtered with a cutoff frequency fN.  Initial-value microstability 

codes solve their equations by stepping along in discrete time steps.  In order for the solutions to 

converge, the time steps must be much less than the period of any relevant mode in the system.  

Consequently, aliasing due to the discrete time steps is not a concern.  However, because the 

time step is so small, the output is typically sampled at a subset of time steps for practical rea-

sons (sizes of arrays and files).  Then, one must be concerned about aliasing, so like a fluctuation 

diagnostic, an anti-aliasing filter should be applied to the raw code output before any spectral 

analysis is performed. 

 

Here we consider a Butterworth filter, a common type of passive filter.  The transfer function is 

 

! 

2
H( f ) =

1

2n
1+ ( f / fN )

 (1) 

where n is the order of the filter.  This expression is in terms of frequency whereas we want to 

apply the filter function to the time-dependent code output.  It is well known from Fourier theory 

that the output of a system is the input convolved with the impulse response of the system given 

by15 
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After some complex algebra, this yields (for n = 5) 

 

! 

h(t)

2" fN
=
2

5
cos 5+ 5

2
" fN t +

3"

5

# 

$ 
% 

& 

' 
( exp ) 5)1

2
" fN t

# 
$ 
% & 

' 
( 

) 2 1+ 2

5
cos 5) 5

2
" fN t +

3"

10

# 

$ 
% 

& 

' 
( exp ) 5+1

2
" fN t

# 
$ 
% & 

' 
( 

+ 1+ 2

5

# 
$ 
% & 

' 
( exp )2" fN t( )

 (3) 



 5 

for t ≥ 0 and zero otherwise (causality).  The normalization of h(t) is such that its integral from 

zero to infinity is unity.  The application of such a filter to the raw code output x(t) produces the 

output 
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An example of h(t-t’), where t is in units of the code’s time step and the sample interval Δt = 20, 

is shown in Fig. 1.  (Here we have plotted h versus t’-t to emphasize that the function is applied 

to previous time steps.)  From the figure, we see that application of the anti-aliasing filter re-

quires that the raw code output must be retained for at least the previous 100 (in general, 5Δt) 

time steps for each sample time.  Either the code is required to output its results every time step, 

after which the anti-aliasing filter is applied to reduce the consequently large file, or the anti-

aliasing filter is incorporated into the code itself, outputting only at the sampling times.  Which 

choice is better depends on the code. 

 

The next three steps of creating a virtual diagnostic depend on the specific diagnostic.  It is much 

easier to describe the steps using an example.  We choose here beam-emission spectroscopy 

(BES),6 a plasma fluctuation diagnostic. 

 

Measured Parameter  

BES measures Balmer-α emission from a neutral hydrogen or deuterium beam.  The beam is 

viewed off-perpendicular to provide a Doppler shift to the beam emission.  A bandpass filter 

then filters out emission on either side of the beam lines, specifically the bright unshifted Dα line 

from the plasma edge.  The beam emissivity is given by nbnek, where nb and ne are the beam and 

electron densities, respectively, and k is the emission coefficient which is a function of beam en-
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ergy, electron and ion densities, impurity charge, and (less so) electron and ion tempera-

tures.6,16,17  The emissivity rate ε = nek as a function of electron density ne, beam energy, and the 

effective ion charge Zeff is shown in Fig. 2.  The latter is defined through the relation 

! 

neZeff = n jZ j
2

j

" , where nj is the density of the jth ion species, and Zj is its charge.  Here we con-

sider only one impurity, of density nz and charge Z, such that Zeff = Z (1- ni/ne) + 1, where ni is 

the background ion density.  The rates are presented at three beam energies in the ratios 1:1/2:1/3 

not by accident;  all neutral beams produce components at these fractional energies due to in-

complete dissociation and ionization of molecular hydrogen (or deuterium) in the source.  The 

fraction of the beam density at each energy is specific to the individual beam and must be meas-

ured.  Note that the rate rolls over at high ne and decreases as Zeff increases.  Therefore, the rela-

tive emissivity fluctuations will not follow exactly the electron density fluctuations. 

 

Spatial Resolution 

As an example of a spatial sensitivity function we consider the BES system18 on the Alcator C-

Mod tokamak.19  The optical system images the beam at a near-vertical plane through the beam 

axis upon four 1-mm optical fibers in a square pattern.  The collection area at the plane is an im-

age of the fiber tips magnified by ~3.5.  Light is collected, however, all along the view chord 

passing through the near-Gaussian beam profile of e-folding width ~10 cm.  The turbulent struc-

tures are extended along the magnetic field lines, which pass through the beam perpendicular to 

its axis.  The BES views, however, are not along the field lines.  Rather than do the full 3-D 

problem, we project the BES collection volume onto the vertical plane through the beam axis 

and approximate the spatial sensitivity function in the form 
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where R and z are the radial and vertical coordinates, respectively (R=z=0 is on the major axis at 

the midplane of the tokamak), (R0, z0) are the coordinates of the center of the projected collec-

tion volume, δR and δz are the e-folding radii, and αR and αz are parameters used to control the 

sharpness of the edges.  f0 is chosen such that the integral of Eq. (5) over all space is unity.  An 

approximation to the BES sensitivity function at R0 = 0.871 m, z0 = 0 is shown in Fig. 3, where 

δR = 0.8 cm, δz = 0.5 cm, αR = 4, and αz = 6. 

 

There is also a more subtle component of spatial averaging first pointed out in Ref. 6, which we 

will call beam-emission “smearing.”  Because of the high directed velocity and finite decay time 

of an excited beam neutral, the emission will occur “downstream” of the excitation location 

(where the plasma density information is imprinted on the beam).  The emission does not take 

place at a fixed time after excitation but in a statistical distribution with a characteristic decay 

time and, because of the beam velocity, length.  Therefore, the emission at a viewing point is ef-

fectively a weighted average of the emission a decay length “upstream.”  A rigorous treatment of 

this effect would require solving the complete set of 1-D (beam direction) rate equations20 for 

every point within the spatial sensitivity function and at every time sample using the 3-D density 

distributions output by the code.  This is not done here because of the high densities and conse-

quently short estimated smearing lengths (3-4 mm)21 for the plasma used in our example.  How-

ever, in general, smearing could be included within the framework of the system described here. 
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Noise 

All diagnostics suffer from noise of some sort.  Here we define noise very generally as any com-

ponent of the signal that is not desired.  The specific types of noise are particular to the diagnos-

tic, but all noise is either random or correlated.  By random we mean that the noise on a signal is 

statistically uncorrelated with that signal.  For a multi-channel instrument, random noise on the 

signal from one channel is also uncorrelated with the signal and its noise from a different chan-

nel.  We do not consider external non-random noise like 50- or 60-Hz pickup (and harmonics) 

which are relatively easy to account for, if not eliminate. 

 

Random noise 

Random noise is from “external” sources, such as photon noise and thermal noise of electron-

cyclotron emission (ECE)22 and “intrinsic” electronics noise.23  The latter include thermal 

(“Johnson”) noise, due to random, thermally induced motion of discrete charge carriers through 

conductors (including semiconductors) at finite temperature.  The mean-squared noise in the cur-

rent is proportional to the product of temperature and conductance.  “Shot” noise is due to the 

random motion of discrete charge carriers flowing across a potential barrier such as the depletion 

region of a photodiode.  The mean-squared noise in the current is proportional to the average 

current.  The frequency spectra of these sources are flat (“white” noise).  Noise sources whose 

spectra are not flat also exist, but they are typically not important.  However, if the detector cir-

cuitry contains a number of noise sources and reactive elements, which is almost surely the case 

because of parasitic capacitances, the noise on the output signal can be substantial and dependent 

on frequency.  In the case of the BES systems on the Alcator C-Mod and DIII-D tokamaks, the 

electronics noise increases monotonically with frequency24 up to the cutoff frequency of the anti-

alias filters. 
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Random noise is relatively simple to extract, statistically, from the total fluctuation spectrum be-

cause it is uncorrelated with the desired signal, by definition.  One first measures the electronics 

noise autopower spectrum N(f) by turning off the source of the desired signal, shielding the de-

tector, withdrawing the probe, etc.  (Here, N(f) ≡ 〈nf nf*〉, where nf is the Fourier transform of the 

noise signal n(t), nf* is its complex conjugate, and the angled brackets denote an ensemble aver-

age.)  One then simply subtracts N(f) from the autopower spectrum of the data.  The remainder is 

the spectrum of the desired signal plus external noise.  Since photon or ECE thermal noise is 

white, a baseline may be imposed on the difference spectrum within a frequency range where the 

desired signal is known to vanish, e.g., at high frequencies.  If such a frequency range is not evi-

dent, or there is little remaining after subtracting the intrinsic noise, then cross-correlation be-

tween signals from different detectors is necessary, e.g., the crosspower 〈s1f s2f*〉, where si is the 

signal from detector i and the other notation is as described above.  This effectively eliminates all 

random noise except for a small residue because of a finite number of samples (which itself can 

be eliminated by a slight modification to the standard crosspower3).  Of course, if the two detec-

tors are viewing different locations, spatial decorrelation between the signals must be taken into 

account. 

 

Random noise sources may be modeled in the computations, but this would be much more work 

than accounting for the noise in the measurements, as described above.  We should point out that 

numerical (statistical) noise in the computations may also be a concern.  Lagrangian (moving 

grid) particle-in-cell (PIC) codes suffer from noise related to sampling error which accumulates 

during a run.25  If incorporating virtual diagnostics into such a code, the user must be aware of 
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and properly account for this noise.  In contrast, codes utilizing an Eulerian algorithm (fixed 

grids) are intrinsically free of such noise.  In either case, however, the computations suffer from 

short duration compared to measurements since the computations are very expensive with regard 

to computer resources.  However, they enjoy high spatial resolution.  Therefore, the statistics can 

be improved by averaging over ensembles made up of time series from different locations with 

the same statistical properties but uncorrelated, e.g., points sufficiently spaced along an ignorable 

coordinate. This can be done instead of, or in addition to, averaging over sub-samples of a single 

time history.  In this way, the total number of “data” points, and therefore the statistical uncer-

tainties, can be made the same as the measurement. 

 

Correlated Noise 

Noise which is either correlated with the desired signal or between channels is much harder to 

extract from the raw data.  Such noise is best illustrated by example, in particular BES, which 

can suffer from many sources of correlated noise.  BES detects all emission within a defined 

wavelength band along view chords through the plasma.  In addition to Balmer-α emission from 

the beam, BES also detects bremsstrahlung (broadband and proportional to ne
2Zeff) from all 

points in the plasma within the acceptance of the optics, impurity line emission from radii de-

pendent on the specific line(s) and that falls within the filter passband, and edge Dα that “leaks” 

into the filter passband.  This “background” emission is undesirable because it is mostly nonlo-

cal.  This is ameliorated by the natural defocusing of a typical optical system away from the fo-

cus (the measurement volume).  The rate of defocusing is proportional to the inverse of the input 

f-number of the optics.  The larger collection volume away from the focus act to average out the 

small-scale fluctuations.  Nevertheless, the quantitative extent to which this localizes the meas-

urement is not known a priori.  Even if some of the emission originates from the measurement 
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volume, the fluctuations are different functions of plasma parameters than the beam emission, so 

in combination it is not clear what fluctuations are being measured.  At the least, the background 

fluctuations interfere with quantitative measurements, e.g., electron density fluctuation level. 

 

If this background emission does not change when the beam is turned on (a reasonable assump-

tion for a diagnostic neutral beam, and one that can be verified), one may measure the spectrum 

before and/or after the beam pulse.  If the background fluctuations were uncorrelated with the 

beam emission, their autopower spectrum could be subtracted from that measured during the 

beam − similar to the way random noise can be extracted from the signals.  This would be valid 

for removing broadband edge Dα fluctuations since they originate outside the last closed flux 

surface and therefore would be uncorrelated with interior fluctuations.  (This may not be the case 

for large-scale intermittent or semi-coherent structures such as ELM’s,26 avalanches,27 quasi-

coherent modes,28  edge harmonic oscillations,29 etc., which could manifest themselves through-

out the plasma.  In the case of relatively infrequent intermittent structures, like some ELM’s, one 

could simply isolate the structures temporally and eliminate them from the data set.30)  The same 

applies to impurity line emission if it originates well outside the measurement volume.  How-

ever, there are always bremsstrahlung fluctuations from the measurement volume which are 

therefore correlated with the beam-emission fluctuations.  Since bremsstrahlung is proportional 

to 

! 

ne
2 , BES would be more than twice as sensitive to these fluctuations as to those from the 

beam.  In general then, one cannot simply subtract the background spectrum from the beam spec-

trum unless the signal during the beam is much larger than before or after.  In contrast to random 

noise, correlation analysis of signals from nearby channels does not help.  This is not only be-

cause each noise source is correlated between channels, but also because the phase of the 
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crosspower (or time shift of the correlation function) of the beam emission cannot be extracted 

from the measured phase (or time shift). 

 

If the bremsstrahlung emission is of order the beam emission, modeling of the former in a virtual 

BES diagnostic is called for.  Emission along the entire view chord should be calculated from the 

computation (the spatial sensitivity function discussed earlier should be fully 3-D), requiring a 

global computation from the measurement volume out to the edge.  (If the contribution of the 

edge region is subsequently found to contribute little to the simulated signals, a flux-tube compu-

tation would then be sufficient.)  If significant impurity line emission exists within the filter 

passband and from the measurement volume, it would need to be modeled as well.  The compu-

tation should include the dynamics of the impurity species observed in addition to the dominant 

species determining Zeff, if different.  The virtual BES, in turn, must model the dependences of 

the emission on impurity and plasma density, temperatures, etc.  If correlation analysis is in-

tended, then impurity line emission must be modeled even if it originates from outside the meas-

urement volume.  In principle, this should also apply to edge Dα emission, if significant, al-

though the codes presently available are not valid in the very edge where the Dα emission origi-

nates.  Therefore, correlation analysis would be precluded in this scenario. 

 

A similar yet even more problematic correlated noise source is modulation of the beam density at 

the observation point by fluctuations in the plasma density upstream.  This occurs through modu-

lation of the cross sections for ionization and/or charge-exchange loss of beam particles − the 

beam density at the observation point drops when the plasma density upstream increases, and 

vice-versa.  Just as for beam smearing discussed earlier, a rigorous treatment of this effect would 
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require solving the complete set of rate equations (including ionization and charge exchange) for 

every point within the observation volume and at every time sample using the 3-D density distri-

butions output by the code.  As in the case of random noise, it is more sensible to account for this 

effect (for broadband turbulence) in the measurements themselves, as demonstrated in Ref. 31.  

Like edge Dα contamination, this effect could not be modeled well if the density fluctuations 

peak outside the radial range of validity of the code. 

 

None of the modeling of correlated noise is performed here, mostly because it is beyond the 

scope of this work.  We would simply stress that modeling of background emission (other than 

perhaps edge Dα), beam smearing, and beam attenuation modulation is possible, albeit difficult, 

within the framework described here. 

 

Analysis 

Application of a virtual diagnostic to the code outputs is performed within an interactive data 

analysis and visualization tool called GKV (“GyroKinetic Visualization”)32 which is specifically 

designed for analyzing output from initial-value microstability codes.  It is an object-oriented33 

application built upon IDL® (Interactive Data Language).34 The code outputs, e.g., electron, ion, 

and impurity densities, stored as functions of time in netCDF35 or text files, are imported into 

GKV by procedures specific to the particular microstability code and then transformed into IDL® 

objects.  The objects can have as many as three spatial dimensions plus time.  Analysis and visu-

alization are performed within GKV through “methods” which act on the objects to produce new 

objects.  This system enhances the power of the native IDL® language, making it possible to per-

form significant amounts of data analysis and to produce presentation-quality plots with rela-

tively few lines of IDL script. 
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The virtual diagnostics are coded as methods within this framework.  For our BES example, cal-

culation of emissivity from the plasma parameters is coded in the method BES_Emiss which is 

called as follows: 

 

emiss_rate = ne_in -> BES_Emiss (ni=ni_in, Z=Z_in, Eb=Eb_in, fracts=fracts_in). 

 

The inputs ne_in and ni_in are 3-D objects, functions of R, z, and t, containing the electron and 

main ion densities obtained from the code output files.  The other keywords are scalars: Z is the 

(single) impurity charge (not Zeff), Eb is the full energy of the beam, and fracts is a three-element 

array containing the detected fractions of full-, half-, and third-energy beam components.  (Be-

cause of the different Doppler shifts of each component and a finite filter passband, these frac-

tions may not correspond to the density fractions at the observation point.)  The result emiss_rate 

is an object of the same dimensionality as ne_in containing the emissivity rate. 

 

Similarly, the spatial averaging is performed by a method Project, which is called as follows: 

 

signal = emiss_rate -> Project (Axis=axis, Center=[R0,z0], Width=[δR,δz ], Power=[αR,αz]). 

 

Project multiplies emiss_rate by the 2-D weighting function given in Eq. (5) earlier (f0 is com-

puted internally), integrates over the extent of the domain, and returns the object signal (a func-

tion of time only).  The input keyword Axis is the numerical identifier of the dimension not being 

averaged over (time).  The other keywords were defined earlier in the context of Eq. (5). The 

surface plot in Fig. 3 was generated by the subsidiary method ProjectWeight via the command 
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weight = emiss_rate-> ProjectWeight (Center=[R0,z0], Width=[δR,δz ], Power=[αR,αz]). 

 

Before leaving this section, we should point out that Project could be generalized by having as 

inputs an arbitrary 2- or 3-D array of weights on an accompanying 2- or 3-D grid rather than an 

analytic function such as Eq. (5).  If 3-D, however, the code outputs would have to be available 

and read into GKV in all three spatial dimensions. 

 

Example  

We now apply the above virtual diagnostic methods to a turbulence computation for an enhanced 

Dα H-mode discharge36 on the Alcator C-Mod tokamak in the vicinity of R = R0 = 0.871 m, z = 

z0 = 0.  The motivation for choosing this discharge and location is not to benchmark the compu-

tation against fluctuation data; in fact, the BES diagnostic detects no broadband fluctuations 

here, even though estimates of the signal-to-noise ratio indicate it should.  Since there are no 

other fluctuation diagnostics in this region to help explain this, we turn to “virtual BES” for in-

sight. 

 

We employ the GYRO code,37 which solves the nonlinear gyrokinetic / Maxwell equations on a 

fixed spatial grid in a standard toroidal coordinate system (r, θ, φ) with r the minor radius ac-

counting for plasma shaping (r = 0 corresponds to the magnetic axis) , θ the “poloidal” angle be-

tween r and the outer midplane, and φ the toroidal angle.  The computation domain is an annular 

wedge centered at (R0, z0), corresponding to r = r0 = 0.192 m, θ = 0, and extended along the 

field lines.   It is of dimensions 100 ρs (radial) by 230 ρs (poloidal) (ρs is the ion gyroradius at 
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the electron temperature).  We assume periodic radial boundary conditions and utilize 32 toroidal 

modes and 128 radial grid points.  Because of the low plasma pressure in the periphery, we as-

sume the turbulence is purely electrostatic.  However, we include kinetic electrons and one im-

purity species (boron).  The IDL® code GS2_PREP38 is used to calculate input parameters to GYRO 

from TRANSP39 analysis of the discharge. 

 

GYRO is run until a saturated turbulent state is obtained, which is typically at least 200 a/cs, 

where a is the plasma minor radius (0.221 m) and cs is the ion sound speed (1.63 × 105 m/s), and 

then as long as possible afterwards to provide adequate statistics.  The computation presented 

here was run on the IBM SP RS/6000 machine “Seaborg” at the National Energy Research Sci-

entific Computing Center (NERSC) out to ~800 a/cs, consuming ~20,000 processor-hours.  Data 

was output every unit of a/cs, resulting in ~600 sample times for analysis.  (These, of course, are 

much fewer samples than a typical measurement.  More will be said about this in a later section.  

Even so, the output was considerably over-sampled and the anti-aliasing filter had no effect.) 

 

We should point out that our use of radially periodic boundary conditions in a flux-tube compu-

tation domain means that the computation is performed in a rotating frame where there is no 

background electric field E.  Measurements, however, are made in the laboratory frame, where 

in general E ≠ 0.  The electric field acts to shift the measured frequencies of the fluctuations by 

the amount Δω = k•vE×B.  Here k is the wave vector and vE×B = E×B/B2, where B is the total 

magnetic field.  Since typically Er >> Eφ (Eθ ≡ 0) and Bφ >> Bθ (Br ≡ 0), then vE×B ≈ -Er/Bφ in 

the poloidal direction.  Therefore, |Δω| ≈ kθEr/Bφ.  In addition, modification of the turbulence 

(including stabilization) by radial shear in the electric field40 is not included in the computation.  
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Since E is not measured in the region of the plasma considered here and we will not be compar-

ing computation results to measurements in detail, these points are moot for the purposes of this 

work.  However, in general, comparisons between simulated and measured spectra must take 

these effects into account.  If instead a global computation were carried out, the background 

electric field, if measured, could be included.  Then care must be taken to sample the code output 

frequent enough to resolve the typically higher frequencies due to the E×B shift. 

 

A “snapshot” of the electron density distribution in the R-z plane is shown in Fig. 4.  The poloi-

dal extent represents a full period at r = r0 of the lowest-order mode.  The main ion density dis-

tribution is very similar.  Structures are evident that are of the order or smaller than about 1 cm.  

Although not shown, the impurity density distribution is of even smaller scale.  We therefore can 

expect significant spatial filtering by the weighting function of Fig. 3. 

 

We first transform the densities into the emissivity rate by applying BES_emiss discussed earlier, 

with Z = 5 and the default values of Eb (50 keV) and fracts ([0.7,0.2,0.1])  Because the relative 

density fluctuations are small, the emissivity-rate distributions look very similar to Fig. 4.  

Therefore, we examine the time “signals” at r = r0, θ = 0.  These are obtained by twice applying 

the GKV method Slice to the emissivity rate − once to select r = r0 and again to select θ = 0 − 

yielding a 1-D function of time.  The results for the densities normalized to their time averages 

are shown in Fig. 5, where we observe that the electron and ion density fluctuations are quite 

similar, whereas the impurity density fluctuations are of smaller amplitude.  We next apply Slice 

to the emissivity rate, and compare its normalized signal to that of the electron density in Fig. 6.  
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We see that there is an attenuation of a factor of about two from electron density to emissivity 

fluctuations. 

 

Next we investigate the effects of the finite collection volume of the diagnostic.  First, we calcu-

late the emissivity rate ε at r = r0 versus s = r0θ and t by applying Slice to emiss_rate to select r 

= r0.  The result is shown in Fig. 7(a).  The downward propagation of the fluctuations is clear.    

Rather than compute the spatially filtered distribution εf(r0,s,t) by applying Project to emiss_rate 

multiple times in a poloidal scan (a convolution of the weighting function with the fluctuation 

distribution), we make use of a well-known Fourier identity and write 

 
    

! 

" f (s,t ) = d # s 
$%

%
& "( # s ,t ) f (s $ # s ) ='$1 "k(

(k( ,t ){ fk(
(k( )},  (6) 

where kθ is the poloidal wave number, 
  

! 

"k#
and

  

! 

fk"
are the Fourier transforms of the emissivity 

rate and weighting function, respectively (in poloidal arc length), and ℑ−1 is the inverse Fourier 

transform operator.  This identity replaces a convolution integral by a simple product of the Fou-

rier transforms, followed by the inverse Fourier transform.  Doing so (actually using the fast 

Fourier transform (FFT), and inverse FFT) results in the distribution indicated in Fig. 7(b).  

Compared to (a), not only are the structures blurred, but the amplitude of the fluctuations is re-

duced as well.  This is made more apparent by applying Slice once again, this time to select θ = 

0.  The time traces corresponding to Fig. 7(a) and (b) at θ = 0 are shown in Fig. 8(a) and (b), re-

spectively.  We observe a serious attenuation in the signal s(t), not only in the overall amplitude, 

but particularly in the higher frequency components. 
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These results can be made more quantitative by calculating the frequency spectra.  In fact, we 

can compare only statistical quantities such as spectra with measurements, as there is no possibil-

ity (or intent) to generate the exact time series as seen in experiment.  As mentioned earlier, the 

relatively few time samples from the code compared with experiment make conventional time-

series statistical analysis difficult.  However, what the code output lacks in time samples, it 

makes up in spatial samples.  Therefore, we use time traces at multiple spatial locations as our 

ensemble instead of subdivisions of a relatively short time trace.  Ideally, the spatial ensemble 

should be made up of signals at different toroidal angles since toroidal angle is an ignorable co-

ordinate in a tokamak.  However, this would require outputting the densities versus all three di-

mensions and time − an intractable amount of data.  Therefore, we use poloidal angle as a proxy 

for toroidal angle.  We can do this because fluctuations are highly correlated along field lines:  A 

fluctuation at a given point is virtually the same at other points on the same field line but toroi-

dally (and consequentially poloidally) displaced. 

 

We therefore consider the autopower spectrum 〈εω εω*〉 at r = r0 averaged over poloidal angle 

across the simulation domain, where ω is the angular frequency, εω is the Fourier transform of ε 

and   

! 

"#
*  is its complex conjugate.  To do this, we first make use of the GKV method XSpect, which 

computes the spatial and temporal autopower (or crosspower if a reference object is included in 

the calling arguments):  Emiss_rate (kθ,ω) = Emiss_rate (s,t) -> XSpect().  Because XSpect com-

putes both spatial and temporal spectra, we utilize the identity 

    

! 

ds

"#

#
$ %& (s,&) = dk'

"#

#
$ %k' ,& (k' ,&), 
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to average the spectra over poloidal angle, where 
    

! 

"k# ,$  is the Fourier transform in poloidal arc 

length and time, i.e., the output of XSpect.  Thus, integrating over kθ is equivalent to integrating 

over space. 

 

The results of applying these operations to the distributions of Fig. 7 is shown in Fig. 9.  It is 

clear that the spatial weighting function of Fig. 3 dramatically attenuates the higher frequencies 

(corresponding to the larger wave numbers) and even attenuates the lower frequencies.  We be-

lieve this to be the reason BES detects no turbulence in this discharge. 

 

Conclusions 

We have demonstrated a system based on the GKV data analysis and visualization tool by which 

“signals” characteristic of a particular diagnostic may be generated from the output of an initial-

value microstability code and then compared with actual diagnostic signals in a statistical sense.  

Although we have presented only frequency spectra here to show the effects of the diagnostic 

“filters,” higher-order statistical quantities like bispectra,  cross-power spectra, cross-bispectra, 

etc., could be calculated for the simulated signals.  These would provide additional information 

about nonlinear energy exchange processes, generation of zonal flows, and other fundamental 

properties of the turbulence.  Comparisons of these quantities to those from measurements would 

provide additional evidence one way or the other of the code’s validity and would be a worth-

while subject of future work. 

 

Although we use for our example beam-emission spectroscopy applied to a nonlinear gyrokinetic 

microstability calculation, the system can be applied to virtually any diagnostic and any type of 

computation, subject only to the capabilities of the user to correctly model the diagnostic.  The 



 21 

signals generated by the “virtual diagnostic” may be analyzed exactly like those from the actual 

diagnostic.  The primary purpose of doing so is in benchmarking the code, i.e., determining if the 

code results are consistent with measurements.  Once confidence exists that the code faithfully 

reproduces experiment, then the virtual diagnostic technique may be used to guide the design, 

implementation, and interpretation of diagnostics and/or experiments. 
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Figure Captions 

 

Fig. 1.  Unit impulse response of a 5-pole Butterworth anti-aliasing filter for a sampling in-

terval of 20 time steps. 

Fig. 2.  Emissivity rate of a neutral hydrogen beam as a function of electron density, beam 

energy, and plasma effective ion charge Zeff, for kTe = kTi = 10 keV.  (Adapted from Ref. 

16.) 

Fig. 3.  Model of BES sensitivity function at R = R0 = 0.871 m, z = z0 = 0.  The other pa-

rameters in Eq. (5) are δR = 0.8 cm, δz = 0.5 cm, αR = 4, α z = 6. 

Fig. 4.  Snapshot of the electron density distribution (units of 1019 m-3) at t = 800 a/cs (1.1 

ms) at the outer midplane from the GYRO calculation. 

Fig. 5.  Time traces of a) electron, b) ion, and c) impurity (boron) densities at R = 0.871 m, z 

= 0 normalized to their time-averages of 20.2, 17.2, and 0.616 (units of 1019 m-3), respec-

tively. 

Fig. 6.  Time traces of a) electron density (same as in Fig. 5(a)) and b) emissivity rate at R = 

0.871 m, z = 0 normalized to their time-averages of 20.2×1019 m-3 and 3.21×105/s, respec-

tively. 

Fig. 7.  Plots of emissivity rate at r = 0.192 m versus poloidal distance from midplane and 

time (units of a/cs) for a) perfect spatial resolution and b) applying the spatial sensitivity 

function of Fig. 3. 
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Fig. 8.  Time traces of normalized a) emissivity rate at R = 0.871 m, z = 0 [same as in Fig. 

6(b)] and b) signal after spatial sensitivity function of Fig. 3 is applied. 

Fig. 9.  Frequency autopower spectra of the time traces in Fig. 8.  The light curve corre-

sponds to Fig. 8(a) and the dark curve to Fig. 8(b).
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Fig. 2
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Fig. 3
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Fig. 5
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Fig. 6
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