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RADIATION DIFFUSION: AN OVERVIEW OF PHYSICAL AND 

NUMERICAL CONCEPTS
1
 

FRANK GRAZIANI 

Lawrence Livermore National Laboratory 

Livermore, CA, 94550, USA 

An overview of the physical and mathematical foundations of radiation transport is 
given. Emphasis is placed on how the diffusion approximation and its transport 
corrections arise. An overview of the numerical handling of radiation diffusion coupled 
to matter is also given. Discussions center on partial temperature and grey methods with 
comments concerning fully implicit methods. In addition finite difference, finite element 
and Pert representations of the div-grad operator is also discussed 

1.   The “So What?” Question: Why Radiation Transport Matters 

Photons, be they in the radio, optical. X-ray or gamma-ray portion of the 
radiation spectrum leave their mark across the fabric of the universe in a 
multitude of ways. At the “smallest” astronomical scales, radiation transport is 
crucial to understanding the atmospheres of planets. At the largest scales the 
universe is bathed in an afterglow of its birth called the cosmic background 
radiation. As is well known, whole fields in astronomy are devoted to the study 
of different portions of the electromagnetic spectrum.  

Photons can act as a signature of some astronomical event. In addition, 
because of the density and temperatures encountered in many astrophysical 
applications, photons can effect the movement of a gas or fluid and the 
movement of the gas or fluid can in turn affect the behavior of the photons. 
Radiation pressure, changes is spectral shape due to moving fluids, and PdV 
work done on the radiation field are all important examples of the interaction of 
matter and photons.  

With the advent of large scale computing, the complex system of equations 
involving radiation transport and fluid dynamics could be solved. Currently, with 
the introduction of parallel computing it is now possible to model 3D 
astrophysical phenomena such as supernovae with unprecedented accuracy and 
with the inclusion of complex physics. In all of these simulations radiation 
transport remains an exciting but challenging obstacle. In multi-physics codes it 
tends to dominate CPU time. This is easy to see when one considers that in 3D 
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dynamic applications the solution of the photon transport problem involves 
solving a seven dimensional Boltzmann equation1. This equation is in general 
highly non-linear and non-local. In addition, its coupling to the fluid modifies 
both the fluid equations and the usual hydrodynamic equations. This interaction 
between radiation and fluids defines the field of radiation hydrodynamics. It is a 
vast field with excellent references by Mihalas and Mihalas2, Pomraning3, 
Bowers and Wilson4, and Castor5. Besides being very good guides to radiation 
hydrodynamics they are excellent sources for the field of radiation transport in 
general. 

The challenges of solving the transport problem have led researchers to 
solving a simpler problem. In many applications the physics allows one to solve 
the diffusion approximation to the full transport problem. By going to the 
diffusion limit of the transport equation, the numbers of degrees of freedom in 
3D are reduced from seven to five for multi-group and seven to four for 
Planckian. This approximation is by far the most used approximation to the 
transport equation. In fact, it makes the radiation problem so tractable that the 
diffusion approximation is used in regimes where only a transport description is 
valid. The use of transport corrected diffusion such as flux limiters helps extend 
the applicability of diffusion. The benefit is of course the cheaper cost of 
diffusion over transport but at the price of reduced accuracy.  

This paper is devoted to discussing the general framework of radiation 
transport and in particular how diffusion arises from it. In addition a review of 
the numerical treatments of the diffusion operator and how the coupled radiation 
material equations are handled is given. Due to the lack of space, the subject of 
radiation hydrodynamics is not given. Interested readers are urged to read the 
above listed resources. However, the work presented here should always be 
thought of in the larger context of a multi-physics code. In addition, subjects not 
covered here include opacities and scattering. Detailed discussions of these 
topics can also be found in the above listed references.      

 

2.   Review of Radiation Transport Concepts 

2.1.   Classical and Quantum Properties of the Radiation Field 

 
The classical manifestation of the radiation field is based on the wave 

properties of light. A classical description of radiation is consistent with the 
properties of polarization, diffraction, and refraction. Unfortunately, the fact that 
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a classical radiator predicts a Rayleigh-Jeans Law for the emission spectra, in 
violation of the experimental data, means that the wave description of light is not 
complete. As is well known, the quantum mechanical description of radiation 
describes a wealth of observed phenomena. The photoelectric effect, where 
photons which are impinging on a metal surface release electrons above a certain 
threshold frequency is a well known example that earned Einstein the Nobel 
Prize. Compton scattering, where the frequency of hard X-ray photons is shifted 
downwards due to the incoming photons scattering off of stationary electrons 
and transferring some of their energy and momentum to the electrons, is another 
example. The observed emission spectra from atoms are a classic example where 
the quantum mechanical description of radiation explained observations that 
were previously unexplained. The quantum mechanical treatment of photons and 
the description of the blackbody spectrum is a famous and singular success that 
heralded the beginning of a new age. Finally, the beauty behind the quantum 
mechanical description of radiation culminated with the unification, by Dirac, of 
the particle and wave descriptions.  

 
 

2.1.1.   The Boltzmann Description of Radiative Transfer 

 
The standard description of radiative transfer rests on describing the 

radiation field as a photon gas moving with the speed of light and interacting 
with a medium via absorption, emission, and scattering. For simplicity, the 
effects of material motion are ignored here as are the effects of refraction, 
diffraction, and dispersion.  The radiation field is assumed to consist of point 
particles (photons). Associated with each photon is a frequency ν , energy νh , 
and momentum ch /ν . At any time t, six variables in 3D are required to specify 
the position of the photon in phase space. There are three position variables and 
three momentum variables. The three momentum variables are written in terms 
of the speed of light c and the photon direction Ω . Using the gas analogy, a 
photon distribution function ),,( trf Ων  is defined such that          

 ΩΩ= 23),,( rddtrfdn ν  (1)  

is the number of photons at time t and position r, contained in the differential 

element rd
3 , with frequency ν  , traveling in the direction Ω subtending a 

solid angle element Ω2
d . In the literature, the photon distribution function is 
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rarely used. Instead, the specific intensity or angular flux is the quantity most 
used and the object referred to in this paper when the radiation field is 
mentioned. It is defined by 

 ),,(),,( trfchtrI Ω=Ω νν ν  (2)    

In general, ),,(or  ),,( trftrI ΩΩ νν  should have an additional index 
describing the particular polarization state. There are in general four components 
of the specific intensity, called Stokes parameters, necessary to describe a 
polarized beam of radiation. One of these components is the radiation specific 
intensity defined above. The other three components come from the plane of 
polarization and the ellipticity of the beam. In this paper, it is assumed that the 
radiation is either unpolarized or the polarization states have been averaged over. 
For details on the radiative transfer equation for polarized radiation please 
consult either Chandrasekhar6 or Pomraning3.   

Using the specific intensity as the fundamental quantity of interest, a number 
of physically relevant objects can be defined. 
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The quantities u, F, M, and P are respectively the energy density, radiative 

flux, momentum density, and pressure tensor of the radiation field.  
In writing down the equation of radiative transfer, a pedagogic approach is 

usually taken. By using the analogy of a classical gas, a semi-classical equation 
can be written down based solely on conservation of photons. Terms due to sink 
and source terms and scattering are included in a semi-phenomenological 
fashion.  
 



 5 

 

��

�
��

�
′

Ω
+ΩΩ′•Ω→Ω′−

��

�
��

� Ω
+ΩΩ′•Ω→

′
Ω′+

Ω−=Ω∇•Ω+
∂

Ω∂

� �

� �

3

2

3

2

2
),,(1),,(),(

2
),,(1),,(),(

),,(),,(
),,(1

ν
ννσν

ν
ννσ

ν

ν
ν

σ

ν
ν

ν
ν

νννν
ν

h

trIc
trIdd

h

trIc
trIdd

trIjtrI
t

trI

c

S

S

 (4)      

 
The right hand side of equation [4], represents the interaction of the radiation 
field with matter through three basic mechanisms; (1) emission (2) absorption 
(3) scattering.  The quantity νj represents the emission of photons from the 
material and is called the emissivity.  The quantity νσ is the absorption 
coefficient and has dimensions 1/cm. It is related to the opacity νκ and the 
density ρ  by the simple relation ρκσ νν = . The quantity Sσ is the scattering 
kernel. Typically, it will represent the process of Compton scattering3. For 
simplicity, In the rest of this paper scattering is ignored. 

The radiative transfer equation is semi-classical in nature. In the kinetic 
equation, the photons are treated like any other gas. The quantum mechanical 
effects come through the absorption, emission and scattering terms. Each of 
these three processes describes at a micro-physical level the quantum mechanical 
interaction of matter and radiation. In the next section, a simple example of the 
micro-physical origins of the emission and absorption mechanisms will be given 
along with consequences of the matter field being in thermodynamic equilibrium. 
 

2.1.2.   The Einstein Coefficients and  the Planck Distribution 

In this section, a derivation of the Planck distribution will be given. The 
derivation presented here (based on the book by Pomraning3) elucidates the 
nature of local thermodynamic equilibrium (LTE) and non-LTE (NLTE) and 
yields insight into the sink and source terms of the radiative transfer equation. 
Consider an atom with a number of bound states. Consider two levels with 
energies En and Em and statistical weights gn and gm . The probability per time 
that an atom in state m, exposed to radiation of frequencyν , will absorb a 
photon from the radiation field is given by. 
 

 Ω= 2)( dIBP nmmnmn ν  (5) 
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 mnnm EEh −=ν  (6) 

  
Bmn is one of the Einstein coefficients. It is a constant of proportionality 
representing the transition rate at which the presence of the radiation field 
induces an upward transition in energy. )( nmI ν  is the specific intensity of the 
radiation field which we will define in a moment and Ω2

d  is the solid angle 
subtended by the photon. Besides being absorbed, the atom can also emit a 
photon. The probability per time that an atom in state n will emit a photon of 
frequency ν is given by. 

 [ ] Ω+= 2)( dIBAP nmnmnmnm ν  (7)   

The term proportional to Anm is the last Einstein coefficient. It represents the 
transition rate at which the atom undergoes spontaneous emission. That is, there 
is a finite probability that an atom in a state n will emit a photon and undergo a 
downward transition in energy in the absence of a radiation field. The second 
term proportional to Bnm represents the effect of stimulated emission. It is the 
transition rate at which the radiation field induces an atom to undergo a 
downward transition in energy. That is, the presence of a radiation field itself 
will enhance the emission process. This stimulated emission is a consequence of 
the quantum statistics obeyed by bosons. The A and B coefficients are related. 
Given the Hamiltonian of an atom in a radiation field, time dependent 
perturbation theory can be used to compute the transition rates for absorption 
and emission. The fundamental relationship can be derived, 

 ( ) 23 // chBA nmnmnm ν=  (8) 

At this point in the discussion, nothing has been assumed about the 
absorption and emission processes. The arguments are completely general and 
are applicable to both systems in and out of thermodynamic equilibrium. If 
however, thermodynamic equilibrium is assumed, then additional results 
regarding the Einstein coefficients and the associated radiation field can be 
derived.  

In complete thermodynamic equilibrium, the principle of detailed balance 
holds. That is, there exists a detailed balance between all absorption and 
emission processes. Mathematically, this means the probability for emission 
exactly equals the probability for absorption.  
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 [ ] )()( nmmnmnmnmnmn IBNIBAN νν =+  (9) 

Nn refers to the number density of atoms in state n.  Solving for the radiation 
field yields 
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Since complete thermodynamic equilibrium has been assumed, the populations 
are distributed according to the Boltzmann distribution 
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Therefore, the Planck distribution is obtained 
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2.1.3.   Local Thermodynamic Equilibrium (LTE) and Kirchoff’s law 

 
The simple example above proves the point that solving the radiative 

transfer equation when the matter emits, absorbs, and scatters radiation is 
complex. This is because, in general, detailed knowledge of the atomic 
populations and ionization states making up the material must be known if the 
absorptivities and emissivities are to be calculated. The concept of LTE is a 
simplifying assumption of the matter that greatly reduces the complexity of 
trying to solve the radiative transfer problem when radiation-matter interactions 
are important.  

The essential point in establishing LTE in any given material is that the 
properties of the matter are dominated by atomic collisions which establish 
thermodynamic equilibrium locally at a space-time point (r,t) and the radiation 
field does not destroy this equilibrium. Therefore, the main difference between 
complete thermodynamic equilibrium and LTE is that LTE does not require the 
radiation field to be Planckian. The implications are that at a given space-time 
point, only the atomic composition and two thermodynamic quantities (density 
and temperature) need be specified.  The LTE assumption of course assumes 
very specific features of the states of the atoms and molecules making up the 
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material. The first is kinetic equilibrium, that is, the electron and ion 
distributions obey a Maxwellian. The second feature is excitation equilibrium, 
that is, the population density of the excited states of every species must obey a 
Boltzmann distribution. Third, ionization equilibrium, that is, the particle 
densities for neutrals, electrons, and ions obey a Boltzmann like distribution 
involving ionization potentials. This is the so-called Saha equation8. Fourth is the 
Kirchoff-Planck relation. This is an amazing relation in that it reduces the 
emissivity to a product of the absorption coefficient and a Planck function whose 
temperature is characteristic of the local material temperature. Simply put, 

)(TBj ννν σ= . Therefore, the material-radiation interaction reduces to a 
study of the absorption mechanisms in a plasma where kinetic, excitation, and 
ionization equilibrium holds.  

When does LTE hold? In order for atomic collisions to dominate over 
radiative processes, it is clear the plasma must be dense. Griem7, has constructed 
a criterion based on the ratio of radiative to collisional rates in a hydrogen-like 
atom where the plasma is optically thin enough that photons once emitted are not 
re-absorbed. The condition for LTE of atomic level n is 
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The effective ionization is denoted by *Z  . Griem’s criterion clearly shows that 
for high density and/or hot plasmas LTE is a good approximation. In this paper, 
LTE will always be assumed unless otherwise noted.  

So far the discussion has focused on the radiation field. In most applications 
with optically thick matter, the radiation is absorbed, remitted and the material 
temperature changes. Using the assumption of LTE, every piece of matter acts 
like a blackbody radiator emitting photons with a Planckian spectrum 
characteristic of the temperature of the material. Therefore, ignoring scattering, 
using Kirchoff’s law for the emissivity and writing an energy balance relation for 
the material we have, 
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In writing down the latter equation it is assumed that the opacities are 
independent of angle and all conduction effects are negligible. 

2.1.4.   The Equilibrium Radiation Field 

 
The isotropic and homogeneous distribution obeyed by a photon gas in 

complete thermodynamic equilibrium at temperature T, is the Planck function 
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This should not be confused with LTE. The Planck function can be derived in a 
variety of ways. We have seen one such method in section 2.1.2. Physically, it is 
a consequence of the photons undergoing three basic processes (1) absorption 
(2) stimulated emission (3) spontaneous emission and the fact that the photons 
are bosons. The isotropic nature of the equilibrium radiation field means that the 
energy density, radiative flux, momentum flux, and pressure tensor quantities can 
be easily evaluated. Substituting equation into equation yields 
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As expected for an isotropic gas, the radiative flux and momentum density 

are zero and the pressure tensor is diagonal. The concept of a temperature for the 
photon gas is uniquely defined here. That is, for an equilibrium distribution of 
photons, the temperature is defined by the Planck distribution. One could think 
of the relationship between energy density and temperature as a defining 
relation. However, for non-Planckian distributions this is not true. Several 
definitions of temperature are encountered in multi-group diffusion and 
transport8. The above relations for energy density and pressure give a strong 
indication of the power of the radiation field to move matter. At T=1 keV, the 
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pressure exerted by the photons on matter is 45.7 Mbar. In addition, this pressure 
rapidly rises with temperature. This fact means that for high temperatures, the 
radiation field can make a substantial or dominant contribution to the overall 
pressure in a fluid.   
 

2.1.5.   Assumptions of a Kinetic Theory and the Micro-physical 

Foundations of Radiative Transfer 

 
The specific form of the radiative transfer equation, whose numerical 

solution is the focus of this paper, rests on a number of assumptions. The first set 
of these assumptions is not inherent in the kinetic theory of radiative transfer but 
rather a simplification. As mentioned previously, polarization effects are 
ignored. In addition, refraction and dispersion effects are also ignored. A 
radiative transfer equation incorporating these effects can be readily constructed 
(Pomraning3) but for simplicity they are ignored in this paper. The second class 
of assumptions is inherent in the semi-classical kinetic approach adopted here. 
Since photons are treated classically, their wave behavior is ignored. Therefore, 
the possibility of interference between different photons is ignored. Hence the 
spread of the photon wave packet is assumed small on the resolution we are 
interested in. Since the photons are treated like a classical gas, other quantum 
phenomena such as photon number fluctuation are ignored. Finally, all collision, 
absorption, and emission processes occur instanteously.      

The fundamental description of photons and their interaction with matter is 
based on quantum electrodynamics (QED). Is it possible to arrive at a fully self-
consistent description of radiative transfer from a fundamental description? The 
answer is yes. Although a detailed description of the derivation would take us to 
far a field, suffice it to say that a number of authors have derived kinetic 
equations for the photons starting with the Hamiltonian of QED (Gelinas and 
Ott9, Cannon10, Degl`Innocenti11, Graziani12). An example of the procedure 
involves using either the density matrix formalism or the Heisenberg equations 
of motion to construct dynamic equations for the number operators of the plasma 
and photon degrees of freedom. A quantum mechanical distribution function, 
similar to the Wigner distribution can be constructed from products of photon 
operators. The Wigner distribution is an operator that is a quantum mechanical 
generalization of the specific intensity. The quantum radiative transfer equation 
comes from the dynamic evolution of this Wigner function. The plasma degrees 
of freedom enter naturally into the quantum radiative transfer equation because 
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of the interaction terms present in the QED Hamiltonian. The classical specific 
intensity is calculated as the quantum average of the Wigner function. Of course, 
the quantum radiative transfer equation is more general as it allows one to 
compute fluctuations of the specific intensity operator. Classically, these 
fluctuations are negligible. Examples of where such an approach has proved 
useful are in deriving radiative transfer equations with polarization from first 
principles, quantum optics and NLTE plasmas.    

 

3.   The Diffusion Approximation 

The radiative transfer equation [4], being in general a six dimensional non-
linear integro-differential equation, is not conducive to closed form solutions. In 
fact it is a current challenge in the astrophysics, atmospheric physics, high 
energy density physics and nuclear engineering communities to solve it 
numerically. Therefore, borrowing a page from the kinetic theory community, a 
method commonly used to simplify the radiative transfer equation is to construct 
moments of the equation. The first type of moments that can be constructed of 
the specific intensity are arrived at by multiplying equation [4] by various 
powers of Ω , and integrating both sides of the equation over all solid angle. 
Defining, 
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These quantities represent the zero, first and second order moments of the 
specific intensity. Physically, they are the energy density, flux and pressure 
tensor per frequency. We will refer to νε  as the spectrum. Using these 
definitions, the radiative transfer equation can be written as a set of coupled 
partial differential equations 
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This set of moment equations exhibit the classic closure problem. That is, zero 
order moments are coupled to first order moments; first order moments are 
coupled to second order moments, ad infinitum. The central question in all 
approximations to the radiative transfer equation is coming up with a suitable 
closure scheme. Three related topics are examined here; variable Eddington 
factors, diffusion, and the telegraphers equation. 
 

3.1.   Variable Eddington Factors 

 
Variable Eddington factors is less a closure scheme than a way of recasting 

the coupled moment equations. Define a tensor quantity, called the Eddington 
factor, by 
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Physically, this quantity represents the mean of the tensor ΩΩ  over all 
directions weighted by the specific intensity. Substituting equation [20] into 
equation [19], yields 
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Although the above set of equations is seemingly closed, it is in fact not due 
to the presence of the Eddington factor. However, by writing the coupled 
moment equations is this fashion, the Eddington factor provides a degree of 
freedom to characterize the radiation field. For example, it is possible to solve a 
transport problem every 10 or 20 cycles or so and construct the Eddington 
factor, This Eddington factor would then be used in the solution of the coupled 
moment equations and would be updated when the transport solve was 
performed. This is essentially what is done in ZEUS-2D13.  
 

3.2.   Multi-Group Diffusion 

 
For an isotropic radiation field, the Eddington factor simplifies considerably 

to 
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If it is assumed that interactions will matter dominate the flow, that is,,   
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Then the flux equation becomes simply a Fick’s type law ν
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and the energy density equation becomes the familiar diffusion equation  
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This equation along with the material temperature energy balance equation 
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form the basis for the multi-group diffusion equations. It should be remarked that 
the above analysis is equivalent to assuming that the specific intensity is nearly 
isotropic 
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To see how this arises physically, assume LTE and ignore scattering and 
rearrange the terms in the radiative transfer equation such that 
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Perform an expansion to first order in  νσ/1  to obtain 
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Note that an expansion in νσ/1  is equivalent to an expansion inΩ . 
Constructing the flux directly from equation [28], yields Fick’s Law! That is 
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Therefore, Fick’s Law arises directly from an inverse mean free path expansion 
or equivalently, an expansion in isotropy. 

The multi-group diffusion approximation works well where the radiation 
field is nearly isotropic yet the medium is transparent enough that photon mean 
free paths are long and therefore, the radiation temperature is not determined 
locally but rather is determined by sources that are far away. The multi-group 
diffusion approximation is frequently applied in astrophysical and inertial 
confinement fusion (ICF) applications. For example, for an ICF capsule bathed 
in radiation, the multi-group approximation works very well in predicting 
capsule performance14.  

 It is clear from the functional form of the Planck function that the above 
equations forms a set of coupled non-linear integro-differential equations. It is 
this fact that makes their solution a challenge. As in the transport problem, the 



 15 

presence of a material temperature couples all groups together and it is this fact 
that makes their solution a challenge. This paper will discuss several methods for 
their solution including partial temperatures, grey methods such as Lund-Wilson 
and source iteration, and full matrix methods.   

3.3.   The Planckian Diffusion Equation 

An additional simplification arises if it is assumed that the photon spectrum 
is Planckian. This will occur in optically thick media where the radiation field is 
determined by many absorptions and re-emissions. In this case the radiation field 
rapidly becomes Planckian at a temperature not necessarily that of the material. 
Assuming the radiation spectrum is Planckian with a characteristic 
temperature RT  (i.e. )( RTBννε = ), equation [24] can be integrated over 
frequency to yield  
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Where the Planck and Rosseland averaged opacities are defined by 
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The material energy balance equation is just 
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The Planck opacity Pσ sets the time scale for local energy exchange between 
matter and radiation based on emission and absorption. The Rosseland opacity 

Rσ  determines average transport properties of the radiation flow.  
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3.4.   Some Observations Regarding Diffusion 

 
It is clear that by going to the diffusion approximation, the equations of radiation 
transport have been fundamentally changed. From a mathematical standpoint the 
radiative transfer equation is a hyperbolic first order equation requiring for 
boundary conditions that the initial specific intensity be specified along with for 
example an incoming value of the specific intensity at a boundary. The diffusion 
equation however, is a parabolic equation needing two boundary conditions to be 
specified along with an initial condition. From a physical standpoint, the 
diffusion approximation is acausal. To see this, consider the multi-group 
diffusion equation with no sink or source terms 
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This equation describes a signal propagating with a velocity 
νσct

c
V ≈   

which is obviously in violation of the speed of light restriction. It is clear that 
applying the diffusion approximation to transparent media where a signal can 
propagate at or near the speed of light is in violation of the approximations used 
in deriving equation  [33] so it is not too surprising that the acausal nature has 
reared its ugly head. However, all is not lost. Flux limiters, which will be 
discussed next save the day and allow one to apply the diffusion equation to 
applications where normally only a transport description based on the radiative 
transfer equation would do.  

Before moving on, a question naturally arises which is; what has been lost 
by throwing out the time derivative of the flux term? And what happens if it is 
restored? Consider for simplicity the coupled set of moment equations in a 
vacuum 
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Taking the time derivative of the first equation and using the second equation to 
close the set yields 
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This is the wave equation that describes ingoing and outgoing waves moving 

with a velocity of 3/c . Hence, causality has been restored; however, the finite 
light speed is too small by a factor of .577. The coupled moment equations in the 
presence of matter yield the so-called Telegrapher’s equation15. 
 
 

3.5.   Transport Corrected Diffusion: Flux Limiters 

 

In a vacuum, the radiative transfer equation predicts that the energy density 
propagates with a velocity c and the flux is given by 0Ω= νν εφ c . Where 0Ω  

is the solid angle subtended by the ray.  This is the maximum flux allowed 
physically since it represents photons moving unimpeded. Diffusion predicts a 
very different behavior. As shown above the flux for the diffusion equation (in 

the absence of sink and source terms) is ��
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is clear that for very strong gradients and/or when 0→νσ the diffusive flux 

can be greater than the maximum flux allowed.  

Jim Wilson first proposed limiting the diffusive flux to correct for the fact 
that diffusion predicts faster than light flow speeds in transparent media. Define 
a new flux with a generalized diffusion coefficient which interpolates between 
the diffusive flux in optically thick media and the transport flux in optically thin 
media. 
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The literature16, contains a variety of choices for the flux limiter. As an 
aside, Levermore and Pomraning17 have derived the flux limiter in a rigorous 
fashion by performing a Chapman-Enskog like expansion of the transport 
equation. Their result is not quoted here but interested readers are urged to read 
their papers.    
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 (37) 

Figure 1 shows a comparison of a variety of choices including the Levermore-

Pomraning result 
νν

ν

εσ

ε∇
=R  is plotted on the horizontal axis and νσΛ  is 

plotted on the vertical axis. A slight variation on the sum flux limiter appears in 
Lund and Wilson and that is, they include a factor of )/,1min( νν εB in front of 

the absorption opacity. For hard photons there is no effect but for soft photons 
the free streaming limit is recovered. 
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Figure 1.  Comparisons of several flux limiter choices (Taken from 
Olson, Auer, and Hall JQSRT V.56 1996) 

 
Figure 1 shows the Levermore-Pomraning result (long dash-short dash) as 
derived from the transport equation. Clearly, the Wilson sum flux limiter tends to 
restrict the flux too much while the MAX flux limiter does not restrict the flux  
enough. Interestingly, the Larsen flux limiter with n=2 does a very good job of 
matching the transport solution.  
 

4.   Numerical Methods for Diffusion 

Complex applications and the nature of the coupled radiation matter 
equations means that analytic solutions are almost impossible to find. Instead, a 
numerical approach is sought. The discretization of the multi-group or Planckian 
diffusion equations means dealing with several issues. The first is time 
discretization. It is assumed that the coupled radiation and material equations are 
to be solved implicitly. Explicit time differencing yields a Courant stability 
condition which severely restricts the time step and therefore is not widely used. 
There are unconditionally stable explicit schemes for diffusion that have been 
explored18. However, the accuracy of these schemes beyond several Courant 
time steps is poor. In this paper and in most applications codes, the simple 
backward Euler difference is used.  That is, 
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In spite of higher order time differencing schemes such as Crank-Nicholson, the 
simple first order backward differencing in time is widely used due to its robust 
behavior in the limit of large time steps. This is due to its non-oscillatory 
behavior and its ability to recover the static solution as ∞→∆t .  

The second issue is how to discretize the diffusion operator. Space 
limitations prevent a lengthy discussion of this important topic; however, an 
incomplete survey of methods such as finite difference, finite element, and Pert 
will be discussed. The discussion will be restricted to quadrilateral meshes in 
2D. Generalizations to 3D are straightforward. The third issue is the treatment of 
radiation-matter coupling. Even in the simplest case of Planckian diffusion, this 
problem arises as the equations governing radiation diffusion are coupled non-
linearly to the material temperature. In multi-group diffusion this manifests itself 
as the material temperature being coupled to all photon frequencies 

4.1.   Spatial Discretization 

4.1.1.   Finite Difference 

The type of spatial discretization performed on the diffusion operator is 
intimately connected with the mesh type. The simplest mesh often encountered is 
the static (Eulerian) orthogonal type. Finite difference methods are frequently 
applied in this case yielding a discrete representation of the diffusion or div-grad 
operator. Consider for example the 2D zone  
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Assume the independent variable ( νεor  RT ) is defined at the zone center. 

Consider the diffusion operator as the gradient of the flux and integrate it over 
the cell volume of the (i,j) zone.  The following result is obtained. 
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Where abA and abΦ are the surface area and flux, respectively, at the (a, b) face. 

The flux at the face is just a function of the difference of the zone centered 
quantities. For example,  
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Rearranging terms yields 
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The time dependent diffusion equation in its simplest form (without sink or 

source terms) is almost ready to be solved. The last issue is the time stamp 
associated with the diffusion coefficients. In general these quantities depend on 
the matter temperature which depends on time. The simplest approach is to 
evaluate all diffusion coefficients (i.e. opacities) at the old time step value. This 
means that the discrete representation of the diffusion equation is semi-implicit. . 
That is, the solution at the advance time step can be written 
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11 nnn tttMtt Φ∆+Φ∆=Φ ++  (42) 

The diffusion matrix M is symmetric and positive definite. In addition, it is an 
M-matrix meaning that any given diagonal element is the negative sum of the 
corresponding off-diagonal elements. This has important consequences in that it 

implies that the solution vector Φ̂  is positive. The structure of M is tri-diagonal 
with sub and super diagonals representative of the 5-point stencil in equation 
[41]. The time lag of the diffusion coefficient means that some type of time step 
control must be enforced. This is to ensure accuracy. Finally, the semi-implicit 

equation for Φ̂  can be made implicit simply by wrapping equation [41] in an 
iteration loop. It is of course required that the diffusion coefficient be continually 
updated with each iteration. Methods that do this will be discussed at the end. 

 

4.1.2.   Finite Element and Pert Operators 

When the mesh is not aligned with the coordinate system, which can occur 
for example in radiation-hydrodynamic codes using Lagrangian or ALE 
(Arbitrary Lagrangian Eulerian) methods, complications can arise when 
constructing a discrete representation of the diffusion operator. In particular, 
preserving second order accuracy and positive-definiteness on non-uniform grids 
continues to be a challenge. In this section, two related methods (finite element 
and Pert), which have found wide use in codes using complex zoning will be 
discussed. The discussion will be based on variational methods and is based 
largely on unpublished notes by R. Tipton19. 

To begin, the time discretized diffusion equation with no sink or source 
terms can be derived from a variation of the “action” 
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Changing notation slightly in order to minimize indices, the action in discrete 
form yields  
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Where a denotes node number (i.e. a= 1,2,3,4)  and where 
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Note that 
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The K matrix represents the spatial discretization of the diffusion operator. The 
choice of this operator determines the discrete form of the diffusion operator.   

Consider the continuous form of the ‘action”. The finite element method 
assumes there exists a set of basis functions such that 
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Substituting this representation into the div-grad contribution to the action yields 
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Tipton’s application of finite elements requires two additional ingredients. 
One is the fact that finite elements like to have the unknowns live at the nodes 
whereas it has been assumed here that the unknowns live at the zone centers. 
Tipton defines a dual mesh whose nodes live at the zone centers of the regular 
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mesh. In addition, instead of using quadrilateral basis functions, he splits the 
quadrilateral into triangles and uses basis functions associated with them. Since 
there are two ways in 2D of splitting a quadrilateral into triangles, the K matrix 
is constructed as the result of averaging the two splittings.  For a triangular basis 
function in an r-z cylindrical geometry, 
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Where as is a vector defined on the node opposite node a. If the other two nodes 

are denoted by b and c, where b and c do not equal a, then as lies normal to the 

bc leg and its magnitude is equal to the length of bc. Defining abθ as the angle 

opposite nodes a and b, the K matrix becomes for a single triangular basis 
function, 
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Whereas the finite element described above relies on triangular basis 
functions, the Pert20 operator relies on bi-linear quadrilateral elements with two 
point quadrature. A single point quadrature with bi-linear quadrilateral elements 
will not work due to the fact that for square or rhomboid meshes, couplings 
between neighboring zones occurs only through corner couplings and not 
through faces. Hence, the mesh can develop the so-called checkerboard 
instability.  

Consider the mesh in logical coordinates. Consider a specific zone whose 
nodes are identified with the iso-parametric coordinates ( ) ( )1,1, ±±=ηξ . The 
bi-linear basis functions are simply 
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The div-grad contribution to the action comes about by substituting equation 
[51] into equation [48]. The result is 
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The g’s are the metric tensor and it represents the coordinate transformation 
between the logical coordinates and physical coordinates. For example, 
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The Pert representation for the diffusion operator comes from a two-point 
quadrature approximation to the integral in the above equation for gradDiv−Θ . 

This is done by taking the dual mesh quadrilateral and decomposing it into four 
equal area sections. Therefore, the K matrix becomes 
 

( )

( )

( )

( )��
�
�
�
�
�
�
�

	




��
�
�
�
�
�
�
�

�




++−−

++−

−++−

++−

ξηηηξξηηξηξξ

ηηξηηηξξξξξη

ξηξξξηηηξξηη

ξξξηηηξηηηξξ

ππππ

ππππ

ππππ

ππππ

ggg
A

Dr
g

A

Dr
g

A

Dr
g

A

Dr

g
A

Dr
ggg

A

Dr
g

A

Dr
g

A

Dr

g
A

Dr
g

A

Dr
ggg

A

Dr
g

A

Dr

g
A

Dr
g

A

Dr
g

A

Dr
ggg

A

Dr

4444

4444

4444

4444
 

 

4.1.3.   Local Support Operators 

Recently, Jim Morel25 and co-workers have developed a promising 2D and 
3D diffusion discretization scheme based on local support operators. Like the 
methods discussed above, it yields a sparse matrix representation for the div-
grad operator. The method has definite advantages. It is second order accurate 
on distorted meshes, rigorously treats material discontinuities, and has a 
symmetric positive definite matrix. The disadvantage of the method is that it 
requires face center as well as cell center unknowns. There is some subtlety 
regarding implementing flux limiters into the local support scheme. However, 
David Miller26 has done this successfully    
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4.2.   Multi-group and Planckian Diffusion 

To summarize, the solution of the material temperature and spectrum needs 
to be found from the following coupled equations 
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The inherent difficulty is solving this set of equations is that even though the 
equation obeyed by the spectrum looks like it is independent of frequency group 
coupling, the material equation requires knowledge of the spectrum and emission 
at all frequencies. Hence, the emission function also requires knowledge of the 
spectrum at all frequencies. Therefore, the equation for the spectrum is 
inherently non-linear due to an effective group to group coupling. The partial 
temperature and grey methods are examples of techniques which have found 
success in dealing with this problem. These are discussed next. Planckian 
diffusion can be thought of as a subset of multi-group diffusion. Physically of 
course, Planckian diffusion arises from assuming the spectrum is Planckian and 
then integrating over all frequency. Numerically, we will see that in the partial 
temperature scheme it can be merely thought of as a special case.    

In all of these methods, heat capacities and opacities are time lagged so even 
though the solution methods are not fully implicit. In addition, due to this fact, 
all of the methods considered will require some sort of time step control on the 
material and/or radiation temperature. As we will see, the partial temperature 
method requires a very specific type of time step control. In addition, the 
methods here should be though of in the wider context of a multi-physics code. 
Traditionally, physics packages are operator split. Whether this is done first 
order or second order in time, this fact alone limits the accuracy even in cases 
where the radiation package is solved fully implicitly. Examples of fully implicit 
methods will be discussed in section 4.2.3. 

The implicit time differencing and the spatial discretization mean that the 
coupled radiation-material equations will form a system of equations. In general 
these systems will be non-linear. Due to a variety of techniques, to be discussed 
next, this non-linear set can be approximated by a system of linear equations. 
Therefore, linear solvers play an important role in the methods presented here. It 
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is due to advances in linear solvers and their preconditioners that have made 
radiation diffusion problems in more complex geometries and in 3D possible. 
This is due in no small part to scaleable (both in the problem size and parallel 
sense algorithms21). 

4.2.1.   Multi-group Diffusion: Partial Temperature 

The coupled set of equations is differenced implicitly assuming that the heat 
capacities and opacities are evaluated at the old time step. Ignoring for the 
moment issues related to spatial discretization and setting all internal and 
external sources to zero, we obtain 
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The summation is taken over the group index and runs from zero to gN . Notice 

that the Planckian diffusion scheme is just a special case of 

1=ν where 4)( TTB ∝ν .  Now assume there exist a partial material 

temperature contribution for each group. That is,  
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We now approximate the emission or Planck function as if it were coming from 
each group. That is, 
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The following linear system results, 
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Upon approximating the emission or Planck function as before, the multi-group 
photon equation becomes 
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Substituting equation [59] into equation [60] yields a linear implicit solution 

for 1+n

νε . This may be solved via a variety of preconditioned linear solvers such 

as multi-grid preconditioned conjugate gradient21.  
A word of caution concerning partial temperatures is in order. The method 

is stable and robust. However, it can suffer in accuracy unless the partial 
temperature swings for each group from cycle to cycle are limited via a time step 
control. In Planckian diffusion, since there is just one group, the temperature 
swing is just the change in matter temperature from cycle to cycle.    

4.2.2.   Multi-group Diffusion: Iterative Grey Methods 

There exists another class of methods that attempt to solve the matter-
radiation coupling problem via an iterative procedure. These methods require a 
grey diffusion accelerator in order to speed-up convergence.  We will discuss the 
fully implicit method of Lund-Wilson22 and its variant due to Eppley22. We will 
then discuss a semi-implicit method due to Morel, Larsen, and Matzen22 and its 
fully implicit extension due to Graziani22.  

The Lund-Wilson method replaces the set of multi-group diffusion 
equations with the set 
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The index I is an iteration index where I=0 corresponds to the old time step 
values. Note that upon convergence, II

TT →+1 and the coupled multi-group 
equations are recovered. Define the grey coefficients, 
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IΕ is proportional to an effective radiation temperature raised to the fourth 

power. Iα is spectrum averaged opacity. In the matter equation, we make the 
approximation 
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The latter approximation is exact upon convergence. Using the grey coefficients, 
the, matter equation becomes 
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This equation can be solved provided we know 1+Ε I . This quantity is obtained 
by summing the multi-group photon equation over frequency. There are two 
ways of doing this depending on how the diffusion coefficients are averaged.  

Consider the diffusion contribution to the multi-group photon equation. 
Also, we assume a simple 1D finite difference representation of the div-grad 
operator. We can form an equation for 1+Ε I  by summing the photon multi-group 
equation over frequency group.  
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Lund and Wilson approximate this expression as follows, 
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The equation for 1+Ε I  becomes, 
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This is the so-called grey equation. The above equation is a tri-diagonal equation 
for 1+Ε I  which can be solved via back-substitution methods. In two or three 
dimensions, the above equation is a matrix which can be solved via 
preconditioned conjugate gradient methods21. In solving the coupled multi-group 
equations, the following steps must be performed 
 
1.  Evaluate the grey coefficients [63] using the last available spectrum 

2.  Solve the grey equation for 1+Ε I  

3.  Compute the updated temperature 1+IT  

4.  Knowing 1+IT , compute the updated spectrum 1+I

νε  

5.  Is the matter temperature converged δ<−+ II TT 1  ? 

6. If no, repeat steps 1-5 using the latest spectrum to compute the grey 
coefficients. 
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7.  If yes, values for matter temperature and spectrum are accepted. 
8.  

The method due to Lund and Wilson seems to work well in most cases. It 
does have one drawback however. The grey averaged diffusion coefficients are 
not guaranteed to be positive. This can cause havoc for matrix solvers. Eppley’s 
method tries to circumvent this problem by defining new grey averaged diffusion 
coefficients. In Eppley’s scheme, instead of one type of grey diffusion 
coefficient, he defines two. Namely,  
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The grey equation is now slightly modified from before, 
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Eppley’s method produces positive definite grey diffusion coefficients. 
However, the cost is a non-symmetric matrix for the grey equation. In practice, 
the robustness of Eppley’s variant of Lund and Wilson seems to work well. 
Methods such as GMRES are satisfactory for solving the non-symmetric grey 
equation. Methods that attempt to solve the grey equation by splitting the matrix 
into symmetric and asymmetric contributions and including the asymmetric parts 
in the overall iteration loop do not seem to be robust. Although they have the 
advantage of allowing the one to use symmetric matrix solver methods, the 
method occasionally fails to converge.  

Even though it has not been explicitly mentioned as such, the solution of the 
grey equation in the Lund-Wilson and Eppley variant accelerates the iterative 
process. Without the grey solution step, the number of iterations can grow into 
the thousands in regimes of the problem where radiation and matter are tightly 
coupled. This is certainly true in the next method where a grey accelerator is 
explicitly introduced.  

The starting point of the source iteration method of Morel, Larsen, and 
Matzen22 is to expand the Planck or emission function, evaluated at the updated 
temperature, about its value of the previous time steps’ temperature. That is 

 [ ]nnnnn
TTTBTBTB −+≈ ++ 11 )()()( ννν  (72) 

This is performed in both the photon and the material energy balance equations. 
By doing this expansion, the coupled set of multi-group equations is effectively 
linearized.  Substituting the above equation into the material energy balance 

equation and solving for nn TT −+1 yields 
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Substituting this expression into the photon equation yields 
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Where a new set of grey coefficients arises,  
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This is a linearized form for the photon multi-group equation. At this point the 
group to group coupling still exists. The source iteration process involves 
replacing the above by 
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Therefore, when II

νν εε ≈+1 , the above equation converges to the linearized form 
given by equation [74]. Note that whereas with the Lund-Wilson method we 
converged on matter temperature, here we converge on the spectrum. In practice, 
a convergence criteria based on converging the spectrum over all groups is not 
necessary. It seems to be sufficient to converge on the radiation temperature or 
the radiation energy density. The benefit is a smaller number of iterations with 
very little loss of accuracy. Therefore, the procedure is 
 
1.  Evaluate the grey coefficients using the old time step values for temperature 

and spectrum 
2.  Solve the photon equation [76] via iteration 

3.  Once 1+I

νε  is converged, compute the material temperature 

 
Notice that the grey coefficients are evaluated once, at the start of the cycle, as 
opposed to Lund-Wilson where they are evaluated at each iteration. . In addition, 
here the material temperature is evaluated once the spectrum is converged 
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whereas in Lund-Wilson, it is updated every iteration.  In practice the source 
iteration method works well except the number of iterations to converge the 
photon equation rises steeply in optically thick regimes. In order to correct this 
deficiency, the iteration process is accelerated via a grey equation.  

In the paper by Morel, Larsen, and Matzen, besides the spectrum, they also 
define a quantity which is the difference of the spectrum between the exact 
solution and the latest guess from iterate I. We denote this quantity as, 

 I

ννν εεδε −=  (77) 

In terms of this variable, the multi-group photon equation becomes 
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In this method, the grey equation is derived by assuming that the multi-group 
spectrum is given by the equilibrium spectrum. The equilibrium spectrum in turn 
is given by the solution to equation [74] where the gradient term vanishes. That 
is,  
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Where the grey coefficient is defined by 
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Substituting this expression into equation [78] and integrating over groups 
yields, 
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The grey coefficients are given by 
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The multi-group solution procedure is similar to the unaccelerated 
procedure 

    
1. Evaluate the grey coefficients using the old time step information 
2. Update the spectrum using the photon multi-group equation 
3. Solve the grey equation for the integrated spectrum 
4. Correct the spectrum by adding the correction 

term
σ

χ
εδ ν
ν

+
∆

ΓΕ
=

tc

I

eq 1  to the result from step 2 

5. Repeat steps 2-4 until convergence is reached 
 
It would seem that here again the convergence criterion must be based on 
converging the spectrum in all groups. In practice, however, it turns out to be 
sufficient to converge on the radiation temperature or the radiation energy 
density. The number of iterations can be substantially reduced with little loss of 
accuracy. A more important issue is the grey equation. Unfortunately, the grey 
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equation, like Eppley, does not have a symmetric matrix. This is due to the 
D
~

term. Without any justification, dropping this term does not seem to harm 
the acceleration process significantly. This is frequently done in practice. 
However, this issue needs to be looked at closer. 

There exists a variant of the Morel, Larsen, and Matzen method due to 
Graziani that solves the non-linear coupled multi-group equations. The starting 
point is to expand the emission or Planck function not around the old time step 
but rather the old iterate. That is,   

 [ ]IIIII
TTTBTBTB −+≈ ++ 11 )()()( ννν  (83) 

We go through the same algebra as previously done however, at the end we end 
up with a slightly different equation for the spectrum. 
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The grey coefficients are defined by 
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Therefore, the “Q” term is slightly modified. The procedure for solving the non-
linear multi-group variant follows the same steps as the linear method. However, 
the convergence criterion is now based on  

δ<−+ II TT 1  
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The relative merits of solving the non-linear variant of Morel, Larsen, and 
Matzen has not been investigated. Further work needs to be done. 

4.2.3.   Comments on Full Matrix Methods 

With the advent of increased memory and the progress in preconditioned 
linear solvers, the idea for fully implicit methods has started looking like an 
attractive alternative the methods discussed above. We give here some reference 
to a sampling of the research in this area. Rider, Knoll, and Olson23 used 
Newton-Krylov methods along with multi-grid preconditioning to 1D and 2D 
one temperature Planckian diffusion. They showed that the fully implicit method 
gave increased accuracy over the usual semi-implicit method where opacities 
and heat capacities were lagged. Simultaneously, building on earlier work using 
the ODE integrator methods of Axelrod, Dubois, and Rhodes24, Brown, Chang, 
Graziani, and Woodward24 applied these techniques to 3D multi-group diffusion. 
Mousseau, Knoll, and Rider24 extended their earlier work to two temperature 
Planckian diffusion. Recently, Brown, Shumaker, and Woodward24 considered 
fully implicit versus semi-implicit methods where tabulated opacities are used 
and external sources coming from thermonuclear fusion are included.  This latter 
issue is important as the source term in the radiation equations coming from 
fusion source terms is a very strong function of temperature and hence places a 
constraint of time steps and accuracy.  There conclusions were that a fully 
implicit method can achieve more accurate solutions than semi-implicit methods 
at a cost comparable to semi-implicit methods. In addition, their method is scales 
very well on parallel machines.       
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