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Determining how transcriptional regulatory networks are encoded in the human 

genome is essential for understanding how cellular processes are directed.  Here, we 

present a novel approach for systematically predicting tissue specific regulatory 

elements (REs) that blends genome-wide expression profiling, vertebrate genome 

comparisons, and pattern analysis of transcription factor binding sites.  This 

analysis yields 4,670 candidate REs in the human genome with distinct tissue 

specificities, the majority of which reside far away from transcription start sites.  

We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate 

that tissue-specific gene expression relies on multiple regulatory pathways 

employing similar, but different cohorts of interacting TFs.  The methods and 

results we describe provide a global view of tissue specific gene regulation in 

humans, and propose a strategy for deciphering the transcriptional regulatory code 

in eukaryotes.

Increasing lines of evidence point to the observation that the majority of functional 

elements in the human genome are noncoding in nature, yet our ability to systematically 

predict them remains limited.  Most progress in elucidating transcriptional regulatory 

mechanisms has stemmed from computational and experimental analyses of transcription 

factors acting at promoter regions of functionally related cohorts of genes. Whereas 

informative (1-3), studies restricted to promoter-specific regulation sample a small 

portion of the regulatory network in a vertebrate genome and overlook contributions by 

distant regulatory elements (RE) (4, 5). Several recent studies have provided conclusive 

evidence that the complex transcriptional expression patterns of human genes is mediated 
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through multiple unique sequences located hundred of kilobases (kb) away from 

transcription start sites (6, 7).  In these studies, evolutionary sequence conservation has 

served as a reliable indicator of biological activity, and the majority of distant noncoding 

evolutionary conserved regions (ncECRs) examined experimentally in vertebrates, 

function as tissue-specific enhancers (6, 8-10), some of which are linked to human 

disorders (11, 12). In addition, ultraconserved and core ECRs have been shown to control 

the basal gene regulatory activity during key aspects of vertebrate development (9, 13, 

14).  Although genome comparisons have provided a powerful approach for identifying 

evolutionary conserved elements that are under selective pressure, we have yet to develop 

reliable high-throughput computational methods for the discovery of distant REs with 

required functional specificity. Here we introduce a new strategy for converting 

noncoding sequence data into transcriptional regulatory information which serves two 

vital purposes: (1) to define combinatorial arrays of regulatory motifs associated with 

tissue-specific gene expression, and (2) to predict tissue-specific distant enhancers in the 

human genome, de novo.  This approach combines genome-wide tissue-specific gene 

expression profiling (15), vertebrate genome comparisons, and pattern analysis of 

transcription factor binding sites (TFBS). 

For this analysis, the human transcriptome was first parsed into expression groups based 

on the site and level of gene expression.  Thirty four principal tissue specific groups were 

constructed, each including 60 to 250 genes, where each gene was expressed at a 

minimum of 5-fold above the average expression level in that tissue (16); we refer to 

these genes as overexpressors.  Next, we defined the genomic boundaries of each 
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overexpressor by associating each intergenic element with the nearest transcript.  For 

several tissues we observed that the length of the genomic interval and the number of 

associated tissue-specific ncECRs are highly dependent on the tissue-specificity of gene 

expression (Figure 1). The median intergenic size was determined to be 63kb in length, 

with a median number of 39 ncECRs/locus.  Loci harboring heart and liver specific genes 

were on average twice as short, and contained a significantly smaller number of ncECRs.  

In contrast, loci of genes highly expressed in the fetal brain, uterus, spinal cord, and 

kidney were significantly longer than the median and/or were enriched in ncECRs.  

Several other expression groups had either elevated (fetal liver, skin, smooth muscle, 

adipocyte, thyroid, and kidney) or reduced (lung and whole blood) densities of ncECRs 

or loci lengths. A bias towards large loci abundant in ncECRs was observed in embryonic 

and development-related tissues supporting the hypothesis that developmental genes 

benefit from complex transcriptional regulation established through an interplay of 

multiple distant gene regulatory elements (17).

Based on the rationale that highly conserved ncECRs participate in controlling gene 

expression (6, 18), for each transcript in the human genome, we selected the top 5 most 

highly conserved human-mouse ncECRs as candidate transcriptional regulatory elements 

(cREs) to be subjected to sequence pattern analysis (19).  This set of cREs was 

augmented with an additional, less conserved group of ncECRs overlapping promoter 

regions (16, 20), to construct a collection of the most probable proximal and distal cREs.  

Over 103k human ncECRs were selected by this approach with an average density of 5.7 

ncECRs per gene locus.  TFBS mapping and conservation-based filtering (21) across 



5

these elements identified 2.3 million (M) evolutionarily conserved TFBS or cTFBS (22).  

For 15 different tissues, TFBS analysis revealed a significant enrichment in cTFBS of 

transcription factors (TF) known to drive tissue-specific expression (Table S2), thus 

computationally confirming that regulatory proteins known to be active in a particular 

tissue leave a footprint of overrepresented binding sites in genomic loci of highly 

expressed gene targets. For example, we find MEF2 and SRF cTFBS to be enriched in 

cREs associated with overexpressors in skeletal muscle (23, 24), while HEN1 TFBS 

(neuronal stem cell leukemia TF) were overabundant in loci of genes expressed in the 

nervous system (25, 26), consistent with experimental data.  These results indirectly 

confirm that the enrichment of noncoding functional elements matches the tissue 

specificity of gene expression and thus support the computational methods of cRE 

selection.  We find that footprints of individual TF are unreliable markers of tissue-

specificity due to low signal to noise ratio.  For example, while 30% of overexpressors in 

the skeletal muscle expression group contain at least one MEF2 cTFBS, the same is 

observed in 13% of loci that are neutral in this tissue (Table S2).

Gene regulation in vertebrates is believed to be established through an interplay of 

multiple TF that bind to RE in combinatorial fashion (27), and do not simply represent an 

array of repeated TFBS, commonly found in Drosophila (28). To dissect the function of 

long-range vertebrate REs we performed combinatorial cTFBS cluster analysis adapted 

from methods used in vertebrate promoter studies (1, 29).  Statistical analysis of TF pairs 

of cTFBS enriched in expression groups did not detect a noticeable improvement over 

individual TF enrichment analysis. For example, only two TF pairs, ‘MAZR+SRF’ and 
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‘SP1+SRF’ had enriched densities in skeletal muscle loci.  While the latter pair has been 

shown to synergistically activate skeletal muscle genes (30, 31), these two pairs of TFs 

combined are overrepresented in less than 13% of ECRs linked to skeletal muscle 

overexpressor genes.

To overcome this problem, we developed a new combinatorial analysis strategy that 

simultaneously scores the impact of multiple TFs on gene regulation in a particular tissue.  

This is accomplished by assigning a weight to each TF to measure its regulatory potential 

to contribute to tissue-specific transcription.  The sum of individual TF weights assigned 

to the cTFBS profile of a ncECR generates a score for each ncECR and determines its 

regulatory potential as a tissue-specific enhancer [see (16) for details]. TF weights were 

optimized independently in each different expression group to maximize the enrichment 

of positively scoring ncECRs in loci of overexpressed genes and to minimize their 

presence in neutral loci. Several types of regulatory information were generated using 

this method of regulatory element decoding optimization or RED optimization.  We were 

able to (1) catalogue putative tissue-specific REs, (2) identify candidate proximal and 

distant REs for most overexpressor gene loci in the human genome, (3) determine the 

functional impact of each individual TF on tissue-specificity, (4) identify sets of TFs that 

cooperatively function in different tissues, and (5) construct several different gene 

regulatory pathways describing a single tissue-specific gene regulatory mechanism. The 

RED optimization method allowed us to distinguish the tissue specificity of more than 

70% overexpressor gene loci according to their noncoding sequence, while detecting less 

than15% neutral loci (Figure 2 and Table S3). In summary, the genomic analysis of 4,188 
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human genes overexpressed in adult tissues identified 4,670 tissue-specific cREs 

corresponding to 3,559 unique loci. On average, 33% of these cREs overlapped promoter 

regions, 10% - first introns, 2% - 5’UTRs, 7% - 3’UTRs, 23% - other introns, while the 

remaining 25% were intergenic in nature (Table S4); estimating that ~55% of the human 

transcriptome relies on REs distal to the transcriptional start site - consistent with 

previous estimates (4, 5). We found ~20% of genes to harbor more than one cRE 

associated with a particular tissue specificity, suggesting that certain tissues potentially 

require multiple redundant and/or functionally additive regulatory elements; as 

previously proposed in evolutionary studies for the SIM2 locus (32).

Thirty percent of the studied loci (1,253) harbor genes highly expressed in more than one 

tissue. By performing RED optimization for these loci independently in each tissue we 

were able to quantify the ratio of cREs with multiple tissue-specificities by dissecting 

cases of multi-tissue activation that depend either on a single or on multiple cREs.  In 

general, we observed that individual ncECR assigned to multiple different tissues were 

mainly detected in cell-types that are either functionally related or spatially congruent 

(Fig. 3). Sixteen percent of ncECRs (1,986 of 12,147) distributed across 1,105 of these 

loci were classified as tissue-specific cREs, 57% (1,146) of which were assigned by the 

RED optimization method to more than one tissue category (p-value<10-8), through 

independent analysis of each expression group.   Our results suggest that transcriptional 

regulation in tissues that are functionally or spatially interconnected is often achieved 

through shared REs responsible for a specific yet all-encompassing pattern of expression, 

rather than through multiple tissue-specific restrictive REs.  Our finding are in accord 
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with similar broad expression patterns determined in in vivo experiments of candidate 

enhancer elements identified by REs scans of intergenic regions of evolutionary deeply 

conserved genes (6, 8, 9).

Currently, no extensive and/or centralized tissue-specific database of characterized 

vertebrate enhancers exists that would allow one to directly assess the performance of 

new computational methods. While a handful of distant (or long-range) cREs have been 

tested in vivo in several model organisms (9, 25-34), the majority of available validated 

enhancers have been selected from a subset of highly conserved gene loci, known as 

trans-dev genes.  In the adult, trans-dev genes commonly have a broad and sometimes 

ubiquitous expression pattern, as revealed by microarray expression data (15) and thus 

were not classified as overexpressors in a particular tissue in the current study.  From a 

list of five trans-dev genes examined in vivo for the presence of tissues-specific 

enhancers in vertebrate embryos (9), only PAX6 and HLXB9 were highly expressed in an 

adult tissue, the pancreatic islets. In vivo analysis of these genes did not address their 

activity in pancreatic islets, thus preventing us from comparing their enhancers to 

predictions derived from RED optimization analysis.  Nonetheless several published 

examples stand out. Human cardiac/slow skeletal muscle troponin C (TNNC1) is 

associated with cardiomyopathies (33, 34), and was found to be one of the 10 most highly 

expressed genes in skeletal muscles, in this study.  Its regulation in skeletal muscle has 

been examined in great detail, and a critical RE has been identified in the first intron (35, 

36). RED optimization identified three cREs in the TNNC1 locus (Fig. 4), one of which 

corresponds with the previously characterized skeletal muscle RE of this gene (35, 36)
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and contains a pair of MEF2 sites. GNF Expression profiling of TNNC1 indicates that it 

is also highly expressed in two other muscle types – heart and tongue. Our method 

predicted a heart-specific cRE in the second intron and a tongue-specific one in TNNC1’s 

promoter region (Fig. 4).  These predictions do not overlap with the skeletal muscle cRE, 

despite the similar nature of these muscle types. 

Similarly to TNNC1, an element in the promoter region of atrial natriuretic factor (ANF), 

a gene associated with the Holt-Oram syndrome, has been shown to activate expression 

during cardiac development (37, 38). Also, a 3’UTR element has been recently shown to 

play a regulatory role in modeling the ANF heart expression through NRSF-dependent 

repression in ventricular myocytes (39, 40). GNF Expression profiles depicted high ANF 

expression in the adult heart tissue, thus permitting us to include this gene in the analysis. 

RED optimization correctly identified the 3’UTR RE of the ANF but not the promoter 

element, possibly due to differences in transcriptional regulation during embryonic 

patterning and the adult heart. Likewise, RED optimization correctly identified the ApoB 

promoter element as a fetal liver cRE and predicted HNF4 and C/EBP binding to activate 

ApoB expression, in concordance with previous findings (41). RED optimization is 

therefore an efficient approach for deciphering the location of tissue-specific cREs in 

these known cases and can easily be applied on a global scale to identify and prioritize 

candidate tissue-specific enhancers.

Analysis of the distribution of positively scoring TFs across predicted tissue-specific 

cREs revealed that a single TF has a limited impact on the tissue-specificity of gene 
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expression (Table S5), supporting the hypothesis that tissue-specific gene regulation is a 

direct result of an elaborate interplay among multiple TFs.  In our analysis, OCT1 TF 

solely stood out as the exception.  It exhibited 30% occupancy in the fetal brain 

expression group, while the majority of all other tissues displayed a strong dependency 

on cohorts of multiple TFs (Fig. 5; Table S5). To quantify the impact of an individual i-th 

TF on regulating gene expression in a particular tissue t we introduced the parameter t
iI

defined as the product of TF occurrences and its weight, in a tissue-specific group of 

cREs (16). Interestingly, OCT1 groups with nine other TFs determined to have a high 

impact across multiple tissues, such as spinal cord, skeletal muscle, and T cells, to name a 

few. This suggests a key functional and basal position for OCT1 in vertebrate genome 

regulation. Indeed, OCT1 is a member of the POU family of transcription factors known 

to regulate many different processes in mammalian development, activating multiple 

transcriptional regulatory networks and thus residing upstream of many regulatory 

pathways. Non-intuitively OCT1 knockout mice are viable (42), suggesting functional 

redundancy among different members of the POU family.  General OCT cTFBS 

occurrences ranked second to OCT1 in several tissues, including fetal brain and spinal 

cord, further strengthening this hypothesis. 

In fetal liver, a different TF stands out in terms of its potential regulatory impact, the 

hepatic nuclear factor (HNF1). HNF1 is known to be strongly associated with multiple 

hepatic abnormalities including type 2 diabetes, dwarfism, renal Fanconi syndrome, 

hepatic dysfunction and hypercholesterolemia (43). In liver, it has been shown to 

cooperate with another member of its family, HNF4, and several other hepatic related 
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TFs including peroxisome proliferator activated receptor (PPAR) and nuclear 

transcription factor-Y (NFY) to stimulate transcription. Consistent with our expectation, 

these TFs showed a high impact on adult liver regulation (Fig. 5). Also, in the kidney we 

found strong support for HNFs partnering with GATAs and COUPs to co-activate 

transcription in this organ.  Analysis of cREs of genes overexpressed in skeletal muscle 

immediately pinpointed to the well characterized MEF2 TF as a key regulator of gene 

expression in skeletal muscle, as well as highlighted several other skeletal muscle related 

TFs such as serum response factor (SRF), MyoD, and muscle-specific TATA-box 

(MTATA).  Regulatory profile analysis in T- and B-cells generated similar results, where 

we determined that TF containing ETS domains such as ELK-1 play an important 

regulatory role (44, 45).

One of the most critical component in these methods that allowed us to achieve a high 

degree of separation between tissue-specific and neutral loci (Fig. 2) has been the binning 

of tissue-specific regulation into separate gene regulatory pathways (achieved by 

attributing different TF weights to each pathway).  From 2 to 7 pathways were assigned 

to each tissue specificity (16). For example, in the liver, we observed five distinct gene 

regulatory pathways with a different interplay of TFs cohorts constituting each pathway 

(Fig. 6). As previously mentioned, both HNF1 and HNF4 are actively involved in 

regulating liver-specific genes and this analysis demonstrates some of the details of their 

versatility. While HNF4 is the only TF shared by all five pathways, HNF1 segregates 

uniquely to the pathway that encompasses the largest number of liver overexpressors 

(46%), and therefore has the highest impact on this pathway.  Five other TFs (or TF 
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dimers, such as HNF4:DR1 complex) contribute to more than 2 pathways and 18 others 

are specific to only one of the pathways suggesting that liver specific transcriptional 

regulation can not be described universally by a single cohort of interacting TFs, but 

rather employs several distinguishable regulatory networks.

Cross-species conservation analysis of predicted cREs detects rapid evolution of REs 

across vertebrates consistent with previous studies (46). Ten percent of cREs are 

conserved in chicken, 5.5% in frog, and 3% in fish (Fugu and/or zebrafish). However, we 

detected distinct differences in the rates of evolutionary change in several tissues (16)

(Fig. 7). Only 2% of trachea specific cREs were conserved in chicken, and none in frog 

or fish, while cREs associated with genes overexpressed in the uterus ranked more than 

50% above the average in the number of cRE for each species. Conservation of smooth 

and skeletal muscle cREs displayed an interesting evolutionary profile. While these 

elements were relatively similarly conserved in chicken, far fewer smooth muscle cREs 

were conserved in frog and/or fish compared to those in skeletal muscle. Phenotypic 

adaptations of amphibians and fish may provide an explanation for these computational 

observations. At a different extreme, in the pancreas and pancreatic islets we observed a 

3-fold decrease in the percentage of cREs conserved in chicken, while intact values were 

recorded for frog and fish (Fig 7). 

Our study provides an initial systematic whole-genome analysis of the noncoding 

segment of the human genome to computationally predict the location and tissue-

specificity of proximal and distal REs. While similar analyses have been carried out for 
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promoter sequences, this is the first attempt to comprehensively include potential 

regulatory sequences that act at a distance.  The approach we developed combines tissue-

specific gene expression profiling (15), genome comparisons and combinatorial TFBS 

pattern analysis to predict and catalogue putative tissue-specific distant enhancers in the 

human genome. Most importantly, our analysis was able to evaluate the potential 

functional contribution of each individual TF to tissue-specific gene activation, 

recapitulating known interactions, and describing novel relationships between TFs.  We 

also present a new method of quantifying combinatorial interactions that allows us to 

distinguish between different cooperative interactions of the same TF, in different tissues.  

This method can be applied to the analysis of any set of co-expressed genes; thus 

providing a rapid and efficient approach for translating microarray expression data into 

process- and/or tissue-specific gene regulatory principles.  The results presented here 

contribute to the ongoing efforts of identifying and cataloguing all functional elements in 

the human genome to create a foundation for computationally characterizing gene-

regulatory sequences and elucidating gene-regulatory networks.

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.
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Figure legends.

Figure 1. Number of ncECRs (A) and locus length (B) of genes overexpressed in 

different tissues. Bounded horizontal lines represent the interquartile range (the distance 

between the 25th and 75th percentiles) of the tissue-specific distributions, solid colored 

rectangles measure the standard error in median calculations (white lined inside colored 

rectangles). Statistically significant (<5%) distributions that deviate from the median 

(represented by a solid vertical black line) are marked by an asterisk on the left side bar. 

Tissues where the median value is 2-fold smaller or larger than the median are marked by 

a vertical line on the left side bar. Tissues are color coded as follows: orange – brain; blue 

– nervous system; red – muscles; green – immune system; light blue – glands; yellow –

testis; gray – other.

Figure 2. Percentage of loci identified by RED optimization after the TF weights 

optimization. Tissues sorted by the ratio of overexpressed to neutral percentage, which 

varied from 3.5 to 40.2 for trachea and fetal brain tissues, correspondingly. Dotted orange 

lines demarcate threshold of 15% and 70% utilized for the selection of the optimal 

number of gene regulatory pathways (16).

Figure 3. Venn diagrams representing overlaps in cREs from different tissues for 4 

selected overlapping groups (A). Percentage of unique cREs and the tissue with the 

largest percentage of overlapping cREs (if larger than 5%) (B).

Figure 4. ECR Browser evolutionary conservation of the TNNC1 locus. ncECRs 

depicted as color coded regions (UTRs in yellow, introns in light red, intergenic in red) 

with gradient color bars above. Three tissue-specific cREs were detected in this locus, as 

marked.
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Figure 5. Importance and occupancy of individual TFs in ten selected tissues (fetal brain, 

fetal liver, spinal cord, liver, thyroid, kidney, skeletal muscle, smooth muscle, T- and B-

cells).

Figure 6. RED optimization identified five different regulatory pathways that describe 

liver specific gene regulation of overexpressor genes. We extracted the statistics of TF 

contributions to different pathways limiting to ten TFs with the largest occupancy per 

pathway and requiring a TF to be present at least twice and to contribute to at least 5% of 

the genes in a pathway. Gray boxes represent individual pathways with the count of 

genes given at the bottom of each box and a list of TFs that are unique to that pathway 

listed inside the box. TFs contributing to more than one pathway are listed outside of gray 

boxes with the lines connecting them to the pathways they contribute to.

Figure 7. Conservation of cREs in chicken, frog, and fish binned by tissue specificity and 

sorted by conservation in chicken.
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Figure 1.
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Figure 2. 
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Figure 3. 

A) B)
Tissue % of 

unique 
cREs

Tissue with the largest overlap in 
cREs; % of overlapping elements

BM-CD33+ myeloid 46.2 whole blood 25.6
BM-CD34+ 59.9 BM-CD71+ early erythroid 13.6
BM-CD71+ early erythroid 72.8 BM-CD34+ 13.1
PB-BDCA4+ dentritic cells 45.2 BM-CD33+ myeloid 19.5
PB-CD19+ Bcells 54.7 PB-BDCA4+ dentritic cells 17.3
PB-CD8+ Tcells 59.1 whole blood 17.2
adipocyte 71.6 smooth muscle 7.4
adrenal gland 80.9 -
bone marrow 51.8 whole blood 18.1
bronchial epithelial cells 76.0 -
cardiac myocytes 66.0 smooth muscle 14.2
fetal brain 70.5 whole brain 17.9
fetal liver 53.2 liver 32.3
heart 77.1 skeletal muscle 8.9
kidney 75.0 liver 13.1
liver 60.1 fetal liver 19.4
lung 77.4 -
pancreas 73.1 pancreatic islets 21.5
pancreatic islets 63.8 pancreas 15.7
placenta 79.5 -
prostate 73.3 trachea 6.1
skeletal muscle 69.6 tongue 17.6
skin 80.3 tongue 8.2
smooth muscle 69.8 cardiac myocytes 12.2
spinal cord 64.9 whole brain 16.5
testis 89.8 -
thymus 60.6 whole blood 15.5
thyroid 78.4 -
tongue 61.8 skeletal muscle 16.8
trachea 66.7 prostate 8.3
trigeminal ganglion 90.1 -
uterus 75.0 -
whole blood 45.9 BM-CD33+ myeloid 24.8
whole brain 63.6 fetal brain 19.1
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Figure 4. 
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Figure 5.
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Figure 6.
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Figure 7.
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