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We propose a modified x-ray form factor that describes the scattering cross section in warm
dense matter valid for both the plasma and the solid (crystalline) state. Our model accounts for
the effect of lattice correlations on the electron-electron dynamic structure, as well as provides
a smooth transition between the solid and the plasma scattering cross sections. In addition, we
generalize the expression of the dynamic structure in the case of a two-temperature system (with
different electron and ion temperatures). This work provides a unified description of the x-ray
scattering processes in warm and dense matter, as the one encountered in inertial confinement
fusion, laboratory astrophysics, material science, and high-energy density physics and it can be used
to verify temperature relaxation mechanisms in such environments.

PACS numbers: 52.70.La,71.10.Ca,61.10.Eq,52.38.-r,52.27.Gr,61.20.Ne

I. INTRODUCTION

X-ray scattering of solid density plasmas has been
proved a successful technique for the characterization of
warm and dense states of matter [1–5], as the ones cre-
ated in high energy density experiments relevant for iner-
tial confinement fusion (ICF) [6] and found in the interior
of stars and planets. It was shown that by extending the
theory of spectrally resolved Thomson scattering to the
hard x-ray regime, accurate measurements of the elec-
tron temperature, electron density and ionization state
can be obtained. In this respect, comparison of the ex-
perimental results with equation of state (EOS) models
has revealed important insights on the microscopic state
of solid density beryllium and carbon plasmas [2, 4].

Those experiments were aimed to study relatively high
temperature regimes, where the matter is in a plasma
state. On the other hand, as the temperature is de-
creased and the degree of coupling between charged par-
ticles increases, a transition from a plasma to a solid
state occurs. This transition involves the formation of
highly ordered arrangements of the atoms (i.e., a crys-
tal is formed) as well as an overall modification of the
energy states available to the electrons. In addition to
crystallization, indication of a plasma phase transition in
hydrogen at T ∼ 1 eV involving a change of its chemical
composition has been discussed [7, 8]. The changes in
the electron binding that occurs at the onset of a phase
transition are characterized by a corresponding change
the macroscopic transport properties such as electrical
and thermal conductivities. On the other hand, these
properties are extremely important for a correct under-
standing of the EOS and the optical behavior of mat-
ter found in laboratory and astrophysical environments,
such as ICF, interior of planets, and high-energy den-
sity physics. Theoretical studies on the plasma to solid
phase transition in a one component plasma have been

presented in the context of spectroscopy of astrophysical
clouds in the Galaxy [9]. These changes in both spatial
arrangements and energy states also reflect in a change
of the way light is scattered by these systems.

In this work we provide a unified description of the x-
ray scattering form factor (the dynamic structure factor),
which is the fundamental quantity describing the x-ray
cross section, for both non-equilibrium conditions (with
separate temperatures for ions and electrons) and either
at the plasma or the solid state. Our results, for exam-
ple, can be applied to interpret experiments from solid
density plasmas undergoing crystallization, thus provid-
ing a powerful experimental technique for the validation
of EOS models in such regimes [10, 11]. Time resolved
diffraction experiments on liquid-to-solid phase transi-
tions have also recently been presented [12–14]. While in
those original studies work was done in the understanding
of the change of the Bragg reflected light, in the present
study we mainly concentrate our analysis on the scatter-
ing processes occurring outside the Bragg peaks. Finally,
we provide necessary framework for the understanding of
x-ray scattering experiments from shock heated matter,
where strong non-equilibrium conditions may exists [15]
as well as to study temperature relaxation in radiatively
heated matter [16]. The paper is organized as follows: in
§II A-§II B we introduce the basic concepts of the model;
in §II C we develop a two-temperature plasma model;
§II D is devoted to the inclusion of lattice effects while
§II D discusses the effect of energy bands. All of these ef-
fects are put together in §III where synthetic spectra for
conditions found in laser plasma experiments are con-
structed. A summary and concluding remarks are drawn
in §IV.



II. THEORY

A. Basic concepts

Following the discussion in Ref. [17], we describe the
scattering from a uniform plasma containing N ions per
unit volume. If ZA is the nuclear charge of the ion, the
total number of electrons per unit volume in the sys-
tem, including free and bound ones, is ZAN . Let us
now assume we probe such a system with x-rays of fre-
quency ω0 such that h̄ω0 ≫ EI , with EI the ionization
energy of any bound electron, i.e., the incident frequency
must be large compared to any natural absorption fre-
quency of the scattering atom, which allows us to ne-
glect resonant scattering. During the scattering process,
the incident photon transfers momentum h̄k and energy
h̄ω = h̄ω0−h̄ω1 to the electron, where ω1 is the frequency
of the scattered radiation, and in the non-relativistic limit
(h̄ω ≪ h̄ω0) accounting for refractive index change:

k = |k| =
4π

λ0
sin (θ/2)

√

1 −
ω2

pe

ω2
c

, (1)

with λ0 = 2πc/ω0 the probe wavelength, θ the scatter-
ing angle, ωpe = (e2ne/ǫ0me)

1/2 the electron plasma fre-
quency and ωc = 2πc/λ0 the critical frequency. Here ne

is the electron density, me is the electron mass, and c is
the speed of light. We denote with Zf and Zc the num-
ber of free and bound electrons, respectively. Clearly,
ZA = Zf + Zc. Here Zc includes both tightly bound and
weakly bound electrons. These electrons are bound to a
single atom. Since Zf represents electrons which are not
bound to any single atom, we will also refer to it as the
number of delocalized, valence or conduction, electrons.
Following the approach of Chihara [18, 19] the scatter-
ing cross section is described in terms of the dynamic
structure factor of all the electrons in the plasma:

S(k, ω) = |fI(k) + q(k)|2Sii(k, ω) + ZfS0
ee(k, ω)

+Zc

∫

S̃ce(k, ω − ω′)Ss(k, ω′)dω′. (2)

The first term in Eq. (2) accounts for the density corre-
lations of electrons that dynamically follow the ion mo-
tion. This includes both the bound electrons, represented
by the ion form factor fI(k), and the screening cloud of
free (and valence) electrons that surround the ion, repre-
sented by q(k) [3]. Sii(k, ω) is the ion-ion density correla-
tion function. The second term in Eq. (2) gives the con-
tribution in the scattering from the free electrons that do
not follow the ion motion. Here, S0

ee(k, ω) is the high fre-
quency part of the electron-electron correlation function
[20] and it reduces to the usual electron feature [21, 22]
in the case of an optical probe. Inelastic scattering by
bound electrons is included in the last term of Eq. (2),
which arises from bound-free transitions to the contin-
uum of core electrons within an ion, S̃ce(k, ω), modulated
by the self-motion of the ions, represented by Ss(k, ω).

We have discussed the generalization of Eq. (2) to the
case of a multi-component plasma in Ref. [5] and it will
not be discussed further here.

B. Effective temperatures for electrons and ions

In the analysis we have developed in our previous
work [4, 17], it was assumed that the plasma is in lo-
cal thermodynamic equilibrium (LTE) with the same
electron and ion temperatures. While for solid density
plasmas, at relatively high temperatures, the condition
of LTE is closely approached due to fast relaxation be-
tween ions and electrons, at lower temperatures the con-
cept of LTE is more subtle [23] and it is complicated
by degeneracy effects. We shall treat degeneracy for
electrons and ions independently due to their different
thermal de Broglie wavelengths compared to the aver-
age interparticle distance. In the limit Te → 0 (Te is
the electron temperature), the electron fluid is treated
using the approach suggested by Dharma-Wardana and
Perrot [24] by considering a classical Coulomb fluid at
the temperature Tq = TF /(1.3251 − 0.1779

√
rs), with

rs = d/aB (aB is the Bohr radius), TF the Fermi tem-
perature and d = (3/4πne)

1/3. The correlation prop-
erties are then calculated at the effective temperature
T ′

e = (T 2
e + T 2

q )1/2. This approach was shown to re-
produce finite-temperature static response of an electron
fluid, valid for arbitrary degeneracy [25].

Similarly, as the ion temperature (Ti) is decreased,
the Coulomb forces between ions become progressively
dominant over their thermal motion (in other words, ion-
ion coupling increases) until crystallization occurs. The
ions can still oscillate around their lattice sites and the
phonons are the quantum-mechanical result of this pro-
cess (see e.g., Ref. [26]). The stiffness of the ion lattice
with respect to phonons is calculated in terms of the De-
bye temperature (TD), which has been measured for most
lattices, and in the case of simple metals can be obtained
through the Bohm-Staver relation [27, 28]:

TD =
h̄

kB
Ωpi(k), (3)

where kB is the Boltzmann constant and Ωpi(k) is the
screened ion plasma frequency. It differs from the usual
ion plasma frequency, ωpi, because it accounts for the
response of the electron fluid that surrounds each ion.
We thus have Ω2

pi(k) = ω2
pi/(1 + k2

De/k2), where ωpi =

(Zfe2ne/ǫ0mi)
1/2 with mi the ion mass, and kDe =

(nee
2/ǫ0kBT ′

e)
1/2 is the Debye wavenumber for the elec-

tron fluid. Since, in the Debye model, phonon modes
with wavelength up to a fraction of the lattice spacing are
considered, we set in Eq. (3) k ≡ kmax = (2/Zf)1/3kF =

(6π2ne/Zf)1/3, where kF is the Fermi wavenumber. By
analogy with the electron fluid, we can define an ef-
fective temperature for the ions: T ′

i = (T 2
i + γ0T

2
D)1/2

(γ0 = 3/2π2 = 0.152), which accounts for ion degeneracy



(i.e., phonon coupling) at low temperatures. This defini-
tion preserves the correct quantum mechanical limit for
the harmonic vibrations of a perfect crystal as Ti → 0
[29]. Similarly, the Debye wavenumber for the ions can
be defined as kDi = (Zfnee

2/ǫ0kBT ′
i )

1/2.
For typical conditions found in laser plasma experi-

ments with solid density beryllium [2], we have ne ∼
2.5 × 1023 cm−3 and Zf ∼ 2. This gives TF ∼ 14.5 eV
and TD ∼ 0.16 eV. Thus degeneracy effects become im-
portant for the electrons when Te<∼TF = 14.5 and ion
lattice effects must be considered when Ti<∼TD = 0.16
eV.

C. The scattering form factor from a

non-equilibrium plasma

Within the framework of the density response for-
malism for a two component plasma, we can calcu-
late the screened interaction potentials using the semi-
classical approach suggested by Arkhipov and Davle-
tov [30], which is based on a pseudo-potential model
for the interaction between charged particles to account
for quantum diffraction effects (i.e., the Pauli exclu-
sion principle) and symmetry [31–33]. Quantum diffrac-
tion is represented by the thermal de Broglie wavelength
λrs = h̄/(2πµrskBT ′

rs)
1/2 with µrs = mrms/(mr + ms)

the reduced mass of the interacting pair, and r, s=e (elec-
trons) or i (ions). The effective temperature T ′

rs is given
by [34],

T ′
rs =

mrT
′
s + msT

′
r

mr + ms
. (4)

Due to the large mass difference between ions and elec-
trons, T ′

ei ≈ T ′
ee.

In LTE, the fluctuation-dissipation theorem (see
e.g., Ref. [35]) can be used to correlate the dielectric re-
sponse of the medium and the corresponding electron
density fluctuation spectrum. In other terms, a sim-
ple relation exits between the screened interaction po-
tentials, Φrs(k), and the static response of the medium,
Srs(k). As the system departs from LTE, the validity
of the fluctuation-dissipation theorem may be question-
able [36]. On the other hand, as shown in Ref. [37]
the fluctuation-dissipation theorem may be still a valid
approximation even under non-equilibrium conditions if
the temperature relaxation is slow compared to the elec-
tron density fluctuation time-scale. A common condi-
tion in experimental plasmas for this to occur is when
mi ≫ me so that the coupling between the two com-
ponents take place at sufficiently low frequency. Using
a two-component hypernetted-chain (HNC) approxima-
tion scheme, Seuferling et al. [34] have shown that the
static response under non LTE takes the form

Srs(k) = δrs −
√

nrns

kBT ′
rs

Φrs(k). (5)

Having developed this formalism, we are now able to
evaluate all terms in Eq. (2) for a non-LTE plasma. Since
the ion motion will exhibit long-time fluctuations at the
ion plasma frequency and/or sound speed, and the fre-
quency scale of those fluctuations is such that we are
currently unable to experimentally resolve them, it is rea-
sonable to assume in Eq. (2) Sii(k, ω) = Sii(k)δ(ω). The
measured width of the feature is thus solely determined
by the instrument resolution. The screening charge is
given by [18] q(k) =

√

ZfSei(k)/Sii(k). The ionic form
factor, fI(k), is related to the spatial distribution of elec-
trons that are truly bound to the ions, and it can be cal-
culated, for example, following the approach described in
Pauling and Sherman [4, 38].

For the high-frequency electron density fluctuations,
we can again use the fluctuation-dissipation theorem and
set the high frequency dielectric response in the random
phase approximation (RPA) [39, 40]

S0
ee(k, ω) = − h̄

1 − exp(−h̄ω/kBTe)

ǫ0k
2

πe2ne
Im

[

1

ǫ(k, ω)

]

,

(6)
with ǫ(k, ω) ≡ ǫRPA(k, ω) = 1 − v(k)χ0(k, ω), where
v(k) = e2/ǫ0k

2 is the Fourier transform of the bare
Coulomb potential and χ0(k, ω) is the density response
of the non-interacting electron system. Local field cor-
rections to the RPA in the x-ray scattering context have
been discussed previously [41–43]. However, we should
point out that for many plasma conditions found in
laser plasma experiments, such corrections are marginal.
For example, let us consider the case of a solid den-
sity beryllium plasma with ne ∼ 2.5 × 1023 cm−3 and
Te = 20 eV, the electron-electron coupling constant
Γee = e2/(4πǫ0kBT ′

ed) ∼ 0.6, thus the degree of cou-
pling is still quite modest. Eq. (6) explicitly includes de-
tailed balance: S0

ee(k, ω) = exp(−h̄ω/kBTe)S
0
ee(k,−ω).

In other terms, as Te → 0, excitations that result in an
energy gain for the photons are suppressed. This is a sta-
tistical effect that originates in quantum mechanical na-
ture of the electron fluid at low temperature, i.e., in the
ground state, electrons cannot lower their energy any-
more. We should notice that detailed balance gives a
direct measure of the kinetic electron temperature (Te),
independent of the details of the microscopic theory, pro-
vided that both the red and blue components of the struc-
ture factor S0

ee(k, ω) can be measured. This is the case
when h̄ωpe ∼ kBTe, and for solid density beryllium this
occurs at Te ∼ 20 eV.

Finally, the calculation of the last term in Eq. (2) can
be easily done within the impulse approximation scheme,
as discussed in Ref. [4]. This concludes the required
formalism to analytically construct the x-ray scattering
spectrum from a dense plasma which is far from LTE
conditions.

We shall now investigate the effects of non LTE in the
scattering spectrum. Let us consider again the case of
a dense beryllium plasma with ne ∼ 2.5 × 1023 cm−3,
Zf = 2, and Te = 20 eV. In Fig. 1 we have plotted the



static structures Srs(k) and the screening charge q(k) for
different values for the ratio Ti/Te. We see that consis-
tent differences between the equilibrium values and the
non-LTE ones, especially for the ion-ion structure fac-
tor, are found up to k/kDe<∼15 (or α = kDe/k>∼0.07).
This would corresponds to an x ray probe with energy
<∼30 keV for 90o scattering angle. On the other hand,
as the screening distance is mainly determined by the
more mobile electrons, q(k) remains independent on the
changes of the ion temperature. The electron-electron
static structure is related to the ion-ion structure by the
relation [19] See(k) = (|q(k)|2/Zf )(T ′

e/T ′
i )Sii(k)+S0

ee(k),
where S0

ee(k) is the static response associated to the
highly mobile electrons. Note that the screening charge
q(k) has been constructed such that, in the Debye-Hückel
limit, S0

ee(k) is also independent on Ti. We should recall
that the suppression of the ion response in a classical
plasma has been discussed by Kunze [44] in the context
of optical Thomson scattering.

At sufficiently low probe energies, the LTE assump-
tion over-estimates the intensity of the elastic scattering
when the system depart from equilibrium conditions. In
the regime where k>∼kDe (i.e., non collective scattering),
the elastic component in the scattering spectrum can be
approximated as [17]

Ii = Z2
c Sii(k), (7)

where Zc is strictly the number of tightly bound (K-
shell) electrons for which their ionization energy is much
larger than the Compton recoil. We see that an over-
estimate of Sii corresponds to an under-estimate of Zc,
with |∆Zc/Zc| = |∆Sii/2Sii|. Attention should then be
applied in the analysis of experimental spectra for the
measurement of the average ionization state, as errors in
Zc (or Zf ) up to ∼30% are possible if strong non-LTE
conditions are present. On the other hand, we should
point out that the model implemented for the calcula-
tion of Sii(k) is based on a variation of the RPA and
thus its applicability at large ion coupling may miss the
formation of long-range ordering of the ions (i.e., a lat-
tice). We will incorporate such effects with the analysis
developed in the next section.

D. Lattice effects

As the ion temperature is reduced, the Coulomb in-
teraction between ions start to dominate over their ki-
netic energy. The degree of ion coupling is expressed
by the parameter Γii = Z2

fe2/4πǫ0kBT ′
idii, where dii =

(3Zf/4πne)
1/3 is the mean ionic separation (or Wigner-

Seitz cell). The ion-ion coupling parameter is related to
the electron-electron coupling parameter by the relation

Γii = Z
5/3
f (T ′

e/T ′
i )Γee, thus for most experimental con-

ditions, the electrons remain weakly coupled even if the
ions are strongly coupled. The analysis we have carried
on so far does not include direct effects in the scattering
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FIG. 1: Calculated structure factors Srs(k) and screening
charge q(k) for a beryllium plasma with ne ∼ 2.5×1023 cm−3,
Zf = 2, and Te = 20 eV. Ti/Te = 1 (solid line), Ti/Te = 0.5
(dashed line), and Ti/Te = 0.1 (dashed-dotted line).

which are associated with the underlying lattice arrange-
ments. The most predominant of such modifications in
the scattering cross section (2) is in the appearance of
Bragg diffraction. As discussed in Ref. [45] the continu-
ity of the structure factors across the phase boundary is
necessary in order to preserve the thermodynamic and
transport properties of the medium. Let us consider a
generalized version of Eq. (2):

S(k, ω) = |fI(k) + q(k)|2SII(k, ω) + ZfS0
EE(k, ω)

+Zc

∫

S̃ce(k, ω − ω′)Ss(k, ω′)dω′, (8)

where here SII(k, ω), and S0
EE(k, ω) simply denotes a

more general form for the ion-ion and free electron struc-
ture factors (the core electron structure factor instead
does not depend on the thermodynamic status of the
medium, but only on the core atomic structure of the ion
which we regard to remain unaffected by such changes).
The most general definition of the ion-ion structure factor
is [19]

SII(k, ω) =
1

2πN

∫

∑

r

〈eik·[Rr(t)−R0(0)]〉eiωtdt, (9)

where 〈..〉 denotes a thermal average and Rr(t) is the
position vector for the r-th ion. The task in evaluating
SII(k, ω) is thus reduced to the calculation of

I =
∑

r

〈eik·[Rr(t)−R0(0)]〉. (10)

Suppose that at t = −∞ each atom is at the position
Rr(−∞) = Ur. Without loss of generality, we can pick
t = −∞ as the time when the system was in the cold solid



state. In this case, the vectors Ur give the position of
each atom in the initial lattice. We then decompose the
motion of each ion as the sum of two distinct terms: an
oscillation (vibration), ur(t), around the instantaneous
center of mass of each atom, and a global translation of
the centers of mass, xr(t). Clearly, we must have Rr(t) =
Ur +ur(t)+xr(t), with the condition 〈ur(t)〉 = 0. With
this is mind, we can rewrite Eq. (10) as

I =
∑

r

eik·(Ur−U0)〈eik·[ur(t)−u0(0)]eik·[xr(t)−x0(0)]〉.

(11)
Let also assume that the lattice vibrations, ur(t), and
the site translations, xr(t) are statistically independent.
We should note that this assumption may not hold if, for
example, intense external fields are applied to the system.
This implies

〈eik·[ur(t)−u0]eik·[xs(t)−x0]〉 =

= δrs〈eik·[ur(t)−u0]〉〈eik·[xs(t)−x0]〉, (12)

where we have used the shorthand notation u0(0) ≡ u0

and x0(0) ≡ x0. Under these conditions

I =

(

∑

r

〈ek·[xr(t)−x0]〉
)

×
(

∑

r

eik·(Ur−U0)〈ek·[ur(t)−u0]〉
)

(13)

The second part of the previous expression containing the
thermal average of the lattice vibrations can be treated
using the Debye model in the zero-phonon approxima-
tion, as described, for example, by Warren [46]. Using

the fact that, for any variable u, 〈eu〉 = e〈u
2〉/2, we have

∑

r

eik·(Ur−U0)〈ek·[ur(t)−u0]〉 = (1 − e−2W ) + e−2W b(k),

(14)
where

b(k) =
1

N

∑

r,s

eik·(Ur−Us), (15)

is the Bragg peak, and

2W =
π2k2h̄2

4MkBTD

(

T ′
i

TD

)2

, (16)

is the Debye-Waller factor [29, 46], which we have defined
in terms of the effective ion temperature T ′

i . This def-
inition preserves the correct quantum mechanical limit
for Ti → 0 [29]. We notice that, as Ti increases, the
Debye-Waller factor gets larger and thus acts to reduce
Bragg diffraction. In a high temperature plasma we ex-
pect e−2W ≈ 0 so any Bragg scattering, b(k), is sup-
pressed. This thermal damping of Bragg scattering is
also known in the x-ray diffraction community as ther-
mal diffuse scattering [46]. The factor 1 − e−2W for the
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FIG. 2: Calculated Debye-Waller correction factors for solid
beryllium with ne ∼ 2.5 × 1023 cm−3, Zf = 2, and Te = 20
eV. Ti/Te = 1 (solid line), Ti/Te = 0.5 (dashed line), and
Ti/Te = 0.1 (dashed-dotted line). In the plot, a value of
unity corresponds to no correction.

beryllium case is plotted in Fig. 2. We clearly see that
for k/kDe>∼0.25 (α<∼4) the Debye-Waller factor becomes
important only for Ti/Te<∼0.5.

In the limit of Ti ≫ TD, W → ∞ and Eq. (13) reduces
to

I =
∑

r

〈ek·[xr(t)−x0]〉, (17)

and it becomes naturally associated to the plasma ion-ion
structure factor:

Sii(k, ω) =
1

2πN

∫

∑

r

〈ek·[xr(t)−x0]〉eiωtdt. (18)

In other terms, the plasma ion-ion structure factor is
related to the response of medium to random (or ther-
mal) fluctuations. We will calculate this term using the
methods described in the previous section for a non-LTE
plasma. The generalized ion-ion structure factor can be
thus written as

SII(k, ω) = Sii(k, ω)
[

(1 − e−2W ) + e−2W b(k)
]

. (19)

E. Simplified band structure

Another important effect which is associated with the
formation of a lattice structure is the modification of the
energy states available to the electrons, namely energy
bands are created. In the case of electrons in the con-
duction band of a metal, RPA is often adequate to de-
scribe their response [39, 40]. Instead, for insulators and
semiconductors corrections to the RPA may be necessary.
For large k scattering, electrons in either conduction or



valence bands can still be considered nearly as free for
x-ray scattering due to the large energy transfer with
respect to the their energy in the band. On the other
hand, for small k scattering we can have energy gaps of
the order of ∼10% of the plasmon excitations and in this
case corrections to the RPA can be important. Since we
are still dealing with large excitations compared to most
band gaps, we assume a model insulator (or semiconduc-
tor) with only one energy gap in the excitation spectrum.
As discussed by Levine and Louie [47], the effect of such
gap is to modify the dielectric response for all frequen-
cies above the gap and suppressing the response below
it. They developed a model dielectric function at Te = 0
which fully preserves particle conservation (i.e., the f-
sum rule). Adapting their model to finite temperatures,
we have for |ω| ≥ ωg

ǫEE(k, ω) = ǫRPA

(

k, sign(ω)
√

ω2 − ω2
g

)

, (20)

where ωg ≈ Eg exp(−kBTe/Eg)/h̄ is the excitation fre-
quency for an energy gap Eg. For |ω| < ωg we instead
have ImǫEE(k, ω) = 0. The resultant form for the free
electron dynamic structure is thus:

S0
EE(k, ω) =

− h̄

1 − exp(−h̄ω/kBTe)

ǫ0k
2

πe2ne
Im

[

1

ǫEE(k, ω)

]

. (21)

Since the anti-symmetry of the imaginary part of the di-
electric function is maintained in this formulation, the
detailed balance relation can again be implemented as a
possible temperature diagnostics. Suppose we probe this
model semiconductor (or insulator) with Cl Ly-α x rays
of energy 2.96 keV at a scattering angle of 45o. We as-
sume TF = 12.5 eV (ne = 2 × 1023 cm−3) and Te = 10
eV with different values for the band gap. These scat-
tering conditions give for the scattering parameter [1]
α = ωpe/kvte = 1.3 (v2

te = kBT ′
e/me) and kd = 1.1,

which denotes the photons being scattered by the col-
lective response of the medium (i.e., by plasmons). The
calculated structure factor S0

EE(k, ω) is shown in Fig. 3.
We see that the main effect of an energy band gap is to
suppress excitations near ω = 0. Effectively, this also
means that the total (nearly) elastically scattered mea-
sured signal is reduced if a band gap is present. We
can estimate this correction in the small k case (and by
assuming Te ∼ Ti ≫ TD such that the non-LTE and
Debye-Waller corrections are negligible). Since in this
case, fI(k) + q(k) ≈ ZA [17] and the elastic scatter con-
tribution from the ionic part is

Ii ≈ Z2
ASii(k). (22)

On the other hand, the inelastically scattered signal from
free electrons near ω = 0 is

I0
e ∼ ZfωgS

0
ee(k, 0) ≈

√
πZfα

2

ωg

ωpe
. (23)
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FIG. 3: Calculated free (valence) electron dynamic structure
factor for the model semiconductor (insulator) described in
the text. The system is probed with x rays of energy 2.96 keV
at a scattering angle of 45o with TF = 12.5 eV and Te = 10
eV. Eg = 0 (solid line), Eg = 5 eV(dashed line), and Eg = 10
eV (dashed-dotted line).

Clearly, the effect of the band gap suppression in the
elastically scattered radiation will be important when,
say I0

e /Ii>∼0.1, or

α>∼0.06
Z2

ASii(k)ωpe

Zfωg
. (24)

We have Sii ∼ 0.1-0.4 for α > 1 depending on the de-
gree of non equilibrium. Let us consider, for example,
silicon at solid density with h̄ωpe ∼ 15 eV, h̄ωg ∼ 5 eV
and Zf = 4, thus Eq. (24) becomes α>∼1.5-6. It is there-
fore important to include energy band corrections in the
case of highly collective scattering. On the other hand,
a similar calculation for the large k case (which corre-
sponds to the non-collective scattering regime, or α ≪ 1)
yields a negligible effect of the band gap in the scattering
spectrum.

III. DISCUSSION AND SYNTHETIC SPECTRA

The analysis developed in the previous section shows
that strong suppression of the elastically scattered light
occurs for both non-LTE conditions and in the presence
of a crystalline solid outside the Bragg condition. While
the first effect is essentially classical [44], the second one
relates to strong ion coupling. Since in a solid plasma non
LTE is associated to a cold ionic fluid, while the electron
energy remains sufficiently high at the Fermi level, we
should expect two temperature effects and possible sup-
pression of elastically scattered light also when Γii>∼1.
On the other hand, lattice effects become important only
at a significantly larger coupling when solidification oc-
curs and Bragg scattering must be considered together
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FIG. 4: Zf -Ti diagram showing different scattering regimes
for solid density beryllium. Γii = 1 (solid line), 2W = 1 for
Ti/Te = 1 (dashed line) and Ti/Te = 0.1 (dashed-dotted line).

with the possible appearance of band levels. This roughly
happens when 2W<∼1. In Fig. 4 we have identified these
different regimes for the case of solid density beryllium.
It is clear that (for Zf ∼ 2) strong ion coupling becomes
significant for Ti<∼10 eV and lattice effects should be in-
cluded for Ti<∼1 eV.

The generalized x-ray cross section is obtained by
putting Eq. (19) and Eq. (21) into Eq. (8). In the case
when the scattering angle is chosen such as eventual
Bragg peaks will lie outside the detector field of view,
we have for the overall dynamic structure:

S(k, ω) = |fI(k) + q(k)|2(1 − e−2W )Sii(k, ω) +

ZfS0
EE(k, ω) + Zc

∫

S̃ce(k, ω − ω′)Ss(k, ω′)dω′. (25)

This expression includes the effects of both non-LTE as
well as lattice dynamics. The importance of such a treat-
ment is clearly illustrated in Fig. 5, where we have calcu-
lated the expected signal for a beryllium plasma in the
case of Cl Ly-α probe x rays at 45o scattering angle. We
assume ne ∼ 2.5 × 1023 cm−3, Zf = 2, and Te = 20 eV
with different values for the ion temperature. We should
note that in this geometry the closest Bragg diffraction
peaks occur at 35.8o and 66.4o for polycrystalline beryl-
lium. Synthetic spectra have been generated by assuming
7 eV FWHM Gaussian instrument response. As the de-
gree of non-equilibrium is increased, there is a dramatic
drop in the intensity of the elastic component. Measure-
ment of this drop could indeed provide a novel non-LTE
diagnostics of solid density plasmas.

IV. SUMMARY

This concludes our effort in treating the transition from
a plasma to a solid using a common theoretical frame-
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FIG. 5: Synthetic scattering profiles for solid beryllium with
ne ∼ 2.5 × 1023 cm−3, Zf = 2, and Te = 20 eV. The x-ray
probe energy is 2.96 keV and the scattering angle is θ = 45o

(corresponding to kd = 1.1). A 7 eV FWHM instrument
function is assumed. Ti/Te = 1 (solid line), Ti/Te = 0.5
(dashed line), and Ti/Te = 0.1 (dashed-dotted line).

work. The possibility for a direct investigation of non-
equilibrium solid density matter undergoing phase tran-
sitions is of extreme interests for the understanding of the
EOS for conditions relevant for laboratory astrophysics
as well as for the characterization of shock heated materi-
als in ICF experiments. This work provides the necessary
background for implementing x-ray scattering as such di-
agnostics. The only free parameters in the problem are
the ion and electron temperatures and their respective
densities. The x-ray response of the medium as a func-
tion of these parameters is then obtained from general
concepts. Some limitations of the model should be, how-
ever, kept in mind. In the analysis of the solid x-ray scat-
tering response, for example, we have limited ourself to
a very simple picture of a lattice and neglected any pos-
sible anisotropies as well as we have not considered more
than a single atom in the lattice cell. We believe that
these approximations are sufficient to treat simple met-
als and plasmas undergoing crystallization, but a more
accurate treatment may be required for complex systems.
We leave this to a future work.

Acknowledgments

The work of SHG and OLL was performed under the
auspices of the U.S. Department of Energy by the Uni-
versity of California Lawrence Livermore National Labo-
ratory under Contract No. W-7405-ENG-48.



[1] O. L. Landen, S. H. Glenzer, M. J. Edwards, R. W. Lee,
G. W. Collins, R. C. Cauble, W. W. Hsing, and B. A.
Hammel, J. Quant. Spectrosc. Radiat. Transfer 71, 465
(2001).

[2] S. H. Glenzer, G. Gregori, R. W. Lee, F. J. Rogers, S. W.
Pollaine, and O. L. Landen, Phys. Rev. Lett. 90, 175002
(2003).

[3] D. Riley, N. C. Woolsey, D. McSherry, I. Weaver,
A. Djaoui, and E. Nardi, Phys. Rev. Lett. 84, 1704
(2000).

[4] G. Gregori, S. H. Glenzer, F. J. Rogers, S. M. Pollaine,
O. L. Landen, C. Blancard, G. Faussurier, P. Renaudin,
S. Kuhlbrodt, and R. Redmer, Phys. Plasmas 11, 2754
(2004).

[5] G. Gregori et al., J. Quant. Spectrosc. Radiat. Transfer
p. in press (2005).

[6] J. D. Lindl, Inertial Confinement Fusion (Springer-
Verlag, New York, 1998).

[7] D. Beule et al., Phys. Rev. B 59, 14177 (1999).
[8] D. Beule et al., Phys. Rev. E 63, 060202 (2001).
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