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ABSTRACT

The Richmond mine in Iron Mountain, California, provides an unusual ecosystem suitable for 

the growth of microbial biofilms which produce many unique proteins.  Through iron oxidation, these 

proteins facilitate acid mine drainage (AMD).  Because this habitat is extremely acidic, survival is an 

extraordinary feat and the process of environmental selection is rare.  In order to understand the 

mechanisms by which these organisms oxidize iron and gain electrons for energy, biochemical studies 

were applied.  More specifically, column chromatography, spectrophotometry, and gel electrophoresis 

were used to determine the proteins present in different biofilms.  Two specific locations of the mine 

researched were the AB drift and Ultraback C (UBC), which were both found to contain at least five 

different types of protein and a large amount of heme-bound cytochromes.  Another application of these 

methods was to investigate proteins playing a major role within the community; one protein selected 

was cytochrome 579 (Cyt579) due to its abundance in the biofilm, iron oxidizing potential, and signature 

absorbance of 579nm.  The structure and function of Cyt579 could be characterized by the isolation of its 

heme, which was completed using column chromatography; however, one of the challenges has been 

liberating the heme from the column.  Further research, including acid-base and temperature profiling of  

Cyt579 should help elucidate its structural changes within alternate environments and metabolism within 

the community.
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INTRODUCTION

Acid mine drainage is a current environmental problem which exists throughout the world.  

Water flowing through coal or metal mines contributes toxic metals and acidity to downstream aquifers, 

which in turn pollute water supplies.  Biogeochemical studies implicate micro-organisms as a key 

component in AMD formation. Studies of microbial communities that thrive in these acidic and metal-

rich environments may not only lead to remediation strategies which would prevent AMD, but also 

illuminate the function of these unique, extermophilic organisms. Furthermore, these organisms could 

potentially be used for industrial purposes, such as in bio-leaching of valuable metals, or in the 

biotechnological use of highly stable proteins.

Our work focuses on an AMD site in Iron Mountain, California, where a biofilm forms along the 

surface of the acidic water (pH<1).  This biofilm consists of self-sufficient extremophiles that accelerate 

the dissolution of the pyrite (FeS2) bed in the mine.  The biofilm gains energy by Fe (II) oxidation and 

grows autotrophically by fixing CO2 and N2 from the air [1].  The acidic mine water also has high 

concentrations of copper, zinc and arsenic [2].

To understand how the biofilm functions, metagenomic and proteomic studies were conducted.  

Greater than 12,000 genes within the community were identified by genomic sequencing, and two 

genomes were then reconstructed for the dominant species, Leptospirillum group II and Ferroplasma 

type II [1].  Shotgun proteomics, utilizing two-dimensional mass spectrometry, was used to identify 

proteins expressed within the biofilm [3].  Proteins from the extracellular and periplasmic regions were 

studied because exterior proteins not only play a vital role in the metabolism of the organism and 

interactions within the community, but are also in contact with the extreme environment.  The majority 

of the proteins in the extracellular fraction were hypothetical, meaning they have low sequence

similarity to proteins of known function.
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Of particular interest was an abundant protein, Cyt579, which has a sequence that corresponds to a 

hypothetical gene of the source organism, Leptospirillum group II.  Although Cyt579 contains a 

cytochrome c like amino acid sequence motif (CysXaaXaaCysHis), it has little sequence similarity to 

cytochrome c [4].  This important protein was isolated from environmental biofilm samples and then 

highly enriched by column chromatography. The visible spectra of Cyt579 is indicative of an unusual 

heme co-factor and reaffirms a cytochrome structure. To study the heme and the specific mechanisms 

of electron transport from Fe(II) to Leptospirillum bacteria, methods were developed to isolate this 

unusual heme using the model substrate cytochrome c and then the uncharacterized Cyt579.

MATERIALS AND METHODS

Heme Extraction from Cytochrome C

To form a solution of free heme and cytochrome c, 48 mg of cytochrome c was first dissolved in 

1 ml of water.  Then, this was added to a solution of 80 mg of Ag2So4 dissolved in 9 ml of water and 0.8 

ml of acetic acid.  This mixture was incubated in the dark for 4 hours at 40˚C and then centrifuged to 

remove heme aggregates and silver precipitate.  See reference [5] for heme extraction method.  

The supernatant from the above procedure, containing cytochrome c (protein-bound heme), apo-

cytochrome c and free heme, was then separated by SDS-polyacrylamide gel electrophoresis [6] in order 

to test for efficiency of heme extraction.  Four samples were loaded, including two of the previously 

silver-treated cytochrome c samples and two non-treated, cytochrome c controls (1 mg/mL).  One of 

each was loaded on opposite sides of the gel; the left side was treated with o-dianisidine to stain 

specifically for heme [7], and the right was stained with Coomassie blue dye for protein.

2 mL of the treated cytochrome c solution was also applied to a SP-sepharose column in order to 

separate the free heme from the apo-cytochrome c and heme-bound protein and also to collect a sample 
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of heme.  Three buffers were successively passed through the column: 2 M NaCl in 100 mL NaC2H3O2

pH 5, 100 mM Na2CO3 pH 10, and 0.1 - 0.2 M NaOH. 

Furthermore, 1 mL of cytochrome c was also applied to a G-25 Sephadex column in order to 

obtain a sample of free heme by elution with 0.1 - 0.2 M NaOH.

Acid-Base Profiling of Cytochrome C

For testing structural changes in cytochrome c at different pH values, thirteen buffers were 

composed (see Table 1) [8]. Each cytochrome c sample was diluted by adding 800 μL of the specific 

pH buffer to 200 μL of the 1 mg/mL cytochrome c solution.  Then, 25 μL of each diluted cytochrome 

sample was added to 975 μL of pH 7 buffer to make 1 mL samples for spectrophotometry. 

Processing the Biofilm: Isolation of Extracellular Fraction

The Ultraback C (UBC) biofilm (collected 6/16/06) was fractioned into extracellular and cellular 

membrane samples in order to separate the different types of proteins.  First, a 50 mL sample of biofilm 

was thawed by adding a small amount (~10 mL) of 0.2 M H2SO4 pH 1.1 into the tube and placing it in a 

beaker of warm water.  Once thawed and transferred into a 300 mL glass beaker, it was suspended in 

150 mL of 0.2 M H2SO4 pH 1.1 and stirred for 10 minutes at room temperature.  The solution was 

homogenized, stirred for 1-1.5 hours at 4 ˚C, homogenized again, and then centrifuged for 12 minutes at 

17500 rpm/rcf and 20 ˚C in the SS-34 rotor.  The supernatant was decanted and the pellet (cellular 

fraction) was stored in the freezer for further analysis. 

25 grams of (NH4)2SO4 was added per 100 mL of supernatant and this solution was stirred for 1 

hour at 4 ˚C, centrifuged for 15 minutes at 17.5 K rpm/rcf, and decanted (supernatant for 95% fraction).  

The precipitate from this step made up the 45% precipitate fraction.  The pellet was dissolved in 3-5 mL 

of 20 mM H2SO4/100 mM ammonium sulfate pH 2.2 (buffer A), centrifuged, decanted, and then stored.  
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Next, 28 grams of (NH4)2SO4 was added to each 100 mL of supernatant from the 45% precipitate 

fraction.  This mixture was stirred for 2 hours at 4 ˚C, centrifuged for 20 minutes at 17.5 K rpm/rcf, and 

decanted.  The pellet was dissolved in 3-5 mL of buffer A, which made the 95% precipitate fraction.  

Then, it was dialyzed overnight in a 500 mL of buffer A.  Protein concentrations were estimated by the 

Bradford protein assay, using bovine serum albumin as a standard [9].

Enrichment of Cyt579 and Heme Extraction from Cyt579

Cation-exchange chromatography was used in order to enrich Cyt579.  About 5 mL of the 45%

precipitate UBC extracellular fraction was loaded onto an SP-sepharose fast flow column equilibrated 

with 6 column volumes of buffer A. The absorbed sample was washed with ~3 columns of buffer A and 

the cytochrome fraction eluted with 100 mM NaOAc pH 5.0. Remaining protein was eluted with a 0-2M 

NaCl gradient in pH 5.0 buffer.

A G-25 sephadex column was loaded with about 1 mL of treated Cyt579 and washed with 100 mL 

of 100 mM NaOAc pH 5.0 buffer and 100 mL of 1 M NaCl.
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RESULTS and DISCUSSION

Heme Extraction Using Cytochrome C as a Model

Cytochrome c is an analog for Cyt579 because both have the heme-binding sequence motif, 

implying that heme is covalently bound through disulfide bonds to the two Cysteines.  Because samples 

of Cyt579 were limited, biochemical tests were first performed on cytochrome c.  Previous attempts to 

extract heme from Cyt579 were not successful, but a silver sulfate treatment [5] appeared promising.  Gel 

electrophoresis was initially used to verify that the silver sulfate treatment was effective in heme 

extraction.  Following separation of silver-treated and untreated cytochrome c proteins, staining the 

polyacrylamide gel with Coomassie-blue dye revealed protein in both samples. However, staining the 

gel with o-dianisidine resulted in the sole appearance of free heme at a position of < 4 kDa, while the 

non-treated protein appeared at ~16 kDa (Figure 1).

The SP-sepharose column eluted apo-cytochrome c protein with the pH 10 buffer, and heme-

bound protein and some free heme with 0.1 M NaOH.  The majority of free heme remained attached to 

the column, even after an hour exposure with 0.2M NaOH.  The G-25 sephadex column eluted apo-

cytochrome c protein immediately after washing pH 5 buffer through the column.  Then, 3 heme-bound 

3 mL fractions were eluted using 0.1 M NaOH.  However, similar to the SP-sepharose column, most of 

the free heme remained spread out and bound tightly along the column.  This is further discussed below 

in “Heme Extraction from Cyt579 and Cytochrome C”.

Acid Base Profiling of Cytochrome C

As an indicator of structure and stability of cytochrome c, visible spectra from 350 to 800 nm

were taken after 24 hours incubation in different pH buffers. These spectra indicated that the heme 

group of cytochrome c was reduced at both pH 9 and 10, whereas no other pH significantly affected the 

protein. In all cases, the visible spectra indicated the cytochrome remained intact after 24 hours.  
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Cytochrome c was used again as a model for Cyt579, which will soon be tested when more biofilm 

samples are processed.

Enrichment of Cyt579 and Heme Extraction

In the UBC biofilm sample, much more protein from the extracellular fraction was detected in 

the 45% ammonium sulfate precipitate sample than in the 95% precipitate.  In contrast, most of the 

extracellular protein of previously studied AMD biofilms was recovered from the 95% precipitate 

fraction.  This observation is interesting in that the UBC biofilm compared to previously characterized 

biofilms perhaps has a different structure, contains different amounts of metals, or that Cyt579 carries a 

different charge.  Cation-exchange chromatography of the UBC 45% fraction eluted fractions which 

were red due to Cyt579, yielding 1.5 mg protein from the biofilm sample.

Following silver treatment of Cyt579, heme aggregates were seen and the solution turned slightly 

red probably due to liberated heme (similar to cytochrome c).  After gel electrophoresis of the treated 

sample, heme-bound protein was detected through heme staining (Figure 2).  However, free heme did 

not appear to be present.  Perhaps this occurred because the heme migrated too far in the gel or the free 

heme was not concentrated enough for detection. Another gel will be run with Cyt579 for a shorter 

period in order to eliminate one of these possibilities.

The G-25 sephadex column eluted a protein fraction with the pH 5.0 buffer; however, the heme 

remained bound to the column, even after passing 1M NaCl through the column.  Cyt579 has not yet been 

tested in column experiments with NaOH.

Comparison of Cyt579 and Cytochrome C Heme Groups

The results from the SP-Sepharose and Sephadex-25 columns demonstrated that the free heme

bound tightly to both columns.  The dark, red band that remained at the top of these columns could 
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contain precipitated cytochrome or aggregated heme derived from the silver sulfate treatment.  Although 

the heme structure of Cyt579 is probably similar to the common porphyrin ring structure of most heme 

compounds that are soluble in alkaline solutions, it appears to be unique due to its specific visible (red-

shifted) spectral characteristics.  One possible explanation of the strong binding of heme to these 

columns is that it may be structurally altered by the addition of a formyl group at one of its vinyl side

chains.  This heme alteration theory has been reported for a recombinant cytochrome purified from E. 

coli [10] and confers a higher reduction potential that would make it more efficient in iron oxidation.

CONCLUSIONS

In the process of isolating heme from cytochrome c, the heme-bound protein and some free heme 

could be recovered using either Sephadex G-25 or SP-sepharose columns with 0.1 M NaOH buffer.  

Some free heme was also removed from Cyt579 using a Sephadex G-25 column, however the yield was 

low.  Other methods for eluting greater quantities of free heme from cytochrome c will be developed 

prior to isolating the heme from Cyt579.  Cytochrome c was shown to be stable over a wide range of pH 

and reduced spontaneously at pH 9 and 10, but not at lower or higher pH values. The potential results of 

acid-base profiling of Cyt579 may exhibit similar or distinct results compared to those of cytochrome c 

and will allude to the structure and stability of Cyt579.  Ammonium sulfate treatment of the UBC and AB 

Drift extracellular fractions resulted in enriched samples of Cyt579.  Through purification and heme 

characterization studies, the properties of this unique cytochrome appear to be distinct in different 

biofilms.  This could indicate that the structure of Cyt579 is selected for its optimum redox function by 

the influence of environmental conditions on the microbial community.



9

ACKNOWLEDGEMENTS

I would like to thank my mentor, Michael P. Thelen, for giving me the opportunity to work in his 

lab at Lawrence Livermore National Laboratory and also for his enthusiasm, knowledge, and on-going 

support.  Thanks to the awesome Microbial Biosciences crew, including my other mentor whom I 

worked with daily, Steve Singer, and scientists Mona Hwang and Chris Jeans.  They never ceased to 

answer my frequent questions and created a wonderful learning environment.  Thanks to the U.S. 

Department of Energy, Office of Science for the SULI program and an amazing, educational experience.  

Lastly, thanks to my favorite high school teacher, Frankie Tate, for encouraging me to apply for the 

Edward Teller Science Scholarship.



10

REFERENCES

[1] Tyson et al (2004) "Community Structure and metabolism through reconstruction of microbial 
genomes from the environment" Nature 428, 37

[2] J. Banfield and T. Gihring (2006) “Sulfide Mineral Weathering and Acid Mine Drainage 
Research.” http://seismo.berkeley.edu/~jill/amd/AMDresearch.html

[3] Ram et al (2005) "Community Proteomics of a Natural Microbial Biofilm" Science 308, 1915-
20.

[4] M.P. Thelen (2006, June 20). Biofilm Proteins Associated with Acid Mine Drainage.
Presented at American Society of Microbiology in Orlando, Florida.

[5] W. Fisher, H. Taniuchi and C. Anfinsen (1973) “On the Role of Heme in the Formation of the 
Structure of Cytochrome c” Journal of Biological Chemistry 248, 3188-95.

[6] U.K. Laemmli (1970) Nature 227, 680-5.

[7] R.T. Francis and R.R. Becker (1984) Anal. Chemistry 136, 509-14.

[8] R. Dawson, D. Elliott, W. Elliott and K. Jones (1986)  Data for Biochemical Research
New York: Oxford University Press.

[9] M.M. Bradford (1976) Anal. Biochemistry 72, 248-54.

[10] J. Fisher, T. Todaro, E. Luna, D. Sanders, L. Hunsicker-Wang, K. Patel, K. Bren, E. Gomez-
Moran, M. Hill, J. Ai, T. Loehr, W. Oertling, P. Williams, C. Stout, D. McRee and A. Pastuszyn 
(2004) “Cytochrome rC552, Formed during Expression of the Truncated, Thermus thermophilus 
Cytochrome c552 Gene in the Cytoplasm of Escherichia coli, Reacts Spontaneously To Form 
Protein-Bound 2-Formyl-4-vinyl (Spirographis) Heme”Biochemistry 43, 12162-76.

[11] S. Singer (2006, July 26). Understanding Natural Microbial Communities Using 
Proteogenomics and Biochemistry. Presented at the Annual Biosciences Directorate Postdoctoral 
Symposium, Lawrence Livermore National Laboratory.

[12] J. Banfield, N. Verberkmoes, R. Hettich, M. Thelen (2005) OMICS A Journal of Integrative 
Biology 9, 301-33.

[13] B. Baker and J. Banfield (2002) FEMS Microbiology Ecology 44, 139-52.



11

Figure 1. Heme stain of pure Cytochrome C  Figure 2. Protein stain (1) and heme stain (2) of enriched Cyt579

Table 1- Buffers
Buffer Type Components

pH 1 KCl/HCl 2.5 mL 0.2 M KCl
6.7 mL 0.2 M HCl
0.8 mL H2O

pH 2 KCl/HCl 2.5 mL 0.2 M KCl
6.5 mL 0.2 M HCl
1.0 mL H2O

pH 3 Glycine-HCl 2.5 mL 0.2 M glycine
0.57 mL 0.2 M HCl
6.93 mL H2O

pH 4 NaC2H3O2 1.8 mL 0.2 M NaOAc
8.2 mL 0.2 M HOAc

pH 5 NaC2H3O2 7.0 mL 0.2 M NaOAc
3.0 mL 0.2 M HOAc

pH 6 MES-NaOH 2.5 mL 0.1 M MES
0.8 mL 0.1 M NaOH
1.7 mL H2O

pH 7 KH2PO4-NaOH 5 mL 0.1 M KH2PO4
2.91 mL 0.1 M NaOH
2.09 mL H2O

pH 8 KH2PO4-NaOH 5 mL 0.1 M KH2PO4
4.61 mL 0.1 M NaOH
0.39 mL H2O

pH 9 Glycine-NaOH 2.5 mL 0.2 M glycine
0.44 mL 0.2 M NaOH
7.06 mL H2O

pH 10 Glycine-NaOH 2.5 mL 0.2 M glycine
1.6 mL 0.2 M NaOH
5.9 mL H2O

pH 11 Phosphate 5 mL 0.005 Na2HPO4
0.41 mL 0.1 M NaOH
4.59 mL H2O

pH 12 Hydroxide-chloride 2.5 mL 0.2 M KCl
0.6 mL 0.2 M NaOH
6.9 mL H2O

pH 13 Hydroxide-chloride 2.5 mL 0.2 M KCl
6.6 mL 0.2 M NaOH
0.9 mL H2O

1 2
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