
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

UCRL-CONF-222279

How the Common Component
Architecture Advances
Computational Science

Gary Kumfert, David E. Bernholdt,
Thomas Epperly, James Kohl,
Lois Curfman McInnes, Steven Parker, and
Jaideep Ray

26 June 2006

DISCLAIMER
This document was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department
of Energy by the University of California, Lawrence Livermore
National Laboratory under Contract No. W-7405-Eng-48.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71306876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

How the Common Component Architecture Advances
Computational Science

G Kumfert1, D E Bernholdt2, T G W Epperly1, J A Kohl2, L C McInnes3,
S Parker4 and J Ray5

1 Lawrence Livermore National Laboratory
2 Oak Ridge National Laboratory
3 Argonne National Laboratory
4 University of Utah
5 Sandia National Laboratory

E-mail: kumfert@llnl.gov

Abstract. Computational chemists are using Common Component Architecture (CCA) technology to
increase the parallel scalability of their application ten-fold. Combustion researchers are publishing science
faster because the CCA manages software complexity for them. Both the solver and meshing communities
in SciDAC are converging on community interface standards as a direct response to the novel level of
interoperability that CCA presents. Yet, there is much more to do before component technology becomes
mainstream computational science. This paper highlights the impact that the CCA has made on scientific
applications, conveys some lessons learned from five years of the SciDAC program, and previews where
applications could go with the additional capabilities that the CCA has planned for SciDAC 2.

1. Introduction
Component technology exists because people are not scalable. Throughout the short history of software
development, it has always been the case that (a) human beings write imperfect software, and (b) they
need to produce ever-increasing amounts of it, nonetheless. This situation is the essence of the perennial
“software crisis.” Software technologies such as assemblers, compilers, structured programming, object-
oriented programming (OOP), and now component-based software engineering (CBSE) have been
created in response to this need, expanding by an order of magnitude or more the scale of software
producible. Each technology addresses this issue by raising the levels of abstraction, enforcing more
programming structure, generating more code internally per line of developer code, and ultimately
protecting developers from their own human limitations. Unfortunately all of these technologies
eventually succumb to their own inherent scaling limit; human foibles are no longer effectively mitigated.
The resulting defects dominate the system. The progression of programming technologies augments —
but does not replace — their predecessors. Each tool solves a particular problem, and the choice of tools
depends on the size and nature of the programming task.

Component technology is most effective when the target software has achieved a level of complexity
that exceeds the possible comprehension of a single human mind, even a domain expert with ample access
and time. Literature often uses the term enterprise software, but this term suffers from multiple deficits.
Although it is generally understood to be software of sufficient capability and merit to be applicable
beyond a single individual, team, or department, many interpret it to apply only to business processes
across the corporate enterprise. The term is also unsatisfying because many in computational science

have observed long-lived applications that do not leave a single department, but have accreted so much
additional complexity over decades of use, that they too are prime candidates for componentization.

When software is small enough, or there is a guru talented enough to understand the complete
code, the incentives for component technology are less obvious but no less compelling. The most
frequently cited motivation for components, code reuse, is not the most convincing argument in practice.
Stronger arguments can be made, but are specific to the distinct needs of corporate and scientific
computing. For industry, time to market is the key consideration. Because components are loosely
coupled entities, the reduction in intra-dependencies allows more parallelism in the development process.
Thus companies can have more programmers productively working at the same time and can shorten the
critical development path. Scientific computing has a completely different nature; rather than a race
to a single release, scientific codes need to nimbly adapt through decades of change. Change happens
externally through new hardware generations and incremental updates of third-party software as well
as internally as scientific understanding evolves, new algorithms present themselves, and new questions
are explored in pursuit of science. Perhaps the most compelling argument for component technology
in scientific computation is maximizing adaptability and maintaining correctness in the face of such
constant change.

To demonstrate the impact that the Common Component Architecture (CCA) has on science, this
paper surveys the use of the CCA in the high-performance computational community. We present
background information specific to the CCA in Section 2. The bulk of the paper is in Section 3,
which enumerates six different modes in which our work has affected science; each subsection names
several representative projects across a broad spectrum of applications and disciplines. In Section 4, we
summarize experiences from the five years of SciDAC and tie this into our technology plan for the next
five years of SciDAC2. Finally, we close in Section 5 with our forecast of what else is needed to bring
component technology into mainstream computational science.

2. Background
Component-based software engineering (CBSE) is a field of study that seeks to improve the quality
(flexibility, maintainability, reliability) of software systems while reducing costs (production and time-
to-market). Inspired by modular and interchangeable hardware components in electronics, CBSE
attempts to replicate this effect in software through a mix of tools, framework infrastructure, and coding
methodologies.

The earliest and perhaps best-known instance of software assembled from prefabricated components
is the system of pipes and filters built into the UNIX operating system. This system was invented
by M. Douglas McIlroy, who in 1968 first argued for the industrialized manufacture and use of
componentized software [1]. The modern concept of software components motivated the creation of
the Objective-C programming language [2]. But it was ultimately the failings of the object-oriented
paradigm at enterprise scales that led to the development of component technology [3]. The most
frequently cited failings of OOP include the implicit assumptions that all software entities to be integrated
are written in the same programming language and are amenable to inheritance and aggregation [4].

2.1. Challenges Unique to Scientific Software Componentry
Scientific computing fundamentally requires maximal performance of the underlying hardware;
whether it be laptop, workstation, commodity cluster, or leadership-class machine. A minimally
viable component system for scientific computation must support Fortran, complex arithmetic, and
multidimensional dynamically allocated arrays (preferably with arbitrary strides). It must provide a
tenable migration strategy for existing software assets, incur minimal runtime overhead, and be portable
to most of the machines on the Top 500 list [5]. Of the dominating component systems of the corporate
world, CORBA/CCM [6], COM/COM+ [7], J2EE/EJB [8], and .Net [9], not one satisfies all these criteria
for scientific computation [10]. Developing and delivering a suitable component system for this domain
has been the mission of the Common Component Architecture Forum (CCA Forum) since its inception

1998 and SciDAC’s Center for Component Technology for Terascale Simulation Science (CCTTSS),
which supported the majority of the CCA Forum participants, from 2001–2006.

The CCA is itself a modular stack of technologies. At its base is a language for specifying generic
software interfaces called the Scientific Interface Definition Language (SIDL). The Babel tool [11]
reads SIDL files and generates wrapper code that supports a uniform object-oriented model across
six languages in a single address space. The CCA specification is written in SIDL and specifies
how components interact with each other and the underlying framework. There are several CCA
compliant frameworks available, but the SciDAC effort supports three core implementations of the
CCA specification. Ccaffeine [12], emphasizes an enhanced SPMD-style programming model and also
supports a native C++ interface. XCAT [13, 14] focuses on distributed Web Services-style programs.
SCIRun2 [15] has bridging technologies between CCA, CORBA, VTK, and shared-memory dataflow
models.

2.2. The SIDL/Babel Technology
The key to making software interoperable is a consistent type system. This includes basic types, such
as integers and strings, compound types such as arrays, and user-defined types such as structs, classes,
or derived types. Although every programming language necessarily has an internally consistent type
system, the union of these languages is a mess. Every language has its own character string type. Arrays
can be row-major, column-major, or 1 dimensional only. Dynamically allocated might be reference
counted, garbage collected, the programmer’s burden or nonexistent. Error messages could be stack-
unwinding exception classes that foreign languages normally cannot intercept. We have defined a trans-
language type system that — with the assistance of generated code, runtime libraries, and programmer
discipline — is completely consistent across C, C++, Fortran 77, Fortran 90, Java, and Python. Babel
is the software package that performs the code generation and provides the supporting runtime libraries.
SIDL is the input language that drives Babel’s code generation.

Our Scientific Interface Definition Language (SIDL) is one of a family of interface languages that
includes CORBA IDL and COM IDL.1 These interface languages exist for users to describe their own
types and the signatures of subroutines bound to those types. Distinguishing characteristics of SIDL are
that it is a much smaller and straighforward language than either CORBA’s or COM’s IDLs; designed for
users that are general computational scientists and not necessarily full-time expert programmers. SIDL
uniquely counts among its built-in types full Fortran 90-featured arrays, C/Fortran 77-style raw arrays,
and complex numbers. SIDL continues to add new constructs in response to customer needs and is itself
the subject of external research. Recent graduate theses have also investigated adding parallel data types
and directives [16, 17] and semantic constraints and enforcement [18].

Babel has two main parts: a code generator, and a runtime library. The code generator reads SIDL
input files and generates wrapper code that is far more sophisticated, robust, consistent, and portable
than what people would ever write by hand. Newcomers are often taken aback by the volume of
code generated by Babel. Interoperability is a difficult problem dominated by hundreds of arcane
little details and it takes an appreciable amount of code to properly handle them all. To completely
encapsulate language dependencies so a caller never knows (nor cares) what language they are calling
into, the type system had to be fully object-oriented. The generated wrappers, therefore, have a
complete virtual function dispatch system embedded inside. The runtime library includes common
base classes, exception classes, and language specific support for a consistent type system regardless
of implementation language.

The distinguishing characteristics of the Babel system are that languages are mixed in a single address
space with no messaging or interpreted languages brokering the interoperability. This is technically
hard to accomplish, but gives outstanding performance. In the worst case, Babel is 25% faster than

1 Not to be confused with the Interactive Data Language, which is completely unrelated, but goes by the same acronym. The
Interactive Data Language is a full programming language of VAX/VMS/Fortran heritage that is used for interactive data and
image processing.

Table 1. CCA Customers by Application Domain

Domain Project POC Section Page

accelerator beam dynamics Beam-SBIR Douglas Dechow, Tech-X Corp. 4 10
cell biology VMCS Harold Trease, PNNL 3.3 8
chemistry NWChem Theresa Windus, PNNL 3.1 & 3.2 5, 7
chemistry MPQC Curtis Janssen, SNL 3.2 7
chemistry GAMESS-CCA Masha Sosonkina, Ames Lab 3.3 8
climate ESMF Nancy Collins, NCAR 3.6 10
combusion CFRFS Jaideep Ray, SNL 3.1 4
electron effects CMEE Peter Stoltz, Tech-X Corp. 3.4 8
frameworks MOCCA Vaidy Sunderam, Emory Univ. 3.5 9
fusion DFC Nanbor Wang, Tech-X Corp. 3.2 7
fusion FMCFM Johan Carlsson, Tech-X Corp. 3.4 8
geomagnetics — Shujia Zhou, NASA 3.1 6
materials PSI David Jefferson, LLNL 3.4 8
meshing TSTT Lori Diachin, LLNL 3.3 7
nuclear power plant — M. Dı́az, Univ. of Málaga 3.2 7
performance TAU Sameer Shende, Univ. Oregon 3.1 6
radio astronomy eMiriad Atholl Kemball, UIUC 3.2 7
solvers hypre Jeff Painter, LLNL 3.4 8
solvers TOPS Barry Smith, ANL 3.3 7
sourcecode refactoring CASC Dan Quinlan, LLNL 3.4 9
sparse linear algebra SPARSKIT-CCA Masha Sosonkina, Ames Lab 3.1 6
subsurface transport PSE Compiler Jan Prins, UNC Chapel Hill 3.1 6

its competitors, and the margin only increases when characteristically large scientfic data is exchanged
between the layers. Babel won a R&D 100 award in 2006 in recognition of its unmatched peformance.

3. Impact of CCA on Science
Different scientific application domains and teams have diverse technical needs and cultures. It should be
no surprise, therefore, that the computational science community’s response to the CCA has been diverse.
Table 1 contains a representative, but far from exhaustive, list of projects where we have observed the
CCA’s impact. These observations are grouped in Sections 3.1–3.6 according to six modes of adopting
and employing CCA technology.

3.1. Maximizing Flexibility in New Codes
This section discusses applications that have adopted the CCA and thus now employ CCA technology
as they develop new code. Their primary motivation is not reuse or sharing code, but rather increased
flexibility in the process of scientific exploration.

Combustion. The Computational Facility for Reacting Flow Science (CFRFS) [19] has used the CCA
to develop a toolkit for simulating and analyzing high-fidelity reacting flows with detailed chemistry.
The componentized form has enabled domain experts to develop solutions independently and to tolerate
a great deal of developer turn-over. CFRFS researchers were first in the field to employ high-order
(fourth-order and higher) discretization approaches [20] and extended-stability explicit integrators [21]

x

y

0 0.2 0.4
0

0.1

0.2

0.3

0.4

Figure 1. OH distribution from an advective-
diffusive-reactive simulation using fourth-order
spatial discretization and a Runge-Kutta-
Chebyshev integrator on a 4-level mesh hierarchy.
Solutions on 25µm (yellow borders) and 12.5µm
(black borders) patches are shown.

Figure 2. The high-level component architecture
for NWChem and MPQC courtesy of Curtis
Janssen and Joseph P. Kenny, Sandia National
Laboratories

on block-structured adaptive meshes. Figure 1 shows an OH distribution from an advective-diffusive-
reactive simulation of igniting hotspots in a stoichiometric H2-Air mixture on a 4-level block-structured
adaptive mesh. Using the CFRFS Toolkit, a Runge-Kutta-Chebyshev algorithm [22] was employed
with a fourth-order spatial discretization approach [20]. Further, their automatic detection and evolution
of systems on low-dimensional manifolds using Computational Singular Perturbation [23, 24] hold
significant potential for reducing the computational expense of integrating stiff chemical systems. The
CFRFS toolkit was also used to explore runtime performance optimization by dynamically detecting and
replacing components with sub-par performance [25, 26].

This project is particularly interesting because in addition to pursuing combustion research, CFRFS
researchers have also quantitatively evaluated the merits of componentization [27]. The toolkit is a
collection of approximately 60 components, covering a range of functionality for physico-chemical and
transport models, numerical schemes (integrators, nonlinear solvers, etc.), as well as parallel meshes and
domain-decomposed data managers. The vast majority of these components are small, with less than
1000 lines of code. The interfaces to the components usually contain less than 10 functions, yet even
such simple interfaces enjoy multiple uses. In addition to internally developed assets, the CFRFS toolkit
has componentized wrappers to external packages, such as a time integrator (CVODE [28]), a parallel
linear solver (hypre [29]), block-structured adaptive meshes (GrACE [30]), and several legacy physico-
chemical models from Sandia. Much of the code does not use Babel but an earlier C++-only interface to
the Ccaffeine framework, now called Ccaffeine classic. Ccaffeine itself provides the bridging technology
to connect classic components to Babel components.

Chemistry. A Multiple Component/Multiple Data (MCMD) approach to parallelism, based on CCA,
was implemented using NWChem [31] and a modified variant of Global Arrays [32] to implement
numerical Hessian calculations using three levels of parallelism. The CCA driver component, which
had responsibility for the overall computation, instantiated several NWChem components over different
subgroups of nodes. Each of these NWChem components then performed multiple parallel energy
computations on its subset of nodes to determine the gradient, providing a multi-level parallel application.
Using this approach for a simple five-water cluster, an order of magnitude improvement in time to
solution over the SPMD approach was observed for 256 processors [33]. This same type of approach

will be applied to other chemistry algorithms such as simulated annealing, vibrational self-consistent
field and Monte Carlo methods.

Subsurface Transport. Researchers at the Center for Advanced Study of the Environment (CASE),
University of North Carolina, Chapel Hill, are applying CCA tools and technology in their problem
solving environment (PSE) for subsurface flow and transport phenomena [34]. Using LATEX as a
specification language for sets of differential equations, their “PSE compiler” translates a symbolic
flow/transport problem into a component-based simulation. A variety of externally developed solver,
integrator, and utility components have been identified and coordinated through a shared knowledge
base to satisfy the needs of the simulation along with a simple Babel-wrapped component description of
the model itself. The resulting component-based program is then submitted for parallel execution using
the Ccaffeine CCA framework.

This team reports several benefits of the CCA approach. The component-based paradigm enables
isolated unit testing of various solver/integrator components and provides a flexible platform for
experimentation, where users can swap key portions of the component network without requiring
full knowledge of the overall algorithms and internal organization. The high-level structure of the
component-based representation encourages an intuitive understanding of the overall solver organization
for users, versus traditional monolithic codes. The well-defined SIDL component interfaces also alleviate
complexity in the design of the PSE compiler, abstracting the functional relationships among components
and hiding specific implementation details that are not directly relevant at the PSE compiler level.

Geomagnetics. XCAT is the CCA framework of choice for long-haul distributed computing. In a
feasibiliy study [35], researchers used XCAT to create an ensemble of MoSST (Modular, Scalable, Self-
consistent, Three-dimensional) [36, 37] core dynamics models. They linked the federation via XCAT’s
built-in Grid support across a 10G network, and they employed Jython, a Java implementation of Python,
to provide a scripted front-end for ease of use.

Performance Monitoring. TAU [38] is a robust and portable measurement interface and system for
software performance evaluation. Using SIDL to describe TAU’s measurement API, full support was
enabled across applications written in Fortran, C++, C, Java, and Python. Without such support, the API
for each new target language would be independently developed and maintained. Such a complex task
becomes even more difficult given the ongoing sequence of extensions evolving in the TAU measurement
API. Babel helps the TAU team focus on improving the quality of performance measurement and
analysis tools, instead of dealing with low-level language compatibility. CCA/Babel has also enabled
incorporation of dynamic selection of measurement options into the TAU performance evaluation tools.
Users can choose from a variety of measurement options interactively at runtime, without re-compilation
of applications. Proxy components are automatically generated to mirror a component’s interface,
allowing dynamic interposition of proxies between callers and callees, via hooks into the intermediate
Babel communication layer. Such inter-component interaction measurements can correlate performance
to application parameters, used for constructing more sophisticated performance models.

Sparse Linear Algebra. Sparskit [39] is a basic toolkit (written in F77) for sparse linear algebra,
with a significant portion (80%) now componentized for the CCA toolkit. The Sparskit components
are also being integrated into the Terascale Optimal PDE Simulation (TOPS) [40] center’s solver
component [41]. New algebraic multilevel methods (in C), from the Itsol [42] package — a library
of iterative solvers for general sparse linear systems of equations, an extension of Sparskit — have now
been merged as components into the CCA Toolkit. TAU’s component-based performance analysis tools
have been applied to the Sparskit linear algebra components. This study found that components of a
fine granularity, like those in Sparskit, still execute with acceptable overheads rates of less than 3.4% in
common application usage.

3.2. Combining Legacy Codes
The computational science community has huge existing investments in a broad assortment of physics,
chemistry, numerical, system, and visualization software. Often, one can realize a scientific breakthrough

by combining best-in-class technologies from different disciplines into an integrated application. This
very simple concept is often difficult to achieve in practice due to codes using different programming
languages, data models, units of measurement, or differing standards. The CCA provides the tools
to wrap legacy libraries as components with relatively simple interfaces, thereby enabling integrated
applications using best-in-class technologies.

Quantum Chemistry. The NWChem [31] and MPQC [43] teams used the CCA to combine
their quantum chemistry models with the TAO [44] optimization package, PETSc [45], and Global
Arrays [32] to improve the accuracy and performance of their application. Choosing a coarse-grained
componentization with an architecture shown in Figure 2 [46, 47], they defined and shared a common
SIDL interface to provide the energy, gradient, and Hessian to the optimization component. By
decoupling the optimization algorithms from the quantum chemistry calculations, NWChem and MPQC
were able to incorporate optimization algorithms developed by experts, which led to a net reduction in
the number of iterations required for overall solution [47]. In addition, these groups are now poised to
take advantage of new advances in optimization technology as they become available.

Nuclear Plant Simulation. Researchers from the University of Málaga in Spain are using the CCA
along with Real-Time CORBA (RT-CORBA) [48] to create a nuclear power plant simulator to train
operators [49]. They chose to use RT-CORBA for the user interface and data logging subsystems,
where predictable response time is required, along with the CCA for the simulator kernel, where high
performance and support for Fortran are needed. This team started with a software system where data
was shared among software subsystems using global variables. Using the CCA, they created a loosely
coupled simulator kernel, where each component has a well defined interface indicating what data it
requires and provides. During the configuration phase, the simulator kernel defines a communication
schedule to satisfy the data dependencies among models. By componentizing the simulator, they lowered
their development costs and produced a more flexible simulator.

Fusion. A team at the Tech-X Corporation is working on a distributed components project to integrate
and connect components from different CCA frameworks. This work will enable scientists to utilize
distributed network resources for data storage or post processing, to connect to existing distributed
services, and to compose loosely coupled applications where each component is running on its optimal
parallel architecture. This project is working with a componentized, legacy fusion code produced by an
ORNL Laboratory Directed Research and Development project, AORSA [50].

Radio Astronomy. The eMiriad project at UIUC is developing a domain-specific component
framework based on Babel to integrate several legacy libraries to make a radio astronomy application.
This project will make a variety of tools available to scientists through common interfaces. In particular,
they are integrating AIPS, MIRIAD, and AIPS++, which together represent approximately 480 FTE-
years of effort [51]. They chose Babel as their middleware because it is particularly well suited
to their domain, radio astronomy imaging. The support for multi-dimensional arrays, Fortran, good
interoperability with parallel computing, and the quality of peer-to-peer language bindings were leading
factors in choosing Babel. Babel’s language interoperability capabilities enable developers to work in
their most effective programming language and provide a general scripting interface for the integrated
system using Python.

3.3. Common Interfaces
The new level of interoperability that component technology supports has also spurred renewed interest
in developing community-based common interfaces. Initially, participants often underestimate the effort
and commitment required for a community to gather and agree on a precise set of terms, let alone a set
of interfaces. A discipline-specific interface that is generated and agreed to by a community is a vital
intellectual product in its own right [51].

Solvers and Meshes. The two largest SciDAC teams active in producing common SIDL interfaces
are the Terascale Optimal PDE Simulations (TOPS) [40] project and Terascale Simulation Tools and
Technologies (TSTT) Center [52], which focus on solvers and meshing, respectively. It is particularly

interesting to note that these two applications represent opposing extremes in natural problem granularity.
Solvers tend to be large-grained with plenty of work per method invocation to completely swamp any
component overhead [53, 47, 54, 55]. In contrast, meshing naturally has a fine-grained interface where
not much data resides behind a single node, edge, or zone, because operations are done iterating across
many of them. However, experiments demonstrate that only a moderate granularity of access is needed
to amortize overhead for meshing components [55].

PNNL scientists are using TSTT tools to build the Virtual Microbial Cell Simulation (VMCS) to
solve DOE heavy metal waste bioremediation problems. The VMCS is a general biological application
that couples individual microbes, each modeled as its own genome-scale metabolic network, into a
larger, self-organizing spatial network. The communication between the organisms is provided by
multi-dimensional flow and transport models. TSTT mesh generation, mesh quality improvement, and
discretization tools developed at different sites, and written in different languages, are used in concert
through the SIDL-based TSTT interfaces. The VCMS has been used to study the flocculation behavior
of communities of Shewanella microbes in oxygen rich environments. These simulations confirmed that
there is an oxygen gradient from the edges of the floc into the center and provided new insight into the
behavior of these microbes.

Chemistry. Perhaps the best benefit of developing common interfaces is that the value increases as
the community grows. For example, the interfaces developed by our NWChem and MPQC customers
have recently also been employed by others in the creation of GAMESS-CCA [56].

3.4. CCA a la Carte
In addition to many applications that use full CCA componentry, there are more that employ specific
technologies from the CCA arsenal. One of the more visible technologies is the Babel interoperability
tool and its constituent Scientific Interface Definition Language (SIDL).

Electron Effects in Heavy Ion Fusion Accelerators. The Computational Models for Electron
Effects (CMEE) [57, 58] takes widely-used physics routines for modeling electron effects like gas
ionization and secondary electron emission from metals and uses Babel to make them widely available.
The resulting code is used in applications such as accelerator physics and plasma drives for satellites. In
addition to having legacy codes in Fortran 77, they also report integrating new codes in Fortran 90, C,
and Python.

Before incorporating Babel, this project had used combinations of Pyfort [59] and SWIG [60]
or f2py [61] and SWIG, which reportedly gave them 90% of what they wanted. However, a new
customer (U.S. Air Force) added the requirement of Java interfaces. Rather than discard their substantial
investment in Python-based string parsing code, they replaced all other point-to-point language tools
with SIDL/Babel. This is the first known case of a Babel customer having a critical need for Java calling
Python. They report taking a half-person day to demonstrate Java calling Python in their own code.

Material Science. The Petascale Simulation Initiative (PSI) [62] is investigating combinations
of whole SPMD programs as distributed federations within a single petascale machine. They are
developing this technology to perform multi-scale material science calculations, where an established
continuum engineering code is connected to a farm of sub-scale crystal plasticity and dislocation
dynamic simulations. Not only do they use Babel to connect their infrastructure (C++), engineering
code (ANSI C), and sub-scale calculations (Fortran), they also invest their own funding to accelerate the
development of remote method invocation (RMI) in Babel [63].

Fusion. The Framework for Modernization and Componentization of Fusion Modules (FMCFM) is
developing SIDL interfaces for legacy codes, particularly in the subareas of equilibrium and transport.
Based on the Fortran-centric APIs from the European Integrated Tokamak Modeling Task Force (ITM-
TF), this project is actively brokering a compromise position that involves SIDL as a secondary interface
to the native Fortran 90. This group is working technically with the Babel team to pursue the inclusion
of structs (derived types) and optional arguments in a future release.

Solvers. The hypre library of scalable solvers and preconditioners [29] was the first tester of

SIDL/Babel. Written mostly in ANSI C, the hypre team’s original intention was to throw away the four
hand-written, non-portable, partial Fortran wrappers and use Babel as the binding for all languages other
than the core C interface. After years of experience, performance studies showing the Babel overhead to
be unmeasurable in large parallel jobs [54], and the benefits of polymorphism, the long-range plan has
shifted to Babel being the only interface published to customers.

Computer-Assisted Sourcecode Refactoring. Researchers at LLNL are developing a methodology
to analyze and refactor large amounts of sourcecode. Applications include finding/breaking cyclic
dependencies, removing blacklisted programming constructs, automatic wrapping in Babel, and possibly
even semi-automated componentization [64]. The CCA itself is developing a simple but effective scripted
approach to automated conversion from a language-specific CCA-Lite form to full Babel/SIDL based on
Chasm [65, 66]. By comparison, the LLNL project is larger and more general. It employs the Rose
Compiler Framework [67], the Eclipse IDE [68], and the VizzAnalyzer [69, 70] software visualization
tool to manipulate the entire C, C++, or Fortran source in memory with as much detail as a commercial
compiler. This project uses Babel to connect Rose (implemented in C++) to Eclipse and VizzAnalyzer,
which are both implemented in Java. This project also motivated and developed the back-door initializer
feature in Babel to wrap native objects in a temporary Babel veneer.

3.5. Framework Interoperability
Numerous CCA projects have focused on component interoperability, which can be classified into two
main forms: internal interoperability and external interoperability. Internal interoperability focuses
both on ensuring that a CCA component will work in any of the disparate CCA frameworks, and
that multiple CCA frameworks can coordinate with each other if necessary. The CCA has ongoing
efforts toward these goals, but several CCA members have focused on the stronger external form of
interoperability. Industry standard component frameworks, such as CORBA, Microsoft COM [71], and
Enterprise Java Beans [72]), component-based software libraries (such as VTK [73]), workflow systems
(such as Kepler [74, 75]), or Problem-Solving Environments (such as SCIRun [76, 77]) may all have
properties or components that are desirable to use in a scientific application.

Consequently, several systems have created mechanisms for interoperating with other component-
based or grid-based software systems. Each of these systems attempts to provide the ability for a
computational scientist to use the right tool for the right job, a goal motivated by the needs of scientific
users who have existing software that is not implemented using the CCA.

SCIRun2 [15] focuses on enabling multiple component models to cooperatively coexist. The
primary innovative design feature of SCIRun2 is a meta-component model that facilitates integration
of components from disparate models. In the same way that components plug into the CCA or other
component-based systems, SCIRun2 allows entire component models to be incorporated dynamically.
Through this capability, SCIRun2 facilitates the coupling of multiple component models, each of
which can bring together a variety of components. Researchers are utilizing this feature to enable
the coupling of single-address-space components based on Babel, components from SCIRun, as well
as CCA components that use the SCIRun2 distributed computing infrastructure. Special components,
called bridges, facilitate interactions between components belonging to different models. These bridges
can be automatically or semi-automatically generated.

Legion CCA [78] also seeks this type of interoperability by building on common design features and
providing mechanisms to bridge between the specific details of interfaces. In particular, this software
supports CCA over Legion. Programmers are able to specify CCA components in SIDL and run them
through a Babel-like compiler to generate back-end code for Legion components. These components
run within a new Legion CCA framework, implemented on top of a combination of existing and new
Legion-based runtime mechanisms.

MOCCA [79] is a CCA-compliant framework implemented on top of the H2O distributed
metacomputing framework. This work is part of a broader program of computer science research
into distributed computing frameworks under the Harness project. H2O is a lightweight, pluggable

experimental infrastructure for building personal grid environments, as an alternative to the system-
oriented Globus grid environment. H2O is written in Java and uses the RMIX multiprotocol
communication library to communicate between H2O instances. H2O accommodates a variety of
programming models, including PVM, MPI, OGSA web services, JRMP, SOAP, and RPC.

3.6. Intellectual Impact
Up to this point, we have focused on cases in which applications are working directly with the tools and
environment that most users think of as “the CCA.” However, we also increasingly observe groups within
the computational science community incorporating the ideas of CBSE and the CCA into their software,
providing their own implementations of component concepts rather than using CCA tools directly. We
briefly highlight two examples.

Climate. The Earth System Modeling Framework (ESMF) [80, 81, 82] is an effort to develop
a standard framework for applications in climate and weather modeling. The ESMF provides a
substantial infrastructure of data structures and commonly used utilities. Higher-level application-
specific functionality is cast in the form of user-provided software components, which employ ESMF
infrastructure and are coordinated in their execution by ESMF superstructure. Though more restricted,
the ESMF’s component model draws on ideas and even terminology of the CCA. Interoperability
between ESMF and CCA frameworks has been demonstrated [83, 84], and a closer linkage between
the two frameworks has been discussed as a possible collaboration.

Astrophysics. The Terascale Supernova Initiative (TSI) [85], which focuses on computational
modeling of core-collapse supernovae, has an aggressive software development agenda in order to
satisfy their scientific goals, including both increasing the fidelity of the models of individual physical
phenomena (such as increasing the dimensionality of models) as well as introducing and refining their
couplings to other aspects of the physics. While not using the CCA tools directly, the team’s new code
developments are increasingly incorporating component concepts into their design, and realizing some
of the same benefits as CCA users [86].

4. Future Directions of the CCA
Many new capabilities that CCA researchers will explore involve capitalizing on the adaptivity
of components. For example, we have recently begun developing component capabilities for
computational quality of service, heterogeneous and hybrid computing architectures, and advanced
software verification, along with a richer suite of components in the CCA toolkit.

By automating the selection and configuration of components to suit computational conditions
imposed by a simulation and its operating environment, we are developing infrastructure for
Computational Quality of Service (CQoS) of CCA components [87, 88, 89, 90, 91, 92]. Motivated
by collaborations in modeling accelerators, combustion, quantum chemistry, and fusion, and in
collaboration with PERC [93], TOPS [40], and TSTT [52] researchers, we are developing a
system that helps application scientists make suitable compromises among performance, accuracy,
mathematical consistency, and reliability. A specific motivating example is the Synergia beam dynamics
application [94] for high-energy accelerators, to which CCA components are being introduced in a new
project [95]. CQoS work here focuses on the automation of appropriate choices for algorithms and
parameters of TOPS linear solver components [41].

While the first SciDAC initiative existed during a period of relative homogeneity among processor
architectures, exotic multi-core and hybrid cores are becoming increasingly common in high-
performance computing. Hybrid computing couples field-programmable gate arrays (FPGAs), floating-
point accelerators, vector processors, and other specialized hardware to traditional compute nodes. We
are extending CCA component technology to manage interactions between special-purpose and general-
purpose code in these heterogeneous environments.

Specification and dynamic enforcement of interface semantics are an important emerging approach
to improving software quality. Whereas industry is doing this model-based software engineering

with XML pre-processors, we are adapting SIDL to specify semantics constraints directly in interface
descriptions [96, 97]. This work will develop a powerful new feature for users to verify the correct use
of third-party software.

5. Conclusion
If component technology is so effective, why isn’t it already in the scientific computing mainstream? The
answer is: time. Ultimately, programming is a human activity. People need time to explore new concepts
before they can apply them effectively in their work. The fact that the strongest examples of the CCA’s
impact on scientific research come from our longest running collaborations is no accident. When one
considers that more than thirty years were required for object-oriented programming to transition from
first implementation (Simula67) to mainstream (ISO C++ standard was formally accepted in 1998), the
results achieved by the CCA Forum in the first five years of SciDAC are remarkable.

There is still much work to do and many technical challenges to overcome. Because scientific
computing spans so many computational architectures, has such demanding performance requirements,
and requires massive parallelism, the work of the CCA Forum is far from complete. Nevertheless, this
paper demonstrates that CCA component technology works, the approach is sound, and its impact on
science continues to compound.

Acknowledgments
This work was funded by the U.S. Department of Energy/Office of Science’s SciDAC program.

The CCA has been under development since 1998 by the CCA Forum and represents the contributions
of many people, all of whom we gratefully acknowledge. We also thank our collaborators outside the
CCA Forum, especially the researchers listed in Table 1, who took the time to contribute (and proof-read)
their stories of how the CCA has affected their work.

Research at Argonne National Laboratory was supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

Some of this work was performed under the auspices of the U.S. Department of Energy by University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under
contract DE-AC-05-00OR22725.

Research at Sandia National Laboratories was supported by the US Department of Energy (DOE),
Office of Basic Energy Sciences (BES), SciDAC Computational Chemistry Program. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94-AL85000.

Research at the University of Utah is also sponsored by the National Science Foundation under
contract ACI0113829, and the DOE ASC Program.

References
[1] M. Douglas McIlroy. Mass produced software components. In P. Naur and B. Randell, editors, Software engineering:

Report on a conference sponsored by the NATO Science Committee, pages 128–155, Garmisch, Germany, October
1968. NATO Scientific Affairs Division.

[2] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley,
2nd edition, 1991.

[3] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley/ACM Press, 1998.
[4] Douglas C. Schmidt and Steve Vinoski. The CORBA component model: Part1, evolving towards component middleware.

C/C++ User Journal, January 2004.
[5] Top 500 list. http://www.top500.org.
[6] Object Management Group. CORBA Component Model Specification, 4.0 edition, April 2006. formal/2006-04-01.
[7] David Iseminger, editor. COM+ Developer’s Reference Library. Windows Programming Reference Series. Microsoft

Press, 2000.

[8] Enterprise JavaBeans Website. http://java.sun.com/products/ejb.
[9] Microsoft .NET homepage. http://www.microsoft.com/net.

[10] Rob Armstrong, Gary Kumfert, Lois Curfman McInnes, Steven Parker, Ben Allan, Matt Sottile, Thomas Epperly, and
Tamara Dahlgren. The CCA component model for high-performance computing. Intl. J. of Concurrency and Comput.:
Practice and Experience, 18(2), 2006.

[11] Tamara Dahlgren, Thomas Epperly, Gary Kumfert, and James Leek. Babel User’s Guide. CASC, Lawrence Livermore
National Laboratory, Livermore, CA, babel-0.99.0 edition, 2006.

[12] Benjamin A. Allan and Rob Armstrong. Ccaffeine framework: Composing and debugging applications interactively and
running them statically, June 2005.

[13] The XCAT project. http://www.extreme.indiana.edu/xcat.
[14] Michael J. Lewis and Madhusudhan Govindaraju. The XCAT project. http://grid.cs.binghamton.edu/

projects/xcat.html.
[15] K. Zhang, K. Damevski, V. Venkatachalapathy, and S.G. Parker. SCIRun2: A CCA framework for high performance

computing. In Proceedings of The 9th International Workshop on High-Level Parallel Programming Models and
Supportive Environments, April 2004.

[16] K. Damevski. Parallel component interaction with an interface language compiler. Master’s thesis, University of Utah,
2003.

[17] Felipe Bertrand. Data Redistribution and Remote Method Invocation in Parallel Component Architectures. PhD thesis,
Indiana University, 2005.

[18] Tamara L. Dahlgren. Adaptive Enforcement of Component Interface Assertions. PhD thesis, University of California
at Davis, One Shields Avenue, Davis, CA, 945616, In Progress. Also available as Lawrence Livermore National
Laboratory Technical Report, UCRL-TH-221328-DRAFT.

[19] SciDAC Computational Facility for Reacting Flow Science (CFRFS). http://www.ca.sandia.gov/cfrfs.
[20] J. Ray, C. A. Kennedy, S. Lefantzi, and H. N. Najm. Using high-order methods on adaptively refined block-structured

meshes–discretizations, interpolations, and filters. SIAM Journal on Scientific Computing, 2006. in review.
[21] S. Lefantzi, J., C. A. Kennedy, and H. N. Najm. A component-based toolkit for reacting flows with high order spatial

discretizations on structured adaptively refined meshes. Progress in Computational Fluid Dynamics: An International
Journal, 5(6):298–315, 2005.

[22] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer. RKC time-stepping for advection-diffusion-reaction problems. J.
Comput. Phys., 201(1):61–79, 2004.

[23] J. C. Lee, H. N. Najm, S. Lefantzi, J. Ray, M. Frenklach, M. Valorani, and D. Goussis. A CSP and tabulation based
adaptive chemistry model. Combustion Theory and Modeling, 2006. in press.

[24] M. Valorani, F. Creta, D. A. Goussis, J. C. Lee, and H. N. Najm. An automatic procedure for the simplification of
chemical kinetics mechanisms based on CSP. Combustion and Flame, 2006. in press.

[25] Nicholas Dale Trebon. Performance measurement and modeling of component applications in a high performance
computing environment. Master’s thesis, University of Oregon, June 2005.

[26] J. Ray, N. Trebon, S. Shende, R. C. Armstrong, and A. Malony. Performance measurement and modeling of component
applications in a high performance computing environment : A case study. Technical Report SAND2003-8631, Sandia
National Laboratories, November 2003. Accepted, International Parallel and Distributed Computing Symposium,
2004, Santa Fe, NM.

[27] B. A. Allan, S. Lefantzi, and Jaideep Ray. The scalability impact of a component-based software engineering framework
on a growing SAMR toolkit: A case study. In Proccedings of Parallel Computational Fluid Dynamics. Elsevier/North
Holland, May 2005.

[28] S. D. Cohen and A. C. Hindmarsh. CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics, 10(2):138–143,
1996.

[29] R. D. Falgout and U. M. Yang. hypre: A library of high performance preconditioners, in computational science. In
P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors, Lecture Notes in Computer Science, volume
2331, pages 632–641. Springer-Verlag, 2002.

[30] GrACE homepage. http://www.caip.rutgers.edu/TASSL.
[31] E. Aprà, T. L. Windus, T. P. Straatsma, E. J. Bylaska, W. de Jong, S. Hirata, M. Valiev, M. Hackler, L. Pollack,

K. Kowalski, R. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer,
E. Brown, G. Cisneros, G. Fann, H. Früchtl, J. Garza, K. Hirao, R. Kendall, J. Nichols, K. Tsemekham, K. Wolinski,
J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening,
M. Gutowski, A. Hess, J. Jaffee, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng,
T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang.
NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.7. Pacific Northwest National
Laboratory, Richland, Washington 99352–0999, USA, 2005.

[32] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A non-uniform-memory-access programming model for
high-performance computers. J. Supercomputing, 10(2):169, 1996.

[33] M. Krishnan, Y. Alexeev, T. L. Windus, and J. Nieplocha. Multilevel parallelism in computational chemistry using
Common Component Architecture and Global Arrays. In Proceedings of Supercomputing, 2005.

[34] Matthew Farthing, David Sassen, Jan F. Prins, and Cass T. Miller. A problem solving environment for subsurface flow
and transport phenomena. In International Conference on Computational Methods in Water Resources XV. Elsevier,
2004.

[35] S. Zhou, W. Kuang, W. Jian, P. Gary, J. Palencia, and G. Gardner. High-speed network and grid computing for high-end
computation. Intl. J. of Concurrency and Comput.: Practice and Experience, 2006. in press.

[36] W. Kuang and J. Bloxham. Numerical modeling of magnetohydrodyanmic convection in a rapidly rotating spherical shell:
weak and strong field dynamo actions. J. Comp. Phys, 153:51–81, 1999.

[37] W. Kuang and B. F. Chao. Geodynamo modeling and core-mantle interaction. In Dehandt, Creager, Karato, Zatman,
and AGU, editors, Earth’s Core: Dynamics, Structure, Rotation, Geodynamics, 31, pages 193–212. Amer. Geophys.
Union, 2003.

[38] Sameer Shende and Allen D. Malony. The TAU Parallel Performance System. Intl. Journal of High-Performance
Computing Applications, ACTS Collection Special Issue, Summer 2006, 2006.

[39] Sparskit: A basic tool-kit for sparse matrix computations, version 2. http://www-users.cs.umn.edu/˜saad/
software/SPARSKIT/sparskit.html.

[40] SciDAC Terascale Optimal PDE Simulation (TOPS) center. http://tops-scidac.org.
[41] SciDAC Terascale Optimal PDE Simulation (TOPS) center Solver Component. http://www-unix.mcs.anl.

gov/scidac-tops/solver-components/tops.html.
[42] ITSOL: Sparse iterative solvers package. http://www-users.cs.umn.edu/˜saad/software/ITSOL/.
[43] The Massively Parallel Quantum Chemistry program. http://www.mpqc.org/.
[44] S. Benson, L. C. McInnes, J. Moré, and J. Sarich. TAO users manual. Technical Report ANL/MCS-TM-242 - Revision

1.8, Argonne National Laboratory, 2005. http://www.mcs.anl.gov/tao/.
[45] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, Barry F. Smith, and H. Zhang. PETSc users

manual. Technical Report ANL-95/11 - Revision 2.3.1, Argonne National Laboratory, 2006. http://www.mcs.
anl.gov/petsc.

[46] David E. Bernholdt, Benjamin A. Allan, Robert Armstrong, Felipe Bertrand, Kenneth Chiu, Tamara L. Dahlgren, Kostadin
Damevski, Wael R. Elwasif, Thomas G. W. Epperly, Madhusudhan Govindaraju, Daniel S. Katz, James A. Kohl, Manoj
Krishnan, Gary Kumfert, J. Walter Larson, Sophia Lefantzi, Michael J. Lewis, Allen D. Malony, Lois C. Mclnnes,
Jarek Nieplocha, Boyana Norris, Steven G. Parker, Jaideep Ray, Sameer Shende, Theresa L. Windus, and Shujia Zhou.
A component architecture for high-performance scientific computing. International Journal of High Performance
Computing Applications, 20(2):163–202, 2006.

[47] Joseph P. Kenny, Steven J. Benson, Yuri Alexeev, Jason Sarich, Curtis L. Janssen, Lois Curfman Mcinnes, Manojkumar
Krishnan, Jarek Nieplocha, Elizabeth Jurrus, Carl Fahlstrom, and Theresa L. Windus. Component-based integration
of chemistry and optimization software. J. of Computational Chemistry, 24(14):1717–1725, 15 November 2004.

[48] Douglas C. Schmidt and Fred Kuhns. An overview of the real-time CORBA specification. Computer, 33(6):56–63, June
2000.

[49] M. Dı́az, D. Garrido, S. Romero, B. Rubio, E. Soler, and J.M. Troya. Nuclear power plant simulators: A component-
based approach. In Proceedings of Applied Simulation and Modelling - 2005, Benalmádena, Spain, 15 – 17 June 2005.
IASTED.

[50] E. F. Jaeger, L. A. Berry, and D. B. Batchelor. Second-order radio frequency kinetic theory with applications to flow drive
and heating in tokamak plasmas. Phys. Plasmas, 7:641–656, 2000.

[51] A. J. Kemball, R. M. Crutcher, and R. Hasan. A component-based framework for radio-astronomical imaging software
systems. In submission.

[52] Terascale simulation tools and technologies (TSTT) center. http://www.tstt-scidac.org/.
[53] Boyana Norris, Satish Balay, Steve Benson, Lori Freitag, Paul Hovland, Lois McInnes, and Barry Smith. Parallel

components for PDEs and optimization: Some issues and experiences. Parallel Computing, 28:1811–1831, 2002.
[54] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language dependencies from a scientific software

library. In Proceedings of the 10th SIAM Conference on Parallel Processing, Portsmouth, VA, March 2001.
[55] Lois Curfman McInnes, Benjamin A. Allan, Robert Armstrong, Steven J. Benson, David E. Bernholdt, Tamara L.

Dahlgren, Lori Freitag Diachin, Manojkumar Krishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi, Jarek
Nieplocha, Boyana Norris, Steven G. Parker, Jaideep Ray, and Shujia Zhou. Parallel PDE-based simulations using
the common component architecture. In Are Magnus Bruaset, Petter Bjørstad, and Aslak Tveito, editors, Numerical
Solution of PDEs on Parallel Computers, volume 51 of Lecture Notes in Computational Science and Engineering
(LNCSE), pages 327–384. Springer-Verlag, 2006. Also available as Argonne National Laboratory technical report
ANL/MCS-P1179-0704.

[56] Fang Peng, Meng-Shiou Wu, Masha Sosonkina, Ricky A. Kendall, Michael W. Schmidt, and Mark S Gordon. Coupling
GAMESS via standard interfaces. In Proc. of HPC-GECO/Compframe 2006 Joint Workshop, Paris, France, June 2006.

[57] Computational models for studying electorn effects in heavy ion fusion accelerators. http://www.txcorp.com/

projects/\#projects_HIFA.
[58] P. H. Stoltz, S. A. Veitzer, R. H. Cohen, A. W. Molvick, and J. L. Vay. Energy loss, range, and electron yeild comparisons

of the CRANGE ion-material interaction code. Nuclear Instruments and methods in Physics Research, 544:502–505,
2005.

[59] Paul Dubois. Pyfort: The Python–Fortran connection tool. http://pyfortran.sourceforge.net/, August
2002.

[60] SWIG: Simplified Wrapper and Interface Generator. http://www.swig.org.
[61] Pearu Peterson. F2PY: Fortran to python interface generator. http://cens.ioc.ee/projects/f2py2e,

January 2005.
[62] Petascale simulation initiative website. http://www.llnl.gov/CASC/psi.
[63] Gary Kumfert, James Leek, and Thomas Epperly. Babel remote method invocation. In Submission.
[64] Dan Quinlan, Qing Yi, Gary Kumfert, Thomas Epperly, Tamara Dahlgren, Markus Schordan, and Brian White. Toward

the automated generation of components from existing source code. In Second Workshop on Productivity in High-End
Computing, San Francisco, CA, February 2005.

[65] C. E. Rasmussen, M. J. Sottile, S. S. Shende, and A. D. Malony. Bridging the language gap in scientific computing: the
Chasm approach. Concurrency and Computation: Practice and Experience, 18(2):151–162, 2006.

[66] Chasm: Language Interoperability Tools. http://chasm-interop.sourceforge.net/.
[67] Dan Quinlan. Rose compiler infrastructure website. http://www.llnl.gov/CASC/rose, 2006.
[68] Eclipse IDE website. http://www.eclipse.org.
[69] Welf Löwe and Thomas Panas. Rapid construction of software comprehension tools. Intl. Journal of Software

Engineering and Knowledge Engineering: Special Issue on Maturing the Practice of Software Artefacts
Comprehension, 12(54), 2005.

[70] Thomas Panas. A framework for reverse engineering. PhD thesis, Växjō University, Sweden, December 2005.
[71] Component object model. http://www.microsoft.com/com/tech/com.asp, 2003.
[72] Enterprise Java Beans. Enterprise Java Beans. http://java.sun.com/products/javabeans, 2003.
[73] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An Object-Oriented Approach to 3-D Graphics.

Prentice Hall PTR, 2nd edition, 2003.
[74] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: An extensible system for design and

execution of scientific workflows. In 16th Intl. Conf. on Scientific and Statistical Database Management (SSDBM’04),
Santorini Island, Greece, 2004.

[75] Kepler project. http://kepler-project.org.
[76] S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment for computational steering. In

Supercomputing ‘95. IEEE Press, 1995.
[77] S.G. Parker, D.M. Beazley, and C.R. Johnson. Computational steering software systems and strategies. IEEE

Computational Science and Engineering, 4(4):50–59, 1997.
[78] Madhusudhan Govindaraju, Himanshu Bari, and Michael J. Lewis. Design of distributed component frameworks for

computational grids. In The International Conference on Communications in Computation, pages 160–166, June
2004.

[79] Maciej Malawski, Dawid Kurzyniec, and Vaidy Sunderam. MOCCA - towards a distributed CCA framework for
metacomputing. ipdps, 05:174a, 2005.

[80] Earth System Modeling Framework website. http://www.esmf.ucar.edu, 2006.
[81] N. Collins, G. Theurich, C. DeLuca, M. Suarez, A. Trayanov, V. Balaji, P. Li, W. Yang, C. Hill, and A. da Silva. Design

and implementation of components in the earth system modeling framework. Intl. J. High-Perf. Computing Appl.,
19(3):341–350, Fall 2005.

[82] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. da Silva. The architecture of the earth system modeling framework.
Computers in Science and Engineering, 6(1):18–28, 2004.

[83] S. Zhou. Coupling climate models with earth system modeling framework and common component architecture.
Concurrency and Computation: Practice and Experience, 18:203, 2006.

[84] J. Walter Larson, Boyana Norris, Everest T. Ong, David E. Bernholdt, John B. Drake, Wael R. Elwasif, Michael W. Ham,
Craig E. Rasmussen, Gary Kumfert, Daniel S. Katz, Shujia Zhou, Cecelia DeLuca, and Nancy S. Collins. Components,
the common component architecture, and the climate/weather/ocean community. In 84th American Meteorological
Society Annual Meeting, Seattle, Washington, 11–15 January 2004. American Meteorological Society.

[85] Terascale Supernova Initiative website. http://www.phy.ornl.gov/tsi/, 2006.
[86] F. Douglas Swesty and Eric S. Myra. Multigroup models of the convective epoch in core collapse supernovae. In

Anthony Mezzacappa, editor, SciDAC 2005, Scientific Discovery through Advanced Computing, 26–30 June 2005, San
Francisco, CA, USA, volume 16 of Journal of Physics: Conference Series, pages 380–389. Institute of Physics, 2005.

[87] Lois Curfman McInnes, Jaideep Ray, Rob Armstrong, Tamara L. Dahlgren, Allen Malony, Boyana Norris, Sameer
Shende, Joseph P. Kenny, and Johan Steensland. Computational quality of service for scientific CCA applications:
Composition, substitution, and reconfiguration. Technical Report ANL/MCS-P1326-0206, Argonne National

Laboratory, Feb 2006. Available via ftp://info.mcs.anl.gov/pub/tech_reports/reports/P1326.
pdf.

[88] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E. Bernholdt, W. R. Elwasif, A. D. Malony, and S. Shende.
Computational quality of service for scientific components. In Proc. of International Symposium on Component-Based
Software Engineering (CBSE7), Edinburgh, Scotland, 2004.

[89] P. Hovland, K. Keahey, L. C. McInnes, B. Norris, L. F. Diachin, and P. Raghavan. A quality of service approach for high-
performance numerical components. In Proceedings of Workshop on QoS in Component-Based Software Engineering,
Software Technologies Conference, Toulouse, France, June 2003. (also available as Argonne preprint ANL/MCS-
P1028-0203).

[90] J. Ray, N. Trebon, S. Shende, R. C. Armstrong, and A. Malony. Performance measurement and modeling of component
applications in a high performance computing environment : A case study. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium, Los Alamitos, California, USA, April 2004. IEEE Computer Society.
also Sandia National Laboratories Technical Report SAND2003-8631, November 2003.

[91] A. Malony, S. Shende, N. Trebon, J. Ray, R. Armstrong, C. Rasmussen, and M. Sottile. Performance Technology for
Parallel and Distributed Component Software. Concurrency and Computation: Practice and Experience, 17:117–141,
Feb–Apr 2005.

[92] N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony. Performance modeling of component assemblies with TAU.
Presented at Compframe 2005 workshop, Atlanta, June, 2005.

[93] Performance Evaluation Research Center (PERC). http://perc.nersc.gov/.
[94] J. Amundson, P. Spentzouris, J. Qiang, and R. Ryne. Synergia: An accelerator modeling tool with 3-D space charge.

Journal of Computational Physics, 211:229–248, January 2006.
[95] Douglas Dechow (PI). A beam dynamics application based on the common component architecture. Phase-I SBIR

Project, June 2006.
[96] Tamara L. Dahlgren and Premkumar T. Devanbu. Improving scientific software component quality through assertions. In

Proceedings of the Second International Workshop on Software Engineering for High Performance Computing System
Applications, pages 73–77, St. Louis, Missouri, May 2005. Also available as Lawrence Livermore National Laboratory
Technical Report UCRL-CONF-211000, Livermore, CA, 2005.

[97] Tamara L. Dahlgren. Adaptive enforcement of component interface assertions. Technical report, Lawrence Livermore
National Laboratory, Livermore, California, 2006. in progress.

