
UCRL-CONF-218814

GPU Accelerated
Smith-Waterman

Y. Liu, W. Huang, J. Johnson, S. Vaidya

February 9, 2006

International Conference on Computational Science
Reading, United Kingdom
May 28, 2006 through May 31, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71306854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

GPU Accelerated Smith-Waterman

Yang Liu1, Wayne Huang1,2, John Johnson1, and Sheila Vaidya1

1 Lawrence Livermore National Laboratory
2 DOE Joint Genome Institute

{liu24,whuang,jjohnson,vaidya1}@llnl.gov

Abstract. We present a novel hardware implementation of the double
affine Smith-Waterman (DASW) algorithm, which uses dynamic pro-
gramming to compare and align genomic sequences such as DNA and
proteins. We implement DASW on a commodity graphics card, taking
advantage of the general purpose programmability of the graphics pro-
cessing unit to leverage its cheap parallel processing power. The results
demonstrate that our system’s performance is competitive with current
optimized software packages.

1 Introduction

Sequence comparison [1] is a fundamental tool for genome scientists to infer
biological relationships from large databases of related DNA and proteins se-
quences. This task cannot be adequately solved by traditional string matching
methods because genomic sequences that share the same biological purpose mu-
tate over time when exposed to evolutionary events, and may no longer match
identically. Genomic sequence comparison tools such as BLAST and HMMer
are based upon approximate string matching principles that measure the overall
similarity between strings and are thus more tolerant of mismatches.

This fuzzy string matching problem can be formulated in two different ways.
The similarity between two strings can be assessed explicitly, by minimizing an
ad hoc cost function (e.g. edit distance) over all possible alignments between the
strings. Alternatively, a similarity score can also be computed stochastically, by
finding the maximum likelihood path through a hidden Markov model (HMM)
trained from an input string. Both of these approaches are optimization prob-
lems that require dynamic programming (DP) to solve. The DP step is often
very computationally expensive, especially when comparing large strings. For-
tunately, the data dependencies in the recurrence relations allow some degree
of parallelism and the computation for some cell entries of the DP table can
be distributed across a set of processors. This paper describes a parallel hard-
ware implementation of the double affine Smith-Waterman (DASW) alignment
algorithm [2][3]. DASW uses DP to find the best local alignment between two
genomic sequences by optimizing a scoring function across all possible alignment
arrangements, taking into consideration mismatches and gaps in either sequence
to maximize the total amount of base pairings.

We chose to implement DASW on a graphics processing unit (GPU) because
GPUs are cheaper, commercially available, and better suited for SIMD com-
putation than conventional CPUs and many other special-purpose processors
(i.e. ClearSpeed [4]). In fact, graphics cards can already be commonly found in
many desktop and laptop computers. Moreover, we can also leverage existing
visualization clusters to accelerate genomic sequence comparison between large
databases, which often require days to compute on a single processor.

The NVIDIA GeForce 7800 GTX card in our system contains 24 processors
with an aggregated peak compute performance of 313 GFLOPS. Unfortunately,
the GPU’s internal memory bandwidth of 38.4GB/s limits the performance of
most memory-bound applications (such as DASW) to around 70 GFLOPS. How-
ever, this is still very impressive, especially given that the estimated retail cost of
the graphics card is only about $500. A dual-core Intel Pentium D 840 processor
running at 3.2GHz achieves roughly 25.6 GFLOPS using the SSE3 extensions
and costs around $600. In comparison to CPUs, GPUs have much better cost-
performance. However, GPUs are also much more difficult to program since they
are designed to accelerate computer games and graphics applications. In practice
it is difficult for general computational (i.e. non-graphics) tasks such as DASW
to efficiently exploit data parallelism on the GPU architecture due to its strict
resource constraints, limited data formats, communication overheads, and re-
strictive programming models. Furthermore, the GPU cannot efficiently share
data with the CPU since memory transactions across the PCI-Express bus are
very slow (4 GB/s) relative to the processing power and internal bandwidth of
the graphics card. Intermediate data must reside completely in texture mem-
ory and be processed entirely on the GPU to avoid the bandwidth bottleneck.
However, a typical commodity graphics card has only 256MB of texture mem-
ory, which may be insufficient for applications on large data sets. Nevertheless,
despite these practical challenges, many computational problems have been al-
ready implemented on the GPU, achieving on average, several times speedup
over respective optimized software implementations. These performance gains
are encouraging for cheap high performance computing and show the potential
of GPUs as versatile math co-processors.

2 Related Work

Since genomic sequence comparisons are very expensive to compute in software,
several hardware systems have been proposed to accelerate this task. ClawH-
MMer [5] is a streaming implementation of hmmsearch on a GPU, reporting
performance at least twice as fast as the best optimized software packages.
ClawHMMer implements the Viterbi algorithm, which uses DP to find the most
likely path through a trained HMM network. In order to maximize throughput,
ClawHMMer processes several sequence comparisons in parallel. Our system, in
contrast, still achieves parallelism but processes sequence comparisons one at a
time to also minimize the latency of individual comparisons. TimeLogic’s De-
Cypher card uses field programmable gate array (FPGA) chips to implement the

logic for DP used by the DASW and HMMer algorithms. FPGAs are favored
for their reconfigurability and fast integer arithmetic, but are also nontrivial to
program. Rognes, et al [6] reported a six-fold speedup in their Smith-Waterman
implementation using Intels MMX and SSE3 extensions by hand-tuning inline
assembly instructions. Unfortunately, a notable drawback is that their imple-
mentation store alignment scores in 8-bit, and cannot perform long sequence
comparisons where the scores are expected to exceed 255.

3 Smith-Waterman Algorithm

The Smith-Waterman algorithm computes the optimal local alignment for a
pair of sequences according to a scoring system defined by a substitution matrix
and gap penalty function. The substitution matrix is a symmetric matrix that
assigns the cost of pairing bases together. The costs are derived from the observed
substitution frequencies in alignments of related sequences. Each potential base
pair is given a score representing the observed frequencies of such an occurrence
in alignments of evolutionarily related sequences. This score also reflects the
sample frequency of each base since some bases occur more frequently in nature
than others. Identities are usually assigned the highest positive scores, frequently
observed substitutions also receive positive scores, but matches that are observed
to be highly unlikely are penalized by negative scores. The two most popular
sets of substitution matrices for comparing long sequence are the BLOSUM and
PAM matrices [7][8]. Smith-Waterman also supports gaps in the sequences at a
penalty to maximize the substitution score. The parameters of the gap penalty
function influence the length and frequency of gaps allowed in the alignment.
There are generally three types of gap penalty functions:

constant : g(n) = bn

single affine : g(n) = a + bn

double affine : g(n) = a + min(n, k)b0

+max(0, n− k)b1

(1)

The constant gap function assigns a fixed cost to each gap space, regardless
of its placement in the alignment. The single affine gap function penalizes gap
creation to encourage the placement of new gap spaces to extend existing gaps
rather than opening new ones. This is a more plausible model for gaps in genomic
sequences since a gap of more than one space can be accounted for by a single
evolutionary event. The double affine gap function extends this idea by assessing
a separate penalty for each gap space that extends a gap beyond the threshold of
spaces; is usually set smaller than to encourage longer gaps. We implement this
function in our system since it generalizes both the constant and single affine
gap functions. The optimal sequence alignment according to this scoring system
is found by evaluating a set of recurrence relations over each cell of the DP table.
For example, the following relations compute the optimal alignment using the

1

1

2

2

2

0 3

3

3

3

4

4

4

5

5 6

s0 s1 s2 s3

t0

t1

t2

t3

Fig. 1. Data dependency for DP computation. Cells from each diagonal are mutually
independent, and depend only on cells from the previous two diagonals.

single affine gap penalty function:

E0,j = Ei,0 = D0,j = Di,0 = I0,j = Ii,0 = 0
Ei,j = max{0, Ei−1,j−1 + match(si, tj), Di,j , Ii,j}
Di,j = max{Ei−1,j + a, Di−1,j + b}
Ii,j = max{Ei,j−1 + a, Ii,j−1 + b}

Mi,j = max{Ei,j , Ei−1,j , Ei,j−1}

(2)

s = s0s1 . . . sm−1 and t = t0t1 . . . tn−1 are the two input sequences, match is the
substitution cost matrix, and a, b are the single affine penalties for respectively
opening and extending a gap. Implementing the double affine gap penalty func-
tion requires the intermediate gap lengths to be associated with Di,j and Ii,j to
select the appropriate penalty for b. The purpose of Mi,j is to track the maxi-
mum alignment score for all cells (intermediate alignments) in the DP table – the
final maximum alignment score will be propagated to the last cell Mm−1,n−1.
Pointers for each Mi,j are also maintained to track the cell location with the
maximum alignment score and simplify the alignment trace back step.

Figure 1 illustrates the data dependencies involved in computing the recur-
rence relations over the DP table. In a single processor system, DP cells are
processed sequentially, but a multiprocessor system can efficiently exploit the
data dependencies by processing independent cells from each DP table diag-
onal (up to min(m, n) cells) in parallel. Furthermore, the data dependencies
also allow opportunities for cache optimization; only two diagonals are accessed
during a computation pass so a sufficiently large LRU cache can maximize its
cache coherency. With p = min(m, n) processors, the DP table can be computed
in (m + n − 1) passes by sequentially processing each diagonal. Unfortunately,
there is some efficiency loss since a few processors must stall when processing
non-major diagonal. The total number of stalls in the DP computation is p(p−1).
However, the query sequence is commonly matched against a database of many
target sequences, and the computation of the DP tables can be interleaved to-
gether to amortize the processor stalls.

p
0
p
1
p
2
p
3

i=0

i=1

i=2

i=3

i=6

i=5

i=4

(a)

(b) (c)

Fig. 2. The data dependency shown in (a) allows cell computations to be assigned to
a set of processors as shown in (b). The wasted space can be amortized over several
query sequence comparisons by connecting their DP tables together as shown in (c).

4 GPU Implementation

We implement DASW on the NVIDIA GeForce 7800 GTX graphics card using
the OpenGL API, and the GL shading language (GLSL). Our implementation
only involves two stages from the OpenGL rendering pipeline: geometry trans-
formation and fragment rasterization. The geometry serves as the proxy that
initializes the pipeline for the DP computation and defines the area of computa-
tion. After copying the query and target sequence data to texture memory, for
each diagonal, the geometry transformation stage is passed (the vertices of) a
quadrilateral that can compactly contain the DP cells of the diagonal. The di-
mensions of this quadrilateral must be carefully chosen to minimize wasted cells
and to take advantage of any tiling optimizations on the GPU. The geometry
transformation stage assigns to each constituent fragment from the quadrilateral
a unique texture coordinate address and then engages the fragment rasterization
stage, where the DP recurrence relations are evaluated over the fragments by
a set of processors. The resulting pixel values are stored into an image buffer
in texture memory, to be reused in subsequent passes. This computation loop
proceeds until all diagonals have been processed. The last cell in the DP table
contains the optimal alignment score Mm−1,n−1 and is retrieved from texture
memory. If alignment generation is desired, then up to (m + n − 1) more pixels
are copied out of texture memory, comparing the intermediate values of Ei,j

with Di,j to build the alignment.

Geometry Transformation

Fragment Rasterization

Sequence

Data

Bu!er

i-2

Bu!er

i-1

Bu!er

i

Texture Memory

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

i=5

Optimal

Score

Fig. 3. OpenGL rendering pipeline. An execution pass is initiated at the geometry
transformation stage by drawing a quadrilateral representing the cells of a DP table
diagonal. The cells are processed by the fragment rasterization stage and the results
are saved to a queue of buffers in the texture memory, to be accessed for subsequent
passes. Computation proceeds until the last cell is processed; this cell contains the
optimal alignment score.

In each execution pass, a fragment processor can output a maximum of 16
components per pixel. Although each component can be represented in 32-bit
floating point, we opted to represent our data using 16-bit floats to save storage
and bandwidth. In our DP table, each cell must maintain Ei,j , Di,j , Ii,j , two
gap lengths, and the local maximum alignment score along with its respective
pointer (represented by two components), requiring a total of 8 components.
Since there are 16 components available, we can compute and store the data of
two DP table cells per pass in each pixel. We batch the data such that two DP
tables are computed simultaneously to amortize the cost of initiating each exe-
cution pass through the pipeline. The target sequences are batched as follows:
we divide the set of target sequences into two sets of sequences with roughly the
same total number of bases and form an aggregate target sequence from each set
by concatenating individual target sequences together, separating them by a spe-
cial delimitation character. The two aggregate sequences, along with the query
sequence are then copied into texture memory. When the fragment processor
encounters the special delimitation character during a cell computation, it sets
its corresponding pixel component values to zero. This introduces a little extra
overhead cost but is convenient since it effectively resets the initial conditions
for the next DP table computation, which allows us to interleave query-target
comparisons as shown in Figure 2.

Since only high scoring sequence alignments are interesting candidates for
alignment trace back, actual score, we implemented two modes of DASW on
the GPU: one that supports alignment trace back (ATM), and another faster
version that only computes the alignment score (ASM). In order to compute the

Table 1. Table of results for a single query sequence (16,384 bases) compared against
983 target sequences (462,862 bases)

Platform Total time Throughput
(sec) (106 cells/sec)

CPU (osearch34) 147.46 51.43
CPU (ssearch34) 63.17 120.05

GPU (ATM) 42.51 178.41
GPU (ASM) 31.45 241.12

alignment trace back, ATM requires the entire DP table to fit within texture
memory (a graphics card with 256MB of texture memory can store roughly
222 DP cells). Otherwise, if the texture memory overflows, the resulting paging
across the PCI-Express bus will cripple the GPU’s performance. In contrast,
ASM only needs to store three diagonals worth of DP cells in texture memory.
Furthermore, ASM does not need to maintain any pointers, so each pixel only
needs to store 12 components (two DP cells), which amounts to roughly a 25%
savings in total bandwidth over ATM. ASM is faster than ATM and can be used
to filter out poor matches. If high homology is not expected, ASM can be used
to identify high scoring query-target comparisons in a first pass, so that they
can be recomputed by ATM to generate their full alignments in a second pass.

5 Results

We benchmark our system using two reference programs selected from the FastA
suite [9]: osearch34 is a software implementation of Smith-Waterman using
single-affine gap penalties that takes advantage of several caching optimizations.
ssearch34 extends this implementation by also including Phil Green’s SWAT
optimization [10]. SWAT follows a heuristic that ignores paths through the DP
table where the score would be less than the gap open penalty and essentially
allows the algorithm to skip the computation for some cells. However, the perfor-
mance of SWAT highly depends on the gap penalty value; it is not very useful
for small gap penalties and cannot be used at all if very high gap penalties
are required. Our test system is a 3.2GHz Pentium D 840 processor with 2 GB
RAM, equipped with a NVIDIA GeForce 7800 GTX card. We measured the per-
formance of our system by aligning a single query protein sequence consisting
of 16,384 amino acids against a database of 983 protein sequences, altogether
consisting of 462,862 amino acids, a computation of roughly 7.5 billion DP cells,
which is representative of problem sizes in genomic sequence comparison. We
used BLOSUM62 for the substitution cost matrix with single affine gap penal-
ties a = −12, b = b0 = b1 = −2, and k = 0. These parameters are typical for
most genomic sequence comparisons.

6 Discussion

The Smith-Waterman algorithm is a computationally-intensive string match-
ing operation that is fundamental to the analysis of proteins and genes. Our
novel implementation of the Smith-Waterman algorithm exploits the parallel
processing power of GPUs to achieve a two-fold speedup over the best optimized
software implementation. Our system is general enough to support arbitrarily
complex gap penalty functions and allows very long sequence comparisons (query
sequence sizes up to 222 bases and target sequences of unlimited length). The
memory bottleneck of our system limits its computational potential. This situa-
tion may improve as GPUs increase their internal bandwidth, expose caches to
reduce communication costs, or allow instruction scheduling to conceal memory
latency. Our future work includes building a threaded cluster implementation to
distribute the work for genomic sequence comparisons among several CPU and
GPU nodes to take advantage of existing visualization clusters equipped with
high-end GPUs. Furthermore, our GPU framework for evaluating DP extends
to other optimization problems, and we are interested in identifying applications
that can benefit from this acceleration.

References

1. Brenner, S., Chothia, C., T.J.P., H.: Assessing sequence comparison methods with
reliable structurally identified distant evolutionary relationships. Proc. National
Academy of Science 95 (1998) 6073–6078

2. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of
Molecular Biology 162 (1982) 705–708

3. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147 (1981) 195–197

4. ClearSpeed: AdvanceTM Board, http://www.clearspeed.com/index.html. (2006)
5. Horn, R., Houston, M., Hanrahan, P.: ClawHMMer: A streaming HMMer-search

implementation. Proc. Supercomputing (2005)
6. Rognes, T., Seeberg, E.: Six-fold speed-up of Smith-Waterman sequence database

searches using parallel processing on common microprocessors. Bioinformatics 16

(2000) 699–706
7. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.

Proc. National Academy of Science 89 (1992) 10915–10919
8. Pearson, W.: Effective protein sequence comparison. Meth. Enzymol 266 (1996)

227–258
9. Pearson, W., Lipman, D.: Improved tools for biological sequence comparison. Proc.

National Academy of Science 85 (1988) 2444–2448
10. Green, P.: SWAT Optimization, http://www.phrap.org/phredphrap/general.html.

(2006)

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

