
UCRL-TR-217762

Synthetic Event Reconstruction
Experiments for Defining Sensor Network
Characteristics

J. K. Lundquist, B. Kosovic, R. Belles

December 16, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



Lundquist, Kosović, and Belles p. 1 of 32
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Defining Sensor Network Characteristics

Julie K. Lundquist, Branko Kosović, and Rich Belles

 Abstract

An event reconstruction technology system has been designed and implemented 
at Lawrence Livermore National Laboratory (LLNL). This system integrates 
sensor observations, which may be sparse and/or conflicting, with transport and 
dispersion models via Bayesian stochastic sampling methodologies to 
characterize the sources of atmospheric releases of hazardous materials. We 
demonstrate the application of this event reconstruction technology system to 
designing sensor networks for detecting and responding to atmospheric releases 
of hazardous materials. The quantitative measure of the reduction in uncertainty, 
or benefit of a given network, can be utilized by policy makers to determine the 
cost/benefit of certain networks.

Herein we present two numerical experiments demonstrating the utility of the 
event reconstruction methodology for sensor network design. In the first set of 
experiments, only the time resolution of the sensors varies between three 
candidate networks. The most “expensive” sensor network offers few advantages 
over the moderately-priced network for reconstructing the release examined 
here. The second set of experiments explores the significance of the sensors’ 
detection limit, which can have a significant impact on sensor cost. In this 
experiment, the expensive network can most clearly define the source location 
and source release rate.  The other networks provide data insufficient for 
distinguishing between two possible clusters of source locations. When the 
reconstructions from all networks are aggregated into a composite plume, a 
decision-maker can distinguish the utility of the expensive sensor network.
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1. Introduction

To detect the atmospheric transport of hazardous materials, new and innovative 
sensor networks are currently being designed and deployed. These networks can 
serve one or more of several purposes: they can detect the spread of hazardous 
materials before large populations have been exposed so that emergency 
response officials can organize evacuations; they can identify the size of the 
release so that officials can respond during an event with evacuations or 
inoculations; they can be used in a forensic role, post-event, to describe the 
release so that decontamination efforts can be prescribed.

Many types of sensors and sensor networks for detecting atmospheric releases 
of hazardous materias have been designed; some networks have been 
deployed, such as the BioWatch network that is designed to provide early 
warning in the case of a mass pathogen release (Shea and Lister, 2003). These 
networks have varying degrees of detection sensitivities, false-alarm rates, and 
frequency of data collection. However, the utility of these networks in 
characterizing the sources of atmospheric releases of hazardous materials has 
not yet been demonstrated systematically to our knowledge.

Reconstructing the source of a detected atmospheric release is a crucial step in 
predicting the consequences of such a release. The primary source of 
uncertainty in prediction the consequence of an atmospheric release is 
determining the source term characteristics, such as location, magnitude, and 
duration of the release. The type of source is also a crucial component in 
determining consequences: sources may be instantaneous (like an explosion) or 
continuous (a long-term release), localized to one point or over a wide area, 
static or moving, at the surface or elevated. Even if the source is perfectly 
characterized, the complexity of atmospheric flow, especially in urban 
environments or in complex terrain, presents additional challenges for a 
dispersion model.

An event reconstruction technology system has been designed and implemented 
at Lawrence Livermore National Laboratory (LLNL). This system integrates 
sensor observations, which may be sparse and/or conflicting, with transport and 
dispersion models via Bayesian stochastic sampling methodologies to 
characterize the sources of atmospheric releases of hazardous materials. The 
event reconstruction methodology identifies source characteristics (such as 
location, magnitude, duration) that are most consistent with the observed data, 
given a quantification of the errors expected in the both the observations and in 
the forward dispersion model. Once the source is characterized, an ultimate 
prediction of likely affected areas is possible. This ultimate prediction is a 
composite of all the likely sources and can guide emergency responders more 
effectively than a single forward prediction from a single (possibly incorrect) 
estimate of source characteristics. The composite prediction provides a measure 
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of uncertainty in source characterization and the result of the release of 
hazardous material.

Ideally, the observations describing an event would provide enough information 
about an event so that the uncertainty regarding the source location or 
magnitude is very low. To ensure this minimal uncertainty, sensor networks must 
be designed with that goal in mind. It is possible, using the event reconstruction 
system, to examine certain scenarios of interest using different sensor networks 
to determine which sensor network(s) will provide the greatest reduction of 
uncertainty in source characterization and response. This quantitative reduction 
in uncertainty can be provided to policy makers to determine the cost/benefit of 
certain networks. Questions such as the following can be addressed:

• Would a network consisting of fewer instruments that are more sensitive
protect my facility better than a network with more instruments that are 
less sensitive?

• If I have time constraints on my response to the detection of a release, 
how often must I collect information from my sensors?

• To reduce costs while still protecting my city, is a dense network of 
instruments with a high false alarm rate a better choice than a sparse 
network of more reliable instruments?

To demonstrate the utility of the event reconstruction system for answering 
questions like these, we present a pair of numerical experiments designed to 
determine and quantify the advantages of using sensors of varying time 
resolutions and varying detection limits for identifying a source of a hazardous 
release that affects a suburban domain of size 6 km by 6 km. This experiment 
quantifies the importance of time resolution and sensor detection limit thresholds 
in otherwise identical instruments deployed to identify the source of a 1.5-hour-
long release of a neutrally-buoyant gas in the suburban area. Although these 
experiments were loosely based on an actual atmospheric tracer experiment (the 
Copenhagen release, Grying and Lyck, 1984), such experiments using the LLNL 
event reconstruction methodology require only a definition of the region of 
interest, a climatology of atmospheric conditions for that region, some 
specification of the types of releases required to be considered, a transport-and-
dispersion model suitable for simulating the dispersion of the material(s) of 
interest, and a measure of error for the sensor observations and the transport-
and-dispersion model predictions.

2. Description of the event reconstruction methodology

LLNL’s event reconstruction methodology (Kosovic et al., 2005) integrates 
Bayesian stochastic methodologies with “forward” atmospheric transport and 
dispersion models and observations of atmospheric concentrations due to an 
atmospheric release to determine unknown source parameters. The event 
reconstruction system can provide optimal characterization of unknown source 
term parameters, given a set of measurements of atmospheric concentrations Mij
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at locations i and times j, an atmospheric dispersion model that predicts 
concentrations Cij at locations i and times j as a function of source term 
parameters, and quantification of the error in both model predictions of 
concentrations C and observed measurements M.

For example, event reconstruction is often used to determine probabilistic 
estimates of two unknown source terms parameters, source location X and 
source magnitude R. This final probabilistic estimate is known as the posterior 
distribution, which is calculated over many iterations in the following way. At an
nth iteration of the reconstruction, a Markov chain samples unknown source term 
parameters Xn and Rn from a large set of possibilities X and R. These source 
parameters Xn and Rn are provided to an atmospheric transport and dispersion 
model, which uses Xn and Rn to predict atmospheric concentrations at sensor 
locations i and times j. The measurements Mij and the model predictions Cij(XnRn)
are compared; details of that comparison are discussed below. Based on that 
comparison, the probability of source location Xn and source magnitude Rn are 
evaluated via comparison to previous guesses Xn-1, Xn-2, … and Rn-1, Rn-2, …. 
If the comparison is favorable for Xn and Rn, their values are retained for 
subsequent comparisons of Xn+1 and Rn+1. Eventually, convergence to a final 
posterior distribution is attained, and that final posterior distribution summarizes 
the most likely of source term parameters X and R given measurements and their 
error, prior knowledge about the characteristics of the source, and prior estimates 
of the transport and dispersion model error. 

This process, known as Markov Chain Monte Carlo sampling for Bayesian 
inference, is discussed in detail in popular texts such as Robert and Casella 
(2005) and Liu (2001), e.g.. The sampling procedure used herein relies on a 
Metropolis-Hastings algorithm for generated samples Xn and Rn from a domain of 
possibilities X and R. Multiple Markov Chains can proceed through the domains 
X and R simultaneously; four Markov Chains are used in the reconstructions 
presented here.

a. The “forward” atmospheric transport and dispersion model

A core component of an atmospheric event reconstruction is the efficient use of 
an atmospheric dispersion model. The present methodology has been used with 
a wide array of transport and dispersion models. These models include a 
relatively simple and fast 2D Gaussian puff model INPUFF (Petersen and
Lavdas, 1986), a Lagrangian particle dispersion model LODI which is used at 
LLNL’s National Atmospheric Release Advisory Center (NARAC) (Ermak and 
Nasstrom, 2000, Larson and Nasstrom, 2001), and a building-resolving 
computational fluid dynamics code FEM3MP (Chan and Stevens, 2000; Chow et 
al., 2006). In each case, thousands of possible source term parameters Xn and 
Rn, are provided to the forward dispersion model, meaning that thousands of 
forward simulations are carried out. Computational efficiencies such as a Green’s 
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function approach (Chow et al. 2006) are available to reduce the number of 
forward simulations, but have not been employed for the study presented herein.

The National Atmospheric Release Advisory Center’s Lagrangian particle 
dispersion model, LODI, provided the forward atmospheric transport and 
dispersion simulations for this experiment. Based on a given source location and 
release rate, LODI generates a number of Lagrangian particles that disperse 
within its simulation domain based on meteorological and turbulence parameters 
calculated by LODI and provided to it by a meteorological data assimilation 
model, ADAPT (Sugiyama and Chan 1998), also developed at the National 
Atmospheric Release Advisory Center. 

b. The likelihood function and assumed error

The quality of the reconstruction, or the precision of the final posterior distribution 
of the unknown source term parameters, is related to the error assumed or 
known in both the actual measurements used in the reconstruction and the 
forward model (as well as to the quality of the data used in the reconstruction). 
For the reconstructions discussed here, these two errors are incorporated into 
one error parameter, σ, which is utilized in the comparison described above.

The measurements Mij and modeled concentrations Cij are first compared to the 
detection range of the instruments used. Any measurements or modeled 
concentrations above the saturation level of the instrument are set to the 
saturation level; any measurements or modeled concentrations below the 
detection limit are set to the detection limit or sensor sensitivity threshold. The 
natural log of the likelihood function L for source Xn and Rn over all the sensor 
measurements N is a function of the difference between the measurements and 
the modeled concentrations assuming source parameters Xn and Rn:
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This likelihood value LXnRn is compared to that of previously-tested values such as 
LXn-1Rn-1. Other likelihood functions are possible. Generally, values of source term 
parameters that lead to smaller values of L are retained, although some 
violations of that rule are allowed to ensure wide sampling of the source term 
domains X and R and to prevent any Markov chain from being caught in a local 
minimum of L. Successful likelihood values contribute to the final posterior 
distribution.

If larger errors in measurements or modeled concentrations are appropriate, 
larger values of σ should be assumed. For all reconstructions presented herein, 
σ=0.2. Larger values of the error range, or s, will generally lead to broader final 
posterior distributions. Possible bias in the measurements or in the model is not 
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accounted for in the formulation of the likelihood function as presented here, but 
may be incorporated into the likelihood function.

3. Description of the numerical simulations

These simulations were roughly based on the Copenhagen tracer experiments 
(Gryning and Lyck, 1984), using a domain, terrain features, and meteorology 
from the 19 July 1979 release of sulfur hexafluoride tracer gas in the suburban 
Copenhagen area. Hourly averages of wind speed and wind direction from the 
TV tower from which the tracer gas was released were used to define a wind field 
in NARAC’s ADAPT model; observations from four levels above the surface were 
available (10m, 60m, 120m, and 200m). Boundary-layer height (2090m) was 
estimated from a sounding released within 10km of the source. Friction velocity 
(0.77 m/s) was estimated from the mean wind profile. Surface roughness for the 
suburban domain was estimated at 0.6m. Although the meteorology was 
prescribed for this event reconstruction, the characteristics of meteorology could 
also be included in the set of unknowns that the event reconstruction system 
seeks to identify. Wind speed and wind direction profiles for hours 1000, 1100, 
and 1200 UTC (local time – 1 hour) appear in Figure 1. Note that wind direction 
was reported only at 10m, 120m, and 200m levels.

Two numerical studies are presented herein. The first study explores the role of 
time resolution of the instruments used in this study. The second study explores 
the role of sensor sensitivity or detection limit. Each study includes three
reconstructions; all reconstructions attempt to identify the location (in the 
horizontal plane) and rate of release of the tracer gas. Four sensors with known, 
fixed locations are distributed within the domain, nominally 2-4 km from the 
source. (The locations of the sensors correspond to actual locations of sensors 
used during the 1979 experiments; these sensors are numbers 1-22, 1-38, 3-23, 
and 3-32 using Gryning’s sensor identification system (Gryning 1981).) This 
situation is analogous to a scenario in which sensor locations are predetermined 
by logistical constraints, but sensor characteristics, such as averaging time or 
sensitivity, are flexible. All simulations use the same hourly meteorology and 
seek to characterize the same release, which commences at 1050 UTC and 
concludes at 1220 UTC, releasing material at a constant release rate of 3.2e+09
ng/sec.

Each simulation uses sensors from the same four locations for each simulation, 
as well as “synthetic” concentrations reported by LODI given the actual source 
location and release rate. The synthetic concentrations recorded at each location 
were based not only on LODI’s predicted concentrations at the 100m x 100m (x 
20m high) grid cell encompassing each sensor’s location, but also including the 
eight nearest neighbors of that grid cell using the weighting scheme shown in 
Figure 3. Because sensors in the Copenhagen experiment were typically 
mounted on street poles at altitudes 0-20m above the surface, LODI
concentrations for the lowest 20m are considered.
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The reconstructions are summarized in Table 1. For the first study, the three 
reconstructions differ in the time resolution of the sensor providing data. Although 
all sensors recorded data from 1038-1238 UTC, the “60m resolution” sensors
(where “m” indicates “minutes”) reported averaged concentrations for 1038-1138 
and 1138-1238; the “10m resolution” sensors reported averaged concentrations 
for a total of twelve ten-minute intervals; and the “5m resolution” sensors 
reported averaged concentrations for a total of twenty-four five-minute intervals. 
In a domain of this size (6km length scale) and for wind speeds of this magnitude 
(average of 9.2 m/s at 60m altitude over the three relevant hours), ten minutes 
are required for material to be transported throughout the domain. Therefore,
only an instrument with time resolution at or greater than this ten-minute time 
scale is expected to provide adequate information to characterize the source 
location and magnitude. All the sensors can detect atmospheric concentrations 
between 10 and 10000 ng/m3, or three orders of magnitude, based on the 
reported detection limits used in the original Copenhagen study (Gryning, 1981).

For the second study, the detection limit (or sensor sensitivity) varies. All the 
sensors report data at ten-minute intervals, as the “10m resolution” sensors in 
the first experiment. The “low-threshold” reconstruction uses data from 
instruments with an expanded lower detection limit, reporting in a range from 
0.01 to 10000 ng/m3, or over six orders of magnitude. The moderate threshold 
sensor network reports data over three orders of magnitude, from 10 to 10000 
ng/m3. The “high-threshold” reconstruction uses limited data from instruments 
reporting from 1000 to 10000 ng/m3. 

Event reconstruction was carried out for 5000 iterations for each sensor set, 
searching over source x and y location and release rate. All simulations were 
carried out on Livermore Computing’s mcr platform, using less than 12 cpu hours 
on 68 2-processor nodes.

Time Resolution 
of sensors 
(minutes)

Sensor detection range 
(orders of magnitude)

Qualitative 
description of 
network

four_05mres 5 3 Expensive
four_10mres 10 3 Moderate
four_60mres 60 3 Inexpensive
low_thresh 10 6 Expensive
four_10mres 10 3 Moderate
high_thresh 10 1 Inexpensive
Table 1: Summary of reconstructions discussed herein. The “four_10mres” reconstruction 
is utilized in both the time-resolution study and the detection limit study.

4. Assessment of the sensor networks tested
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Several metrics can assess which type of network provides optimal information to 
users wishing to understand the source of material responsible for the observed 
data. Before considering these metrics, it is advisable to ensure that a 
reconstruction has converged. These metrics include histograms of source 
characteristics, probability contours of source location, and finally, composite 
plumes based on the posterior distribution from the reconstruction.

a. Convergence metrics

The posterior distribution can only be determined if a reconstruction has 
converged. Only information generated after convergence should be considered 
when evaluating a sensor network. Little information can be gleaned from 
convergence tests other than the fact that convergence has been attained, which 
is necessary for subsequent analysis of the posterior distribution to which the 
reconstruction has converged. 

Convergence is typically defined (Gelman et al., 2004, p. 297) by a measure of
the variation between the chains used in the reconstruction to variation within 
each chain. When this ratio, R_hat, approaches 1 (in practicality, is less than 2), 
convergence is said to be attained. Each of the three reconstructions converged 
rapidly, within the first 1000 iterations. Iterations 2000-5000 constitute the 
posterior distributions, presented here via histograms, probability contours, and 
composite plumes. The convergence metric R_hat for all three reconstructed 
parameters (x-location, y-location, and release rate) are shown in Figure 4 (for 
the time-resolution study) and in Figure 5 (for the sensor-threshold study).

b. Location histograms

After convergence has been attained, the posterior distribution of the 
reconstruction reveals the characterization of the source. For synthetic studies 
and reconstructions based on studies in which the exact characteristics of the 
source are known, as presented here, a comparison of the histogram to “truth” 
can generate confidence in the reconstruction. In cases for which “truth” is 
unknown and to be determined, the histogram’s nature (flat vs. sharp) can 
indicate how much information is attainable from available data. 

The histograms for each of the three source characteristics reconstructed (y-
location; x-location; and release rate), along with an indicator of “truth”, are 
shown below. The largest uncertainty in the reconstruction of a source location is 
typically in the direction along the mean wind, which in this case, is in the x-
direction. Therefore, the histograms of y-locations should be narrowly focused 
and more correct. 

In the time-resolution experiment, all sensor arrays identify the y-location of the 
source within a 3-km range, while the reconstruction explored a 10-km range
(Figure 6). However, the 60-min (Figure 6c) resolution sensors provide a 
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reconstruction with a bimodal distribution of y-location, with one peak at the 
correct location (indicated with the heavy vertical line) and one location 1.5 km 
north of the correct location. This bimodal probability distribution indicates a 
suboptimal network.

In the detection-threshold experiment, the “expensive” network with instruments 
with a low detection threshold provides a reconstruction that clearly and correctly 
identifies the y-location of the source (Figure 7a), indicating the utility of this type 
of instrument. The moderate-threshold instruments constitute a suboptimal 
network (Figure 7b), indicating a bimodal distribution of y-location, with one peak 
at the correct location (indicated with the heavy vertical line) and one location 1.5 
km north of the correct location. Finally, the inexpensive network of instruments
with a high detection limit provides no information on the y-location of this source, 
indicated by the flat distribution in Figure 7c.

As noted above, the greatest location uncertainty in a reconstruction is typically 
in the direction of the mean wind, which in this case was from the west. This 
large uncertainty is seen in the broad probability distributions for x-location.

In the time-resolution experiment, distributions of the x-locations include probable 
locations within a 5-km range around the correct source location (and would 
probably extend further upwind had the domain been large enough to include 
such locations). The superior time resolution of the 5-minute resolution sensor 
network did not provide the ability to reduce the uncertainty in x-location for this 
case (Figure 8a) over the uncertainty determined with the moderate network 
(Figure 8b). This failure disproves the hypothesis that the 5-minute resolution 
sensors would resolve the arrival time of the plume more precisely than the 10-
minute resolution sensors, because the advection time from an upwind sensor to 
a downwind sensor (distance of nominally 4 km) with mean winds of 9.2 m/s is 
less than 8 minutes. The tracer gas release did last for ninety minutes, however; 
an instantaneous release of tracer gas would likely be reconstructed better by the 
higher time resolution sensors.

In the detection-threshold experiment, a more marked difference between the 
networks is evident. The low-detection threshold instruments do identify the 
correct x-location within 3 km, with a Gaussian distribution (Figure 9a) and a 
significant peak close to the real source. The moderate network identifies a 
broader range of possible x-locations (Figure 9b), while the high-detection limit 
instruments provide no information at all to reduce the range of possibilities 
(Figure 9c).
 



Lundquist, Kosović, and Belles p. 10 of 32

c. Joint location histograms

When a source characteristic, such as location, is defined by more than one 
parameter, such as x and y, more insight can be gleaned by the inspection of 
joint histograms. Presented in Figure 10 and Figure 11 are joint histograms of 
probability of source location for both x and y, superimposed on a map including 
the real source location (the red triangle) and the sensor locations (the four green 
diamonds), for the two experiments. Shading indicates the joint probability of a 
particular cell being the source location; the more intense blues represent higher 
probability. 

In the time-resolution experiment (Figure 10), the joint probability distributions 
based on data from the 10-minute and 60-minute resolution sensor networks 
clearly illustrate that these networks cannot distinguish between two clusters of 
possible source locations: one band includes the correct location, and another 
band to the north includes a peak at the wrong location. The 10-minute resolution 
network has an especially strong peak at an incorrect location (x=343, y = 6481) 
that is weighted more strongly than the peak at the correct location. Only 
reconstruction based on the 5-minute resolution sensor network correctly 
emphasizes the southern band, which encompasses the true source location, 
although it does include both bands.

In the detection-limit threshold experiment (Figure 11), the advantage of the low-
detection-limit network is obvious. In the joint histogram for the expensive 
network, only a few locations are highlighted, and those locations are very close
to, within 500m of, the actual source, with some upwind uncertainty (Figure 11a). 
The network composed of sensors with a moderate detection limit cannot 
distinguish between two clusters of possible source locations: one band that 
includes the correct location, and another band to the north that includes a peak 
at the wrong location. The moderate network identifies an especially strong peak 
at an incorrect location (x=343, y = 6481) that is weighted more strongly than the 
peak at the correct location (Figure 11b). Finally, the high-detection-limit network 
(Figure 11c) cannot reduce the infinite range of possible source locations beyond 
identifying that the source location is not immediately upwind of the sensors, as 
noted by the white areas (indicating zero probability) upwind of the sensors. The 
rest of the domain consists of possible source locations, indicating that this 
sensor network provides no information at all to decision-makers seeking to 
understand the characteristics of the source of an atmospheric release of this 
magnitude. 

d. Release rate histograms

When identifying the source of an unknown atmospheric release, the magnitude 
of the release is often an important parameter. Knowing the size of the source 
term can guide emergency-response actions, such as determining whether 
evacuation or sheltering-in-place is appropriate. The size of the source term is 



Lundquist, Kosović, and Belles p. 11 of 32

also important for post-release cleanup efforts. An ideal sensor network, coupled 
with event reconstruction methodologies, should therefore be able to quantify the 
size of a detected atmospheric release. Histograms of the release rate 
reconstructions for these two experiments appear in Figure 12 and Figure 13.

Inspection of the release rate histogram clearly indicates the problematic nature 
of reconstruction with very coarse time-resolution instruments (Figure 12). The 
histogram based on 60-min sensor data (Figure 12c) is very flat, filling almost the 
entire range of release rates considered. Both the 10-min (Figure 12b) and the 5-
min (Figure 12a) sensor data narrow the field of possibilities to acceptable limits. 
The 10-min sensor data reconstruction indicates a slight peak in probability at the 
correct release rate, although the determination of the “best” sensor array should 
not be based on the histogram of one quantity alone, but on the aggregate 
evaluation of all desired source parameters, as available in the composite plume.

In the detection-limit experiment, the least expensive network again fails to 
provide useful information, filling almost the entire range of release rates 
considered (Figure 13c). The moderate network indicates a slight peak in 
probability at the correct release rate (Figure 13b), although this release rate 
peak corresponds to an incorrect location, as discussed above in Figure 11b.
Surprisingly, the reconstruction based on data from the expensive network 
cannot precisely identify the strength of the source (Figure 13a) as well as it 
identifies the location of the source. Quantification of the utility of different sensor 
networks, via articulation of the networks’ capabilities, would be helpful
information for decision-makers.

e. Composite and aggregate plume predictions

A key piece of information for a decision-maker choosing between sensor 
networks is a composite plume, a reconstruction of the original plume based only 
on the data provided from the sensors and the forward model via the Bayesian 
stochastic inversion. This composite summarizes the posterior distribution of all 
possible source characteristics, weighting each source characteristic (here, X
and R) by their probability of occurring as determined by the reconstruction (and 
seen in the histograms presented herein). Because the refinement of the 
reconstruction is determined by the characteristics of the sensor network, this 
measure of network performance provides a quantitative means of evaluating the 
utility of a given sensor network. 

Composite plumes are generated by aggregating together all runs from the 
forward model, based on the Xn and Rn tested during the reconstruction. At each 
grid cell in the forward model’s domain, at each time step simulated, there exists 
a distribution of atmospheric concentrations due to the dispersion predicted by 
the forward model based on each Xn and Rn. A plume dispersion plot consisting 
of the total concentration expected in each cell, normalized by the total number N
of Xn and Rn that contributed to that concentration, would create an aggregate 
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plume. This aggregate plume representation does not explicity incorporate the 
probabilistic information obtained via the event reconstruction. To incorporate the 
probabilistic information, a confidence threshold level is defined by the decision-
maker. (In this study, the 90% confidence level is utilized.) The composite plume 
indicates, for each cell, that the reconstruction based on the sensor data is 90% 
confident that concentrations at that cell are above a certain threshold. 

Composite plumes for the detection-limit experiment are shown in Figure 14. The 
composite plume from the reconstruction based on the low-detection-limit sensor 
network (Figure 14a) is able to reproduce both the finely-structured stochastic 
nature of the plume edges and a high-concentration contour (outlined in black) 
that is also evident in the original plume (Figure 14d). The reconstruction based 
on the moderate-detection-limit sensor network (Figure 14b) can also reproduce 
the general shape of the original plume. The reconstructed composite plume in 
Figure 14b is also broader than the original and includes the “alternate” source to 
the north of the real source, potentially providing misleading information. Finally, 
the reconstruction using the high-detection limit sensors, shown in Figure 14c, 
provides minimal useful information to a decision-maker, failing to include the 
real source location or identify a high-concentration-level contour (as represented 
by the black line seen in Figure 14a, b, or d). The only information provided in 
Figure 14c is that a release may have happened somewhere in the domain of 
interest and that it affected the two downwind sensors at this timestep; no 
resolution of the features of the plume is possible.

The composite plume can be very useful for a decision-maker seeking to 
determine how to utilize sensors to protect an asset. Numerical experiments such 
as these, which incorporate sensors with different characteristics (detection 
thresholds, time resolution, false-alarm frequency, and expense), along with 
likely release scenarios, can quantitatively illustrate what information different 
types of networks would provide in the case of an atmospheric release of 
hazardous materials. In the detection-limit experiment shown above, the 
decision-maker would weigh the utility of defining a high-concentration contour 
(outlined in black in Figure 14, which could correspond with a Protective Action 
Guideline), available from the low-detection-limit and moderate-detection-limit 
networks, against the higher cost of the low-detection-limit network.

5. Conclusions

Sensor networks must be designed to provide enough quantitative information 
about an event to reduce uncertainty in emergency response. We have 
demonstrated the application of an event reconstruction technology system to 
designing sensor networks for detecting and responding to atmospheric releases 
of hazardous materials. This system, developed at Lawrence Livermore National 
Laboratory, integrates observations with transport and dispersion models via 
Bayesian stochastic sampling methodologies to characterize the sources of 
atmospheric releases of hazardous materials. The event reconstruction 
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methodology identifies source characteristics that are most consistent with the 
observed data, and then can provide an ultimate prediction, or composite plume, 
describing likely affected areas. This ultimate prediction is a composite of all the 
likely sources. In a real event, it can guide emergency responders more 
effectively than a single forward prediction from a single estimate of source 
characteristics as it provides a measure of uncertainty in source characterization 
and the result of the release of hazardous material. Before an event, this 
quantitative measure of the reduction in uncertainty, or benefit of a given 
network, can be utilized by policy makers to determine the cost/benefit of various
networks.

Herein we present two numerical experiments demonstrating the utility of the 
event reconstruction methodology for sensor network design. Both experiments 
are loosely based on the Copenhagen tracer experiment (Gryning, 1981; Gryning 
and Lyck, 1984), but numerical sensor network design experiments require only 
climatological weather data, a dispersion model, and specifications of the types 
of sensors being considered – no actual tracer experiment data is required. In the 
present study, data from each network was provided to the event reconstruction 
system in order to identify the location and magnitude of a 1.5-hour release of a 
neutrally-buoyant gas in a 6km x 6 km suburban area.

In the first set of experiments, only the time resolution of the sensors varies
between the three reconstructions. The most “expensive” sensor network, which 
provided data every five minutes (as compared to every ten minutes –
“moderately-priced” or every sixty minutes – “inexpensive” – over this 1.5-hour 
release), offers only a few advantages over the moderately-priced network when 
attempting to reconstruct the location of the source explored here. Utilizing data 
from either the “moderate” or the “expensive” network, the event reconstruction 
methodology could identify the source location of the release within 5km, and 
could identify the magnitude of the source within 25%.  

The second set of experiments presented herein explore the significance of the 
sensors’ detection limit, which can have a significant impact on sensor cost. All 
sensors report data every ten minutes. The “expensive” network had a very low 
detection limit, and could distinguish data within a range of six orders of 
magnitude. The “moderate” network could identify data within a range of three 
orders of magnitude, while the “inexpensive” network could identify data within 
one order of magnitude. The upper limit, or saturation level, of the instruments in 
all three networks was identical. In this set of experiments, the expensive 
network can most clearly define the source location and source release rate.  
The other networks provide data insufficient for distinguishing between two 
possible clusters of source locations. When the reconstructions from all networks 
are aggregated into a composite plume, a decision-maker can distinguish the 
network that best suits needs. Reconstructions from both the expensive network 
and the moderately-priced network can reproduce certain high-threshold 
contours of atmospheric concentrations from the release considered here.
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However, because of the limited sensitivity of the moderately-priced network, 
reconstruction from that network incorrectly predicts effects of the release in 
regions that would not be affected. A decision-maker could thus weigh the 
potential false-positive risk against the cost savings of that network.

The experiments presented herein have explored only a single type of release 
and a single meteorological scenario, in order to demonstrate the application of 
event reconstruction to sensor network design. More complete sensor network 
studies would consider multiple climatological conditions (i.e. wind speed, wind 
direction, atmospheric stability) representative of the region of interest. A range 
of possible source magnitudes may also be explored to ensure that the network 
would provide useful composite plumes in most likely scenarios. 
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8. Figures

Figure 1: Vertical profiles of wind speed (solid line) and wind direction (dashed line) for the 
three hours relevant to these simulations

Figure 2: The source (red triangle) and sensors (green diamonds) used in this study. The 
winds, as noted in Figure 1, are from the west.
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Figure 3: Weighting of concentrations calculated for cells including and around a sensor 
(indicated with cross).
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a) b)

c)
Figure 4: Convergence metrics for the time-resolution study using a) the five-minute 
network, b) the ten-minute network, c) the 60-minute network
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a) b)

c) 
Figure 5: Convergence metrics for the sensor-sensitivity study using a) the low-threshold 
network, b) the moderate-threshold network, c) the high-threshold network 
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a) b) c)
Figure 6: Histograms for y-location for simulations with a) 5-minute b) 10-minute, c) 60-
minute resolution sensors.

a) b) c)

Figure 7: Histograms for y-location for simulations with a) low-threshold, b) moderate-
threshold, and c) high-threshold sensors.

a) b) c)
Figure 8: Histograms for x-location for simulations with a) 5-minute b) 10-minute, c) 60-
minute resolution sensors.

a)
b)

c)

Figure 9: Histograms for x-location for simulations with a) low-threshold, b) moderate-
threshold, and c) high-threshold sensors.



Lundquist, Kosović, and Belles p. 20 of 32

a) b)

c)
Figure 10: Joint histogram for x and y location for simulation with sensors with a) 5-
minute, b) 10-minute, and c) 60-minute time resolution
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a) b)

c)
Figure 11: Joint histogram for x and y location for simulation with sensors with a) low, b) 
moderate, and c) high thresholds. Darker blues indicate higher probability locations.
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a) b) c)
Figure 12: Histogram for release rate for simulation with sensors with a) 5-minute, b) 10-
minute, and c) 60-minute time resolution

a) b) c)

Figure 13: Histogram for release rate for simulation with sensors with a) low, b) moderate, 
and c) high detection limits
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a) b)

c) d)
Figure 14: Composite plumes with logarithmic color contours, generated from a) the low-
detection level , b) the moderate-detection level, and c) the high-detection level sensor 
networks. Colored contour levels indicate the magnitude of atmospheric concentrations in 
which a decision-maker can have 90% confidence. Highest concentrations are in yellow 
and light orange; lower concentrations are in red and dark red. Note that the 
reconstruction with the high-detection-level network c) provides confidence only that half 
of the domain will experience concentrations above a low level. Plume d) represents the 
original plume, from which the data for the reconstruction were generated. Note that both 
the reconstructions using the low-detection limit instruments, a), and the moderate-
detection limit instruments, b), can reproduce the high-concentration contour of 1000 
ng/m3, outlined in a), b), and d) with a solid black line. Note also in b) that the plume 
extends further in the north-south direction to encompass the probability that the source 
might be at a second alternate location to the north of the real location.
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9. Appendix A – adapt.nml, observ.met, stnloc.met files for the meteorology 
used in this example

a. adapt.nml
*** adapt.nml automatically generated on 19-Aug-2004 08:53:44 via code written by 

Michael Dillon on 5-21-04

&adapt_control
flag_debug = .true.

/

&adapt_grid
file_met_grid     = "../main_grd_copenhagen.nc" 
opt_grid_file     = "gridgen"

/

*** Beginning adapt parameters for met time1979JUL19_100000

&adapt_metdata
file_met_field     = "met_field_1979JUL19_100000.nc"
opt_src_obs        = "ascii2"
opt_src_field      = "none"
file_src_obs       = "observ.met"
file_src_station   = "../stnloc.met"
flag_station_km    = .true.
nmethod            = 2

/

&adapt_field2D
hgt_vert_coord         = "zAGL" 
hgt_boundary_layer     = 2090
hgt_geostrophic_layer  = 2090
z0                     = 0.6000000 
inv_monin_obukhov_len  = -2.617801e-003
friction_velocity      = 7.700000e-001

/

&adapt_method
opt_wind_horz = "spddir"
flag_use_missing_wind = .true.
opt_met_type          = "wind2d"
obs_date_time         = "1979JUL19_100000"
blend_exp             = 0.100000  
flag_upr_in_sl        = .false.
flag_twr_local_only   = .false.
flag_mc_adjust        = .false.
met_x_border          = 100000.0
met_y_border          = 100000.0
blend_max_veer        = 180
sl_pwr_exp            = 0.1900000

/

&adapt_mc_adjust
/

&adapt_method
opt_method = "turb"  

/

&adapt_turbulence
sigmav_tavg       = 3600
sigmav_tavgo      = 3600
sigmav_t_lagran_h = 400
turb_param_h      = "sigmav_simthry"
sigmav            = 1.71
sigmav_meas_hgt   = 115
turb_param_z      = "simthry"
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sim_kz_c          = 4
sim_kz_trop       = 0.01

/

*** Beginning adapt parameters for met time1979JUL19_110000

&adapt_metdata
file_met_field     = "met_field_1979JUL19_110000.nc"
opt_src_obs        = "ascii2"
opt_src_field      = "none"
file_src_obs = "observ.met"
file_src_station   = "../stnloc.met"
flag_station_km    = .true.
nmethod            = 2

/

&adapt_field2D
hgt_vert_coord         = "zAGL" 
hgt_boundary_layer     = 2090
hgt_geostrophic_layer  = 2090
z0                 = 0.6000000 
inv_monin_obukhov_len  = -2.617801e-003
friction_velocity      = 7.700000e-001

/

&adapt_method
opt_wind_horz = "spddir"
flag_use_missing_wind = .true.
opt_met_type          = "wind2d"
obs_date_time         = "1979JUL19_110000"
blend_exp             = 0.100000  
flag_upr_in_sl        = .false.
flag_twr_local_only   = .false.
flag_mc_adjust        = .false.
met_x_border          = 100000.0
met_y_border          = 100000.0
blend_max_veer        = 180
sl_pwr_exp            = 0.1900000

/

&adapt_mc_adjust
/

&adapt_method
opt_method = "turb"  

/

&adapt_turbulence
sigmav_tavg       = 3600
sigmav_tavgo      = 3600
sigmav_t_lagran_h = 400
turb_param_h      = "sigmav_simthry"
sigmav            = 1.71
sigmav_meas_hgt   = 115
turb_param_z      = "simthry"
sim_kz_c          = 4
sim_kz_trop       = 0.01

/

*** Beginning adapt parameters for met time1979JUL19_120000

&adapt_metdata
file_met_field     = "met_field_1979JUL19_120000.nc"
opt_src_obs        = "ascii2"
opt_src_field      = "none"
file_src_obs       = "observ.met"
file_src_station   = "../stnloc.met"
flag_station_km    = .true.
nmethod            = 2

/
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&adapt_field2D
hgt_vert_coord         = "zAGL" 
hgt_boundary_layer     = 2090
hgt_geostrophic_layer  = 2090
z0                     = 0.6000000 
inv_monin_obukhov_len  = -2.617801e-003
friction_velocity      = 7.700000e-001

/

&adapt_method
opt_wind_horz = "spddir"
flag_use_missing_wind = .true.
opt_met_type          = "wind2d"
obs_date_time         = "1979JUL19_120000"
blend_exp             = 0.100000  
flag_upr_in_sl        = .false.
flag_twr_local_only   = .false.
flag_mc_adjust        = .false.
met_x_border          = 100000.0
met_y_border          = 100000.0
blend_max_veer        = 180
sl_pwr_exp            = 0.1900000

/

&adapt_mc_adjust
/

&adapt_method
opt_method = "turb"  

/

&adapt_turbulence
sigmav_tavg       = 3600
sigmav_tavgo      = 3600
sigmav_t_lagran_h = 400
turb_param_h      = "sigmav_simthry"
sigmav            = 1.71
sigmav_meas_hgt   = 115
turb_param_z      = "simthry"
sim_kz_c          = 4
sim_kz_trop       = 0.01

/

*** Beginning adapt parameters for met time1979JUL19_130000

&adapt_metdata
file_met_field     = "met_field_1979JUL19_130000.nc"
opt_src_obs        = "ascii2"
opt_src_field      = "none"
file_src_obs       = "observ.met"
file_src_station   = "../stnloc.met"
flag_station_km    = .true.
nmethod            = 2

/

&adapt_field2D
hgt_vert_coord         = "zAGL" 
hgt_boundary_layer     = 2090
hgt_geostrophic_layer  = 2090
z0                     = 0.6000000 
inv_monin_obukhov_len  = -2.617801e-003
friction_velocity      = 7.700000e-001

/

&adapt_method
opt_wind_horz = "spddir"
flag_use_missing_wind = .true.
opt_met_type          = "wind2d"
obs_date_time         = "1979JUL19_130000"
blend_exp             = 0.100000  
flag_upr_in_sl        = .false.
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flag_twr_local_only   = .false.
flag_mc_adjust        = .false.
met_x_border          = 100000.0
met_y_border          = 100000.0
blend_max_veer        = 180
sl_pwr_exp            = 0.1900000

/

&adapt_mc_adjust
/

&adapt_method
opt_method = "turb"  

/

&adapt_turbulence
sigmav_tavg       = 3600
sigmav_tavgo      = 3600
sigmav_t_lagran_h = 400
turb_param_h      = "sigmav_simthry"
sigmav            = 1.71
sigmav_meas_hgt   = 115
turb_param_z      = "simthry"
sim_kz_c          = 4
sim_kz_trop       = 0.01

/

b. observ.met
METDATASET '1979JUL19_100000'
SFC
'TV TWR'     236.7     4.60
'TV TWR2'     -1.0     8.53
'TV TWR3'     253.3     9.73
'TV TWR4'     253.3     9.90
UPR
'TV TWR'  60    -1.0     8.53
'TV TWR'  120   253.3     9.73
'TV TWR'  200   253.3   9.90

METDATASET '1979JUL19_110000'
SFC
'TV TWR'     246.7     4.93
'TV TWR2'     -1.0     8.62
'TV TWR3'     253.3     9.55
'TV TWR4'     258.3     10.67
UPR
'TV TWR'  60    -1.0     8.62
'TV TWR'  120   253.3     9.55
'TV TWR'  200   258.3     10.67

METDATASET '1979JUL19_120000'
SFC
'TV TWR'     251.7     5.68
'TV TWR2'     -1.0     10.58
'TV TWR3'     256.7     11.18
'TV TWR4'     265.0     11.45
UPR
'TV TWR'  60    -1.0     10.58
'TV TWR'  120   256.7     11.18
'TV TWR'  200   265.0     11.45

METDATASET '1979JUL19_130000'
SFC
'TV TWR'     240.0     5.60
'TV TWR2'     -1.0     9.70
'TV TWR3'     260.0     10.80
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'TV TWR4'     260.0     10.80
UPR
'TV TWR'  60    -1.0     9.70
'TV TWR'  120   260.0     10.80
'TV TWR'  200   260.0     10.80

c. stnloc.met

SFC
'TV TWR'      342.580     6179.610     10
'TV TWR2'     342.580     6179.610     60
'TV TWR3'     342.580     6179.610     120
'TV TWR4'     342.580     6179.610     200
UPR
'TV TWR'      342.580     6179.610

10.Appendix B – the .pyin file for the 60m resolution reconstruction

# File: four_60mres.pyin
#
# Input file for mcmc_app_copenhagen, generated automatically by Julie
#
################################################################################
# Tells python to look for .py files in the current (working) directory.
import os

from mcmc_app.mcmc_drivers import make_target_sample
from mcmc_app.misc         import make_proc_grp
from mcmc_app.seedmaker    import SeedMaker

# Maximum number of iterations
itermax = 5000

# Number of iterations for burn-in (used only for postprocessing
# or convergence monitoring purposes)
burn_in = 200

# Number of independent sequences
num_seqs = 4

# Number of processors per forward model
# ??? Problem: Allow this to be set to not-1, but degrade gracefully
# ??? in serial mode.
num_procs_per_mod = 32

# Number of processors per sequence
# (total number of processors will be equal to num_seqs times this value.
# (note: for mpi job, r.h.s. must be integer because it is parsed by mpi script)
num_procs_per_seq = 1

# Processor group for mpi jobs; can be set to None for non-mpi jobs
#proc_grp = main_driver.make_proc_grp(num_seqs, num_procs_per_seq)
proc_grp = make_proc_grp(num_seqs, num_procs_per_seq)

# Seed generator -----------------------
# Creates different seeds for different chains, even if they are running
# on different processors
seed = 38895
seed_generator = SeedMaker(seed, itermax, num_seqs, proc_grp=proc_grp)

# MCMC algorithm -----------------------

synthetic_data = {
# required input:
'class_name'  : 'LODI_mcmc_et.sampler.ExampleSampler',
# application specific input:
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'step_size_xy' : 1.0,
'step_size_z' : 1.0,
'step_size_q' : 1.0,
# for this example the base state consists of (x,y) with
# that are gaussian with following means and sigma's
'x_mean' : 342580.0,  
'x_sigma' : 1.,
'x_min' : 342577.0, 
'x_max' : 342582.0,
'y_mean' : 6179610.0, 
'y_sigma' : 1.,
'y_min' : 6179607.0, #4704237.0,
'y_max' : 6179612.0, #4705417.0,
'q_mean' : 3.3e+09, 
'q_sigma' : 1.e+07,
'q_min' : 3.28e+09, #0.07779,
'q_max' : 3.32e+09 #0.07781

}

base_sampler_input = { 
# required input: 
'class_name'  : 'LODI_mcmc_et.sampler.ExampleSampler', 
# application specific input: 
'step_size_xy' : 0.1, 
'step_size_q' : 0.1, 
# for this example the base state consists of (x,y) with 
# that are gaussian with following means and sigmas 
'x_mean' : 345580.0, 
'x_sigma' : 10000., 
'x_min' : 340580.0,  
'x_max' : 350580.0,  
'y_mean' : 6179610.0, 
'y_sigma' : 10000., 
'y_min' : 6174610.0,  
'y_max' : 6184610.0,  
'q_mean' : 3.2e+09, 
'q_sigma' : 3.e+09,  
'q_min' : 1.0e+4, 
'q_max' : 1.0e+15 

} 

# Make the target state (synthetic truth) using the base sampler 
# (not needed if not used by log_like_fun_input, below)  
target_sample = make_target_sample(synthetic_data, seed_generator)

class LODINmlTemplate :  
def __init__(self) : 

 
self.template_lines = ( 

'&prob_setup',         
'    title           = " Copenhagen Experiment - IOP10 " ', 
'    tstart_str      = "1979JUL19_103800"', 
'    tstop_str       = "1979JUL19_123800"', 
'    dt_part_str     = "02:00:00"', 
'    nbins     = 1', 
'    nsrc            = 1', 
'    num_met_times   = 3',  
"    met_time_strs = ",

'              "1979JUL19_100000"',
'              "1979JUL19_110000"',
'              "1979JUL19_120000"',

'     dt_dump_str    = "0::0:0:0"', 
'     dt_min         = 0', 
'     dt_fact_adv    = 1', 
'     dt_fact_dif    = 1', 
'     dt_limit       = 3600', 
'     dz_dep         = 20',  
'     met_format     = "arac"',  
'     out_bin_ascii  = .false.', 
'     out_part_ascii = .false.', 
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'     rd_grid        = "gridgen"', 
'     rdm_dist       = "nongauss"', 
'     reflect        = "vertical"', 
'     solver_id      = "rk2"', 
' /', 
'', 
'&thist_param', 
' /', 
'', 
'&src_param', 
'    source_id      = "Source  1"', 
'    max_num_part   = 10000', 
'    species        = "SF6"', 
'    mass_distrib   = "table"', 
' m_bin_fract    = 1.0', 
'    m_bin_diam_max = 0.0', 
'    m_bin_diam_min = 0.0', 
'    nset_dep_vel   = 0.0000000E+00', 
'    geom_time_strs = "1979JUL19_105000"', 
'    geom_type      = 2  ', 
'key_x_pt', #'    mean_x         =    342580.0', 
'key_y_pt', #    mean_y         =    6179610.', 
'    std_x          =    1.000000', 
'    std_y          =    1.000000', 
'    cutoff_dx_min  =    2.500000', 
'    cutoff_dy_min  =    2.500000', 
'    cutoff_dx_max  =    2.500000', 
'    cutoff_dy_max  =    2.500000', 
'    mean_z         =    10.00000', 
'    std_z          =    1.000000', 
'    cutoff_dz_min  =    2.500000', 
'    cutoff_dz_max  =    2.500000', 
'    er_time_strs   = "1979JUL19_105000      1979JUL19_122000"', 
'key_emiss_rates', #    emiss_rates    =    3.200000e+009      0.0000000E+00', 
'    er_units_type   = "mass"', 
'    decay_param     = "none"', 
'    half_life       = 0.0', 
'    lambda          = 0.0', 
'    decay_chain     = .false.', 
'    start_time_str  = "1979JUL19_105000"', 
'    stop_time_str   = "1979JUL19_122000"', 
'    dt_hold_str     = "0::0:0:0"', 
'    source_model    = "neutral"', 
'    src_generation_method = "new"', 
'    src_agl_flg     = .true.', 
' /',  
'',    
'&bin_param',  
'    bin_id         = "Bin  1"', 
'    samp_type      = "average"',  
'    type  = "air"',  
'    orientation    = "xy"', 
'    bin_agl_flg    = .true.',     
'    position       = 10.0',      
'    width          = 20.0',  
'    dt_samp_str    = "0::01:00:00"', 
'    dt_bin_out_str = "0::01:00:00"', 
'    source_list    = "Source  1"', 
'    species_name   = "SF6"',  
' /',  
'',  
'&turb_param',        
'    read_adapt_turb = .true.',  
' /',  
'',    
'&met_param',  
' /  ',  

 '',  
'',  
'',  

)    
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def create_nml(self, state, output_file_name) : 
# Create the LODI nml file, using a template and the new state 
# information. 
file_out = open(output_file_name, 'w') 

 
q=state.sampler_data['q'] 
for line in self.template_lines: 

if line == 'key_x_pt': 
print >>file_out, '   mean_x =', state.sampler_data['x'] 

elif line == 'key_y_pt': 
print >>file_out, '   mean_y =', state.sampler_data['y'] 

elif line == 'key_emiss_rates': 
print >>file_out, '   emiss_rates =', state.sampler_data['q']

else: 
print >>file_out, line 

 
file_out.flush()
os.fsync(file_out.fileno())
file_out.close 

 
return 

 
 

LODI_nml_template = LODINmlTemplate() 
 

# Lines to put in LODI_files.nml file 
LODI_files_dir = os.getcwd() #+ '/../experiment5' #jkl 
 

LODI_files_nml = ( 
 "&grid_name", 

"   num_m_grids = 1", 
"   m_grid_name = '" + LODI_files_dir + "/grid/main_grd_copenhagen.nc'", 
"   c_grid_name = '" + LODI_files_dir + "/grid/conc_grd_copenhagen.nc'", 
"/", 
"", 
"&metfiles", 
"   grid_num = 1", 
"   met_file_name = ",
'             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_100000.nc"',
'             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_110000.nc"',
'             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_120000.nc"',
"/", 
"", 
"&decay_chains_file", 
'   decay_chains_file_name = "decaychains.dat"', 
"/", 
"", 
"", 
"", 

) 
 
 

# Likelihood function -----------------------
# there needs to be one likelihood function for each stage; for this 
# example we have only a single stage 
log_like_fun_1 = { 

# required input: 
'class_name'       : 'LODI_mcmc_et.likefun.LogLikeFunA', 

 
# following is information necessary for parallelization 
'num_seqs'       : num_seqs, 
'num_procs_per_mod' : num_procs_per_mod, 

 
# following is set for random synthetic truth measurements 
'target_sample'   : target_sample, 

 
# following is set for random synthetic truth measurements 
#'measurement_data'   : data, 
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# the iteration at which the likelihood function is actually turned on 
# (for single stage, this should be set to 1; otherwise during staging 
# the likelihood is ignored until the iteration hits the following value) 
'start_iter'      : 1, 

 
# Settings for model_driver 
'LODI_files_nml' : LODI_files_nml,  # Lines to put in LODI_files.nml file 
'LODI_nml_template' : LODI_nml_template, 

'sensors' : [ 
[344629., 6179248., 3600.  ], # Arc 1-22

#                  [344607., 6180387., 3600.  ], # Arc 1-33
[344509., 6180871., 3600.  ], # Arc 1-38

#                  [346559., 6179040., 3600.  ], # Arc 2-23
#                  [346412., 6181080., 3600.  ], # Arc 2-33
#           [345961., 6181562., 3600.  ], # Arc 2-36

[347873., 6178952., 3600.  ], # Arc 3-23
[348468., 6181563., 3600.  ], # Arc 3-32

#                  [347792., 6182526., 3600.  ], # Arc 3-36
[344629., 6179248., 7200.  ], # Arc 1-22

#                  [344607., 6180387., 7200.  ], # Arc 1-33
[344509., 6180871., 7200.  ], # Arc 1-38

#                  [346559., 6179040., 7200.  ], # Arc 2-23
#                 [346412., 6181080., 7200.  ], # Arc 2-33
#                  [345961., 6181562., 7200.  ], # Arc 2-36

[347873., 6178952., 7200.  ], # Arc 3-23
[348468., 6181563., 7200.  ] # Arc 3-32

#                  [347792., 6182526., 7200.  ]  # Arc 3-36
], # Arc 3-36

 
# application specific input (e.g. likelihood function parameters)
'param_a' : 1.0,
'param_b' : 0.0,
'lowerbound' : +1,
'upperbound' : +4,
'sigma_rel' : 0.2,
'option' : 1,

}

log_like_fun_input = [ log_like_fun_1 ]

# Datadumps, plots, monitoring --------------------

state_out = {
'class_name'    : 'LODI_mcmc_et.dumpers.DumpTextC',

'burn_in'       : burn_in,
'starting_iter' : 0,
'single_file'   : 1,   # Dump all output for a sequence to one file.

}
states_out = [state_out]

# Restart -----------------------

# Settings to write out restart files.
restart_write = {

'class_name'    : 'mcmc_app.outputs.RestartOutput',
'starting_iter' : 1000,

}

# Settings to read restart files.
restart_read = {

# If following is present and is not 0 or None, use initial state from
# restart file
'use_restart_new'      : 1,
'restart_iter_new'     : 4427,       # Iteration for reading restart

}


