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Introduction 
 

Thin wire analysis was applied to curved wire segments in [1], but a special 
procedure was needed to evaluate the self and near-self terms. The procedure 
involved associating the singular behavior with a straight segment tangent to the 
curved source segment, permitting use of algorithms for straight wires. Recently, 
a procedure that avoids the singularity extraction for straight wires was presented 
in [2–4]. In this paper, the approach in [4] is applied to curved (or higher-order) 
wires using a procedure similar to that used in [1] for singularity extraction. Here, 
the straight tangent segment is used to determine the quadrature rules to be used 
on the curved segment. The result is a formulation that allows for a general 
mixture of higher-order basis functions [5] and higher-order wire segments. 
 

Method of Moments Analysis 
 
The currents on a wire structure are determined using the electric field integral 
equation (EFIE). The mixed potential formulation is used to determine the 
scattered electric field. Following the formulation in [1], the potentials are written 
in terms of partial potentials as 
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where the kernel is given by 
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Here, dσ ′  is the differential arc length along the wire axis σ  and dφ′ is an angle 
differential measured about the wire circumference. 
 
There are no issues associated with using (1)–(3) when the source and observation 
points are well separated. However, when the observation point approaches the 
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source point, the wire kernel becomes singular. With the recent transformation 
presented in [2–4], singularity extraction is no longer needed since the inner 
integral’s integrand is smoothed by variable transformations, whereas the 
logarithmically singular outer integral may be integrated numerically using the 
scheme of [4]. This scheme may be applied to curved wires using a technique 
similar to that of [1], where the quadrature scheme is developed on a linear 
segment tangent to the curved segment. Here, however, the tangent linear segment 
is used to determine the sample points and quadrature weights to be used in the 
potential integrals. The linear segment is tangent to the source segment at the 
projection of the observation point onto the source segment axis as shown in 
Fig. 1. Once the weights and sample points are determined, the same quadrature 
algorithms used to calculate the nonsingular forms of (1)–(3) may be used with 
the new weights and sample points. 
 
To see that this may be done, consider a generalized form of the integrals in (1) 
and (2) over each segment given by  
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where B represents a basis function (or its divergence) defined on the axis of a 
wire segment L∆  parameterized by a normalized coordinate ξ  with Jacobian 

/ /d d d dσ ξ ξ′ ′= = rJ , and 0J  is the Jacobian evaluated at 0r , the projection of 
the observation point onto the curved source segment axis. A tangent vector at 
this point is given by [5] 
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such that ( ) ( )0 0 0= =r rJ . The right-hand side of (4) now may be merely 

interpreted as an integration over a linear segment of length 0J  with a modified 
integrand. This integral form is similar to that used in [4] for singularity analysis 
on linear wire segments. To see this, consider a Taylor series expansion of ′r  
about 0r ,  
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The tangent segment at 0r is merely the first two terms on the RHS of (6). Hence, 
the ratio of Jacobians is  
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As the source point approaches the projected observation point, (6) and (7) 
become r´ → r0 and 0 1→J J , respectively. Hence, the singularity in the 
integrand in (4) is unchanged from that of a linear wire segment. In summary, 
since the singular behavior of the integrand on the curved wire segment is similar 



to that on a linear segment, the approach of [4] may be used to calculate the 
integration points and weights for use in (1) and (2).  
 

Results 
 

A helical antenna is constructed with a wire of radius 0.5 mm [6]. The helix is 
circular with a 25 mm circumference and a pitch angle of 4˚. The antenna is 
attached to an infinite ground plane using two straight wire elements, each with 
the same radius as the helix wires. The first straight wire (length 1.25 mm) is 
attached to the ground plane such that it is perpendicular to the ground plane. The 
free end of this wire is fastened to the second straight wire, which is 3.9789 mm 
and is horizontal to the ground plane. The helix is joined to this wire, forming the 
complete antenna. A unit delta-gap voltage source excites the structure at the base 
at 12 GHz. The currents shown in Figs. 2 and 3 are for cases involving 100 linear 
elements and 20 quadratic (q = 2) elements, respectively, to approximate the 
antenna (including the antenna image). Data from [6] are also shown in the 
figures. Good results are achieved with the p = 1 (quadratic) basis functions 
(37 unknowns) compared to 99 unknowns with 100 straight elements. 
 

Summary and Conclusions 
 
A method of moments formulation using higher-order wire segments and basis 
functions for calculating the currents on arbitrarily-shaped wire structures is 
presented. This approach leverages recent novel advances in techniques for 
evaluating the integrable singularity. Results indicate that fewer higher-order 
bases are needed than the usual ten unknowns per wavelength rule of thumb. This 
approach is expected to be useful in advancing mesh (h-adaptive) and basis 
function (p-adaptive) algorithms for arbitrarily-shaped wire structures. 
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Fig. 1. Element tangent to a curved wire segment. 
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Fig. 2. Real part of the current on a helical antenna mounted on a ground plane at 
12 GHz. 
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Fig. 3. Imaginary part of the current on a helical antenna mounted on a ground 
plane at 12 GHz. 
 




