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We present dimensional and density changes in an aging plutonium alloy enriched with 

7.3 at. % of 238Pu and reference alloys of various ages.  After 45 equivalent years of 

aging, the enriched alloys at 35°C have swelled in volume by 0.14 to 0.16 % and now 

exhibit a near linear volume increase, without void swelling.  Based on X-ray diffraction 

measurements, the lattice expansion by self-irradiation appears to be the primary cause 

for dimensional changes during the initial 2-3 years of aging.  Following the initial 

transient, the density change is primarily cause by a constant helium in-growth rate as a 

result of α-particle decay. 
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1. Introduction

 Plutonium, because of its radioactive nature, relentlessly undergoes self-irradiation 

damage through out its volume.  Plutonium decays to uranium by α-particle emission.  

The α-particle takes away most of the energy and eventually comes to rest as a helium 

atom.  Together, both particles produce displacement damage in the form of Frenkel-type 

defects, but most of the damage results from the uranium recoil nucleus.  While most of 

the initial damage is annealed out at room temperature, the residual lattice damage and 

helium in-growth drive microstructural and physical property changes. Because these 

self-irradiation effects would normally require decades to measure, one approach to better 

characterize the kinetics of dimensional and density changes is to accelerate the effects of 

self-irradiation damage in plutonium by doping with a small amount of more active 

isotope 238Pu into the 239Pu lattice.  By adding 7.3 at. % of 238Pu, the rate of aging process 

accelerates significantly.  Using this method, the radiation damage in plutonium 

equivalent to sixty years of natural aging can be simulated in only a few years.  

 Previously, we reported the observation of density and volume changes due to self-

irradiation in enriched alloys1.  In this paper, it will shown that the decrease in density is 

a result of the expansion in Pu lattice, which saturates within approximately three years 

of natural aging, and the continued build-up of helium in-growth.  This analysis is 

founded upon the analysis of X-ray diffraction results.

2. Experimental
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 The length change is primarily determined by dilatometry measurements.  The 

dilatometry result is supported by immersion density and X-ray diffraction

measurements. 

 Dilatometers have been set up to monitor long-term growth resulting from the lattice 

damage and helium in-growth in (~7.3 at. %) 238Pu-enriched alloys as shown in Figure 1.  

Alloys are δ-phase Pu with nominal compositions of ~2 at. % Ga. Details of 

experiments are presented elsewhere1.  Two different lengths of 238Pu-enriched alloy 

specimens (3 cm and 2 cm) are used to differentiate between surface oxidation and 

volumetric swelling in the materials.  The dilatometer chamber atmosphere is helium 

backfilled after evacuation with an oil-less vacuum pump.  Each dilatometer has three 

wells:  one for a 3 cm long specimen, one for a 2 cm long specimen, and one for a zero-

dur reference material.

The immersion densities on the enriched and reference alloys were obtained shortly 

after the initial fabrication and then subsequently at least every six months.  Between 

measurements, the samples were stored in a helium-filled incubator at 50°C.  The 

equipment closely matches a design used by Bowman et al.2 and uses about 200 ml of 

Fluorinert Electronic Liquid FC-43 as the immersion fluid as shown in Figure 2.  Prior to 

each measurement, the system is calibrated using NIST glass (SRM 1827A) and a 

tantalum specimen as standards.  This is generally followed by a measurement on the 

plutonium reference alloy and the 238Pu-enriched alloy. To obtain stable measurements 

and ensure that all surface oxide is removed, multiple measurements are performed.
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X-ray diffraction methods are used to measure the lattice parameters of 

chemically identical Pu-Ga alloys of various ages.  The measurements are made with

Rigaku Geigerflex X-ray diffractometer fitted with a Cu Kα source.  

3. Results and Discussion

 The length change (ΔL) normalized with the initial length (Lo) of each spiked alloys at 

35°C is shown in Figure 3.  The time (X-axis) is represented as an equivalent time (in 

years) obtained by multiplying the measurement time by the initial accelerating factor of 

18. This accelerating factor will decrease as the material ages due primarily to decreasing 

concentration of 238Pu in the specimen. Each dilatometer contains a pair of long (3cm) 

and short (2cm) length specimens. Both enriched samples have increased in length 

significantly. During the initial stage of aging, the length change follows approximately 

the inverse exponential-type of expansion.  After 2-3 years of equivalent years of aging, 

the swelling rate is reduced and the length expansion is nearly linear.  This behavior has 

been interpreted as one of the effect of radiation damage in materials [3, 4].  The amount 

of swelling is related to the number of Frenkel pairs that survive the radiation damage 

and subsequent annealing processes.  The progressive accumulation of survivor vacancies 

provides an increasing number of alternate sites for the capture of self-interstitial 

plutonium atoms.  As the density of these alternate sites increases, the rate of swelling 

thereby reduced. After the initial transient stage, the dilatometry work shows almost 

linear volume expansion primarily induced by a constant helium in-growth rate of ~41 

appm per year.  The helium that accumulates in plutonium immediately finds unfilled 

vacancies and forms bubbles inside the crystalline matrix and along grain boundaries [5].  
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 The curves for dilatometry are quite accurately represented by the combination of 

exponential and linear growth equations of the form

ΔL/Lo ≅ A [1-exp(-Bt)] + Ct

where A, B, and C are constants and t is the time in years.  A curve fit based on an 

exponential dependence was applied to time scale less than 3 year where ΔL/Lo curves 

for two specimens are similar.  A second fit based on a linear relation was performed at 

the saturation (or linear) region to obtain the slope C.  The values for constants are given 

in Table 1, along with the He/vacancy association ratios calculated using the slope (C).  

This ratio describes the volume expansion induced by the formation of the helium 

bubbles in plutonium.    

 The Δa/ao of the sample measured by X-ray diffraction technique is also shown in 

Figure 3, where Δa/ao represents the measured lattice constant change (Δa) normalized 

with the initial lattice constant (ao).  As shown the self-irradiation damage causes 

expansion of plutonium lattice.  The initial change in Δa/ao is similar to that measured by 

dilatometry.  This result indicates that the accumulation of vacancy and self-interstitial 

lattice defects from the initial cascade damage lead to expansion in volume of plutonium 

alloys. Such a formation of Frenkel-defects results in a decrease of the compactness of 

the atom packing and correspondingly in an expansion of the δ-Pu volume.  Following 

the initial stage, however, X-ray diffraction measurement shows significantly larger 

changes compared to dilatometry. This disagreement is caused by the differences in the 

measurement techniques.  The dilatometry technique measures the changes in the bulk of 

the material.  Thus, it is sensitive to volume (length) changes caused by both the lattice 

damage and the helium accumulation.  Although the X-ray diffraction technique can 
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measure the lattice parameter changes caused by the lattice damage, it is insensitive to the 

total bulk swelling caused by the helium accumulation. Thus, further work is required to 

understand the contribution of helium in-growth to the changes in lattice parameter and 

potential redistribution of gallium atoms in Pu lattice.  

Comparison of density change observed in aged reference alloys to the 35°C 

dilatometry data is shown in Figure 4.  The immersion density measurement on the 

reference (weapons-grade Pu) and 238Pu-spiked alloys showed initial densities of 15.795 

and 15.78 g/cc, respectively.  The initial density value for the dilatometry data is set to 

15.795 g/cc to compare to the reference alloys.  The trend in the density change 

converted from the dilatometry corresponds well to the immersion density during the 

initial (exponential) transient stage predominately caused by the lattice damage from the 

radioactive decay.  Following the initial stage, the rate of density reduction becomes 

reduced as observed from the dilatometry.  Both dilatometry and immersion density 

measurements show dimensional and density changes in enriched Pu alloys induced by 

the self-irradiation damage. However, no evidence of void swelling is yet observed.

Based on dilatometry, density, and X-ray diffraction characterizations, the initial 

changes in the volume and density are primarily caused by the change in lattice 

parameters, which saturates within three years of aging.  Following the initial transient, 

the change is mainly caused by continued build-up of helium in-growth.  Although the X-

ray diffraction technique can measure the lattice parameter changes caused by the lattice 

damage, it appears to be insensitive to the bulk swelling caused by the helium 

accumulation.  The significantly larger change in lattice constants after the initial 

transient stage indicates larger expansion in plutonium bonds by helium bubbles while 
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total bulk changes are smaller.  The change in Pu lattice by radiation damage requires 

further investigation.

4. Conclusions

 We found reasonable agreement in the density change behaviour between enriched 

and reference alloys from combined dilatometry and immersion density measurements.  

Based on X-ray diffraction, the decrease in plutonium alloy density is a result of the 

dimensional expansion from the accumulation of residual lattice damage and helium in-

growth.
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Table 1.  Values of constants from curve fit to dilatometry curves in Figure 3.

Sample A
(10-4)

B
(year-1)

C
(10-5 year-1)

He/ vacancy 
ratio

2 cm 2.5 0.9 0.48 2.8
3 cm 2.2 1.2 0.65 2.1
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Figure 1. The schematic of dilatometer system designed to monitor length change in Pu 

alloys.  Actual photograph of Pu samples mounted inside a dilatometer is also shown.
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Figure 2. A photograph of immersion density equipment closely matching design by 

Bowman et. al.2
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Figure 3.  Dilatometer and X-ray diffraction results show dimensional expansion with 

aging.  Dilatometry data to 25 years are presented elsewhere1. 

 



12/12

15.60

15.65

15.70

15.75

15.80

15.85

0 20 40 60 80
Time (years)

D
en

si
ty

 (g
/c

c)

reference alloy 1

3 Spiked alloys

Dilatometry 
data AA1

Figure 4.  Immersion densities of enriched (spiked) and reference alloys.  Dilatometry 

data is converted to density for comparison.  Data to 25 years are presented elsewhere1.


