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Abstract

Crop yield forecasts provide useful information to a range of users. Yields for 

several crops in California are currently forecast based on field surveys and farmer 

interviews, while for many crops official forecasts do not exist. As broad-scale crop 

yields are largely dependent on weather, measurements from existing meteorological 

stations have the potential to provide a reliable, timely, and cost-effective means to 

anticipate crop yields. We developed weather-based models of state-wide yields for 12 

major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, 

oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy 

using cross-validation over the 1980-2003 period. Many crops were forecast with high 

accuracy, as judged by the percent of yield variation explained by the forecast, the 

number of yields with correctly predicted direction of yield change, or the number of 

yields with correctly predicted extreme yields. The most successfully modeled crop was 

almonds, with 81% of yield variance captured by the forecast. Predictions for most crops 

relied on weather measurements well before harvest time, allowing for lead times that 

were longer than existing procedures in many cases. 
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Introduction

Forecasts of crop yields can provide important information about commodity 

markets, and are frequently used by growers, industry, and governments to make 

decisions (Vogel and Bange, 1999). Growers may use forecasts, for instance, to plan for 

their harvest, storage, and distribution strategies. California growers used the 2004 

forecast of a large rice harvest to arrange greater storage capacity, and may be using the 

smaller 2005 almond forecast to allocate limited quotas among preferred customers (D. 

Flohr, CASS, pers comm). Similarly, industries involved in the handling and trading of 

commodities often use information on future harvests to make various logistical decisions 

(Hammer et al., 2001).  

Each year, the California Agriculture Statistics Service (CASS) estimates the size 

of the coming harvest for various major California crops, including almonds, grapes, 

olives, oranges, and walnuts (NASS, 2005a; NASS, 2005b). These estimates are 

categorized as either subjective or objective. The former are based on phone interviews 

with hundreds of farmers to assess their opinion of crop development, while the latter are 

based on field samples taken from hundreds of fields. Forecasts are generally made 

public one to three months before the end of harvest (see the California Objective 

Measurement Report, http://www.nass.usda.gov/ca/rpts/om/indexom.htm, for more 

information).

It is well known that one of the main factors causing yields to change from year to 

year is climate variability – no two growing seasons experience exactly the same weather. 

Indeed, grower expectations of crop yields are likely based at least partially on subjective 

weather observations and perceived relationships between weather and yields. To our 
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knowledge, however, there currently is not any objective, quantitative use of weather 

measurements in existing yield forecast procedures. Such an approach would be attractive 

because yields could potentially be forecast with lower costs, higher accuracies, and/or 

longer lead times. 

Building Forecast Models

To test the ability of weather measurements to forecast crop yields prior to 

harvest, we studied the statistical relationships between historical weather and crop yield 

records. We selected 12 crops (wine grapes, lettuce, almonds, strawberries, table grapes, 

hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios) that are among the 

most valuable crops in California (Table 1; California Agricultural Statistics Service, 

2004a), and obtained state yield data for 1980-2003 from the California County 

Agricultural Commissioners (California Agricultural Statistics Service, 2004b). Since 

several crops have exhibited significant positive yield trends since 1980 owing to 

management and crop cultivar changes, we removed a linear trend from each crop to 

produce a time series of yield anomalies, or departures from expected yields. A positive 

anomaly indicates yields higher than expected based on time trend, while a negative 

anomaly indicates below- expected yields. 

Daily weather records for the same time period were obtained for 382 stations 

throughout California from the California Climate Change Center at the Scripps 

Institution of Oceanography (M. Tyree, pers comm.). The average daily minimum and 

maximum temperature and precipitation for each month in each county was then 

computed, resulting in a monthly time series of 3 variables for 24 years. For each crop, a 
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state-wide monthly time series for each meteorological variable was then calculated by 

weighting each county by the relative area of the crop in that county in 2003 (for more 

details, see Lobell et al., in review). 

The weather and yield data were then combined in linear regression models to test 

how well yield anomalies could be predicted before harvest based on monthly weather 

measurements. Between two and four weather variables were selected for each crop 

based on a combination of objective (good model accuracy) and subjective 

(physiologically reasonable) criteria. Since temperature and precipitation can have a non-

linear effect on yields, with yields maximized at intermediate values, we included the 

squared values of the weather variables in the regression model along with the variables 

themselves.  The selected variables and months for each crop are given in Table 2. For 

crops such as pistachios known to exhibit alternate bearing, with years of high 

reproductive growth (high yields) alternating with years of high vegetative growth (low 

yields), yield anomalies from previous years were also included in the model. The total 

number of predictors, including the weather variables, squared variables, and previous 

years’ yields, ranged from four to eight. (The model equations are omitted for brevity, but 

can be obtained by contacting the author.)

An important step when building statistical models is to independently test model 

predictions, since tests using the same data used to calibrate the model will tend to be 

overly optimistic (Hastie et al., 2001). The straightforward approach of reserving part of 

the data during model calibration, however, is problematic when data quantity is limited. 

An alternative approach that we employ here is leave-one-out cross-validation, whereby a 

single year is “left out” of the calibration step and then subsequently compared to model 

Comment [KNC1]: I think 
“monotonic” is too technical a term, even 
though we define its meaning in the next 
phrase. 
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prediction in that year. This comparison is done for each year, in this case resulting in 24 

comparisons between model predictions and observations. 

Forecast Accuracy 

The results of the cross-validation analysis suggest that yields of some crops can 

be forecast with fairly high accuracy based on objective weather measurements (Figure 1 

and Table 3). For many crops, close to or greater than 50% of the variability in yield 

anomalies was captured by the model forecasts, meaning that the selected weather 

variables explained over half of the variations observed in crop yields. Interestingly, the 

models did fairly well at forecasting extremely low yields, such as almonds in 1995, 

oranges in 1991, and tomatoes and cotton in 1998 (Figure 1). Almonds were particularly 

well modeled, with over 80% of variance captured by the model. 

For a few crops, some of the power of the models came from knowing the 

previous year’s yield (Table 3). For instance, including weather information did not 

improve the pistachio model, where the biological pattern of alternate bearing seemed to 

dominate effects on yield more than any weather signal. For all other crops, however, 

most or all of the predictive power came from weather variables. 

As an alternative measure of forecast skill, we considered the fraction of years in 

which the model forecast was closer to the yield anomaly than zero (Table 3). That is, we 

examined the frequency with which the model correctly predicted whether the yield 

would be above or below the trend. For a random forecast, this statistic has a distribution 

whose mean is 0.5 and whose 90th percentile is 0.625 for a 24-year record (15 out of 24 

years). Thus, six of 12 crops had a forecast with skill greater than a random forecast using 

Comment [KNC2]: 
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this criterion and significance level, with three others (wine grapes, table grapes, and 

lettuce) slightly below this value. 

Another criterion is the ability of forecasts to correctly predict unusually high or 

low yields, which may be of particular interest to some forecast users. For each year, both 

the forecast and the actual yield were classified into one of 4 classes: below 1 standard 

deviation (SD) from zero, between -1 SD and zero, between zero and 1 SD, and above 1 

SD from zero. The first and fourth of these classes represent unusually low or high yields, 

respectively, while the middle two represent more moderately negative or positive years. 

We then computed the number of years when the forecast correctly predicted the yield 

class, was off by one class (in either direction), two classes, or three. 

Most crops did not exhibit any years when the forecast was off by more than one 

class. There were some exceptions, for example lettuce yields in 1981 were forecast to be 

slightly negative but were actually very high (above 1 SD), and the reverse was true for 

hay in 1995. Overall, however, it appears that the forecasts were usually no more than 1 

class off, meaning that most of the cases above where the forecast predicted an anomaly 

in the wrong direction corresponded to years with moderate yields, so the forecast was in 

fact not far from the observed yield. None of the crops exhibited any years with a forecast 

error of three classes.

To test the significance of these class accuracies, we performed 1000 simulations 

using two normally distributed random variables of length 24 years. The average percent 

of years with an error of 0, 1, 2, or 3 classes was 28%, 45%, 22%, and 5%, respectively. 

Only 10% of the simulations had greater than 40% of years (10 out of 24) classified 

correctly by chance, while all crops except strawberries, pistachios, and walnuts met this 

Comment [KNC4]: I think acronyms 
should be in caps, no?
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criteria. This indicates that the forecast accuracies for most of the crops were statistically 

significant by this measure. 

Forecast Timing

Forecast timing can be as important as its accuracy. A “forecast” made after 

harvest, for example, would not be very valuable. As shown in Table 3, most of the 

models are capable of providing forecasts at least several months before the end of 

harvest, giving growers or others an opportunity to use forecast information in making 

their decisions. For instance, the models for almonds and walnuts relied mainly on winter 

weather, while harvest does not begin until late summer. 

A comparison between the months when these models can forecast yields with the 

months that currently available crop yield forecasts are released by the USDA is shown in 

Table 3. The two approaches were similar for wine grapes, table grapes and cotton, and 

existing forecasts were available four months earlier for processing tomatoes than our 

models provided. However, our models offer significant timing advantages over existing 

forecasts for almonds (3-4 months earlier than current forecasts), hay (2 months earlier), 

strawberries (5 months earlier), and walnuts (7 months earlier). 

Potential Improvements

The current analysis was limited to only a dozen of the many crops grown in 

California, and considered only state-wide yields. For several crops we have also chosen 

to aggregate over different sub-crop groupings, such as in combining varieties of hay and 

lumping navel and Valencia oranges. In addition, we have utilized only monthly averages 



9

of three meteorological variables (number of frost days per month was also considered, 

but did not substantially improve any of the models). 

These decisions reflect an explicit desire to test forecasts of state yields for major 

crops using commonly reported climatic data. However, data for many additional crops 

are currently available at both state and county levels, as are additional weather 

measurements at time scales from hourly to monthly. Thus, an open question is how well 

other crops can be modeled and whether different scales of analysis and meteorological 

indices would substantially improve forecast accuracies. Additional information such as 

remote sensing data might also aid predictions.

It is also possible that different model formulations could improve results. For 

example, in certain situations process-based models that rely on mechanistic 

understanding of crop growth and yield may out-perform statistical models such as the 

ones developed here, which are derived from observed relationships without explaining 

the mechanism causing the relationship. Alternative statistical approaches to the multiple 

linear regression approach used here may also improve accuracies. (For example, we 

tested the use of regression trees, which did not perform as well.) Whether these more 

sophisticated approaches offer worthwhile improvements can only be tested on a case-by-

case basis, using actual observations and well-defined criteria for an ideal forecast.

Conclusions

The models developed in this study demonstrate promise for forecasting statewide 

crop yields based on weather measurements. As the significance level of the models 

depended on the specified performance criteria, it is clear that the eventual utility of such 

Comment [KNC5]: “Ancillary” 
sounded too technical
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forecasts will depend on the acceptable types and magnitude of errors for a particular 

application. The potential to forecast yields also exhibits an obvious dependence on crop 

type. In general, almonds exhibited significantly greater forecast accuracies than the other 

crops considered here. As California almonds represent the most valuable export crop in 

the state and comprise over 80% of global almond production (Almond Board of 

California, 2004), such forecasts could be of great relevance to almond trade and 

management decisions. For example, an almond grower could have used data on January 

rainfall and February nighttime temperatures to correctly predict the low yield in early 

March of 1995 and adjust cultural or marketing practices accordingly, well before the 

forecasts from USDA become available in May and June in advance of fall harvests. 

While field-based surveys are likely to be more accurate than weather-based 

forecasts, it is important to consider the tradeoff between forecast accuracy, cost, and 

timing. The low cost and long lead-times possible with weather-based models would 

likely provide a useful complement to existing approaches for crops that are currently 

surveyed. For crops that are not currently forecast by USDA, such as avocados, these 

models present an opportunity to develop forecasts with minimal cost by using existing 

weather measurements.
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Figure Legends

Figure 1. Observed (•) and forecasted (x) yields for 1980-2003. Forecasts are derived for 

each year using a model fit to data in all other years. Coefficient of determination (R2) 

between observed and forecasted yields is shown for each crop. 

Table 1. Economic value and national importance of production of crops studied. 

Crop 2003 Value ($ Millions) a % of U.S. Production

Grapes, Wine 1828 96%

Lettuce 1634 88%

Almonds 1506 99%

Strawberries 973 83%

Grapes, Table 953 91%

Hay 950 12%

Oranges 949 22%

Cotton 774 10%

Tomatoes, Processing 571 95%

Walnuts 434 99%

Avocados 402 95%

Pistachios 173 99%
a Values are taken from CASS (2004b), which are based on free-on-board (FOB) prices 
that include value added items such as packing and inspections.



14

Table 2. Months and weather variables used for yield forecasts for each crop evaluated in this study.

Year prior to harvest Year of harvest

Crop Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept

Grapes, wine ppt tmn ppt

Lettuce tmx tmx tmx

Almonds ppt tmn

Strawberries all

Grapes, table ppt ppt tmn tmn

Hay ppt ppt

Oranges tmn ppt

Cotton tmx tmn

Tomatoes tmx tmx tmn

Walnuts tmx ppt

Avocados tmx ppt tmn
tmn = average minimum temperature; tmx = average maximum temperature; ppt = total rainfall; all = all three variables
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Table 3. Summary of forecast accuracy and timing for crops evaluated in this study.

Crop R2cv
RMS 
(%)

R2 using only 
previous yields a

Fraction of years 
with forecast in 
correct direction

Last month 
used in 
forecast

Month of USDA 
forecastb Peak harvest period

# months between 
forecast and end of 

harvest

Grapes, Wine 0.59 6.4 * 0.61 June July-August August - October 4

Lettuce 0.44 4 * 0.61 April continuous --

Almonds 0.81 7.8 0.17 0.73 February May (subjective); June 
(objective) August-October 8

Strawberries 0.49 4.6 * 0.48 previous 
November April Continuous --

Grapes, Table 0.62 6.7 * 0.61 July July-August July-September 4

Hay 0.44 3.9 0.01 0.55 June August March-November 5

Oranges 0.69 8.8 0.22 0.68 May Navel: September; 
Valencia: March November-May, May-Octc 6

Cotton 0.56 6.3 * 0.54 June June-August October-December 6

Tomatoes, 
Processing 0.49 3.1 * 0.67 September May & September June-November 2

Walnuts 0.43 7.3 0.06 0.57 February September September-November 9

Avocados 0.57 16.7 * 0.7 May Continuous --

Pistachios 0.35 27.5 0.42 0.7 n/a August September-November --

R2cv = cross-validated R2 , the proportion of yield variance explained by the weather predictor variables
RMS = root mean squared difference between forecast and observed yield, expressed as a percentage of average yield for 2000-2003
a Only crops that exhibited alternate bearing were modeled with previous years’ yields.
b Available in California Crop Production Reports (at http://www.nass.usda.gov/ca/)
b The first period refers to Navel orange harvest, and the second to Valencia oranges.
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Figure 1 


