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Abstract

Motivated by the recent interest in using electrokinetic effects within microfluidic devices [1], we have
extended the EBNavierStokes code to be able to handle electrokinetic effects. With this added function-
ality, the code will become more useful for understanding and designing microfluidic devices that take
advantage of electrokinetic effects (e.g. pumping and mixing).

Supporting the simulation of electrokinetic effects required three main extensions to the existing code:

1. addition of an electric field solver,

2. development of a module for accurately computing the Smulochowski slip-velocity at fluid-solid
boundaries, and

3. extension of the fluid solver to handle nonuniform inhomogeneous Dirichlet boundary conditions.

The first and second extensions were needed to compute the electrokinetically generated slip-velocity at
fluid-solid boundaries. The third extension made it possible for the fluid flow to be driven by a slip-velocity
boundary condition (rather than by a pressure difference between inflow and outflow). In addition, several
small changes were made throughout the code to make it compatible with these extensions.

This report documents the changes to the EBNavierStokes code required to support the simulation
of electrokinetic effects. We begin with a brief overview of the problem of electrokinetically driven flow.
Next, we present a detailed description of the changes to the EBNavierStokes code. Finally, we present
some preliminary results and discuss future directions and improvements to the code.

Overview

Physics of Electrokinetic Phenomena

The origin of electrokinetic phenomena is the interaction of an applied electric field with the thin electrically
charged layer that forms at fluid-solid interfaces. In this interfacial region, the electric field induces a body
force in the charged fluid which drives fluid flow. However, because the electrically charged region of the fluid,
often referred to as the diffuse-charge or Debye screening layer, is very thin (typically only 1 to 100 nm thick),
the the coupling between the electric field and the fluid flow only shows up in the mathematical formulation
as a slip-velocity'; Smulochowski’s formula quantifies this relationship

ﬁslip = bE|| (1)

where b is the electroosmotic or electrophoretic mobility and EH is the tangential component of the electric
field at the fluid-solid boundary.

TDepartment of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
fCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551
I This simple coupling between the electric field and fluid flow is only valid in the thin-double limit [2].



Mathematical Formulation

Electrokinetically driven flows are governed by the incompressible Navier-Stokes equations for the fluid flow
and Laplace’s equation for the electrostatics problem:

G+ (TeV)id = —%Vp-i—l/&ﬁ (2)
Veii = 0 (3)
A = 0. (4)

Here # is the fluid velocity, p is the pressure, ¢ is the electric potential; p and v are the fluid density and
kinematic viscosity, respectively. For fluid flows driven by electrokinetic effects, the usual “no-slip” boundary
conditions at fluid-solid interfaces are replaced by the Smulochowski slip-velocity, Eq. (1), for the tangential
component of the velocity. Since fluid is still not allowed to penetrate the surface, we still impose a “no-flux”
condition for the normal component.

The boundary conditions for the electrostatics problem can be a bit more complicated depending on the
material properties of the solid phase and the dynamics of diffuse-layer charging [1, 2]. For the purposes of
this project, we have assumed that the the solid phase is nonpolarizable and that the characteristic time-
scale of diffuse-layer charging is very small relative to the characteristic time-scale of the fluid flow. These
approximations allow us to use a simple homogeneous Neumann boundary condition for the electrostatics
problem.

It is worth noting that the electrostatics problem is completely decoupled from the fluid flow. As a result,
the full problem can be solved by first solving for the electric field and subsequently solving the Navier-Stokes
equations using boundary conditions calculated from the solution to the electrostatics problem.

Numerical Algorithm
To compute numerical solutions to Eqns. (4), we use the following algorithm:
1. Solve for the electrostatic potential problem using a standard multigrid algorithm.
2. Compute the cell-centered electric field througout the physical domain?.
3. Compute the cell-centered slip-velocity at fluid-solid boundaries using Smulochowski’s formula.

4. Compute the face-centered slip-velocity at fluid-solid boundaries by extrapolating the cell-centered values
to faces.

5. Solve the incompressible Navier-Stokes equations using a projection method for incompressible fluid flow
based on the Bell-Colella-Glaz (BCG) algorithm [3, 4].

1 Implementation

The starting point for the electrokinetic flow simulation code was EBNavierStokes, a the microfluidic simula-
tion code developed by D. Trebotich in CASC [3]. This code provided the core solver for the incompressible
Navier-Stokes equations. In this section, we document the modifications made to the code to support elec-
trokinetic effects.

1.1 New Capabilities

Extension of this code to support electrokinetic effects involved adding three new features to the existing code:

e a solver for the electrostatics problem which calculates the electric field throughout the domain

2Technically, we only require the electric field at fluid-solid boundaries, so performance of the code could be improved by
eliminating the computation of the field in the interior of the domain.



e 3 module that computes the slip-velocity at fluid-solid interfaces from mobility and electric field data,
and

e extension of the Operator (manages operations involving the elliptic operator (al — A) ) to handle
nonuniform inhomogeneous Dirichlet boundary conditions.

1.1.1 Class ElectrostaticsSolver

The ElectrostaticsSolver class encapsulates the solution of Laplace’s equation for the electric potential.
Physical and numerical solution parameters are set using the define () method. Computation of the solution
can be explicitly initiated using the solveElectrostaticsProblem() method. Alternatively, the user may
invoke the getElectricPotential() and getElectricField() methods; both of these methods will call
solveElectrostaticsProblem() if the solution has not yet been computed.

In the ElectrostaticsSolver class, Laplace’s equation is solved using a standard multigrid method that
is implemented in the MG and Operator classes. The electric field is computed as a cell-centered quantity by
invoking the Operator: :Gradient () method.

1.1.2 Class EKModule

The EKModule class encapsulates the physics behind electrokinetic phenomena. As with the
ElectrostaticsSolver class, physical and numerical parameters are set using the define() method. In
addition, the electroosmotic mobility (currently identitcal at all fluid-solid boundaries) can be set indepen-
dently using the setMobility() method. Once the solver is defined, the slip-velocity can be calculated
directly by invoking the calculateSlipVelocity() method. Alternatively, the user may just request the
slip-velocity through the getSlipVelocity() or getMACSlipVelocity() methods; both of these methods
invoke calculateSlipVelocity() if the slip-velocity has not yet been computed.

The calculateSlipVelocity() method computes the slip-velocity by first requesting the electric field
from the ElectrostaticsSolver. Next, it multiplies the field by the electroosmotic mobility throughout
the entire domain to obtain a cell-centered “slip-velocity” throughout the region3. At embedded boundaries,
the cell-centered slip-velocity is replaced by a first-order approximation that is calculated by correcting the
cell-centered value using the following formula for each of the velocity components:

boc — 65, 0 [AT (1,.,6,)"]
1—6%,e [A+ 1) 1)T]

(5)

¢EB =

Here ¢cc and ¢rp are the values of ¢ at the cell-center and embedded boundary centroid, respectively,
0%, = Foco — Tep, and A7 is the pseudoinverse of A = (677, ..., 6:i’p)T. In the matrix A, p is the number of
neighboring cells used in the stencil for calculating ¢gp and 6%, = T, — Tpp is the displacement of the m-th
neighbor from the centroid of the embedded boundary. Refer to Appendix A for a more detailed derivation of
this formula.

In addition to the cell-centered slip-velocity, a face-centered slip-velocity is computed on the outer faces of
the computational domain using a third-order extrapolation from the cell-centered slip-velocity. Note that the
slip-velocity on the outer faces is computed before the slip-velocities at embedded boundaries are updated.

1.1.3 Class OperatorNonuniformBC

The OperatorNonuniformBC class extends the Operator class to support nonuniform boundary conditions by
overriding the Action(), RegCells(), IrregCells(), and inhomDirichletDomainBdInIrregCell() meth-
ods. A more detailed description of the changes to these methods follows.

e Action()

3There is no reason to calculate the product of the mobility and the electric field away from the physical boundaries. It was
just easier to write the code to carry out this calculation in all cells. Streamlining this calculation will become more important
for problems that have time varying electric fields because slip-velocity would have to be recalculated at each time step



— Added arguments that pass in boundary data.

— Pass the boundary data along to RegCells(), IrregCells(), and
inhomDirichletDomainBdInIrregCell().

e RegCells()

— Added an argument to pass in cell-centered boundary data.

— Modified the logic for determining which boundary condition to apply. The new logic treats all
directions identically and selects which boundary condition to apply based on the domain boundary
condition flags passed in when defining the OperatorNonuniformBC object.

— Changed Fortran subroutine called for inhomogeneous Dirichlet boundary conditions to
FORT_NU_EDGEINHOMDIRICHLET () which is able to handle nonuniform boundary values.

e IrregCells()

— Added arguments to pass in boundary data.

— Added a contribution from the boundary data to the computation of (e — A) when the user
specifies an inhomogeneous Dirichlet boundary condition on embedded boundaries. The change
only required making use of the inhomogeneous Dirichlet contribution weights calculated in
Operator: :trebDirichletStencil().

e inhomDirichletDomainBdInIrregCell().

— Added arguments to pass in boundary data.

— Modified the logic for determining which boundary condition to apply. The new logic treats all
directions identically and selects which boundary condition to apply based on the domain boundary
condition flags passed in when defining the OperatorNonuniformBC object.

The FORT NU_EDGEINHOMDIRICHLET () subroutine called in RegCells () carries out the same calculation as
the FORT_EDGEINHOMDIRICHLET () subroutine in MGF.ChF except that the inhomogeneous Dirichlet boundary
condition is computed using a third-order extrapolation of the cell-centered boundary data instead of a single
constant value passed into the subroutine.

1.2 Modifications to Existing Code

To support the application of nonuniform inhomogeneous Dirichlet boundary conditions, some modifications
needed to be made to the previously existing code.

1.2.1 Class Advection

The Advection class was modified to replace hard-coded inflow/outflow boundary conditions with logic that
sets the boundary conditions based on the domain boundary input flags used to define the Advection object.
These changes affected the following methods: macVelocities(), macGradient(), and macCorrection(). In
addition, an extra argument was added to macVelocities () and macCorrection() to pass in boundary data.

1.2.2 Main Program: conTest.cpp

The main program required a few modifications to incorporate the electrokinetics components into the simu-
lation.

e A calculation of the slip-velocity was inserted before the main time-stepping loop for solution of the
Navier-Stokes equation. This minor change involved defining an EKModule object and requesting the
cell- and face-centered slip-velocity.

e The code that sets the boundary conditions in the MAC velocity construction was replaced with code
that the boundary conditions based on the input flags for the domain boundary conditions. Previously,
this was hard-coded for inflow/outflow.



e The time-step calculation was modified to:

1. include the slip-velocities in the determination of the stable maximum convective time step size

2. ensure that the time step size does not exceed the maximum stable viscous time step given by
C(dz)? /v where C is a constant and v is the kinematic viscosity.

To support (1), we add a computation of the maximum slip-velocity on the boundaries in the main ()
program and an extra comparison in the timestep_calculation() function. The second issue was
addressed by adding a comparison of the maximum convective time step size to the viscous time step
size.

e A few additional parameters were added to the input file: electrokinetics parameters and boundary
condition flags.

1.3 Bug Fixes

In the course of extending the EBNavierStokes code to handle electrokinetic effects, a few bugs were found.
Fixes to these bugs are documented here.

1.3.1 Class Operator

The Operator: :Divergence () method was an older version that carried out several unnecessary computations
on regular cells. This code was replaced by the analogous code from Advection: :macDivergence().

1.3.2 Fortran Subroutines: MGF.ChF

In EDGELAPLACIANDIRICHLET() and EDGEINHOMDIRICHLET(), the calculation of the contributions to
the Laplacian was inconsistent. EDGELAPLACIANDIRICHLET() used a zeroth-order approximation while
EDGEINHOMDIRICHLET() used a first-order approximation. This inconsistency led to an incorrect so-
lution of Laplace’s equation for the electrostatic potential. To fix this problem, the calculation in
EDGELAPLACIANDIRICHLET () was replaced with a first-order approximation.

It is worth noting that the error arises because the zeroth-order and first-order approximations do not
converge to the same value as the grid spacing approaches zero. As a result, the value of the inhomogeneous
boundary condition that is removed is inconsistent with the homogeneous form of the operator used in the
multigrid solve. The important thing to realize is that the error does not arise solely because the zeroth-order
approximation does not converge.

In addition to this bug, there was also a sign error in calculation of boundary contributions to the Laplacian:
an extra factor of lohi multipled the contribution. This factor has been removed.

2 Preliminary Results

2.1 Verification and Validation

We are at the very early stages of verifying and validating the simulation. Currently, we have two main test
problems:

1. 2D flow in an empty rectangular channel with a DC electric field applied along the direction of the
channel.

2. 2D flow around a circular post (with the same electroosmotic mobility as the channel walls) in a rectan-
gular channel with a DC electric field applied along the direction of the channel.

For the first test problem, the full analytical solution is known for both the steady-state and time-dependent
problems. For the steady problem, the velocity field is simply a plug flow with velocity given by bE,,,. For



the time-dependent problem, the velocity field is completely directed in the direction of the channel and only
depends on the coordinate direction perpendicular to the channel:

-, 4 1 .
u(y,t) = bEgpp |1 — - zdd - exp(—vn’n?t) sin(nmy) (6)
n o

where @ = (u,v) and y is in the direction perpendicular to the channel. Note that Eq. (6) is simply the solution
to the 1D heat equation with an initial temperature of zero in the domain and fixed temperature boundary
conditions. A comparison of the numerical solution to analytical results should be straightforward. Figure 1
shows that the simulation is qualitatively correct; the slip-velocity at the boundary gradually diffuses into the
interior of the channel and eventually reaches a steady-state which is a plug flow with the expected value of
0.1 cm/s.

a0

Figure 1: Fluid flow in a rectangular channel driven by an electrokinetic slip-velocity
at the top and bottom boundaries at times ¢ = 0.00012s, t = 0.00037s, t = 0.00049s,
t = 0.00073s, t = 0.00171s, and ¢ = 0.00281s (ordered left to right, top to bottom).
A potential drop of 1 V in the z direction is instantaneously switched on at ¢t = Os.
For reference, the channel is 100 um wide, the fluid is an aqueous solution with a
kinematic viscosity of 0.01cm?/s, and the electroosmotic mobility is 0.001. With
this set of parameters, the steady-state plug flow should have a velocity of 0.1cm/s
which is what is essentially what is observed by time ¢ = 0.00281s.

For the second problem, there is no analytical solution, but it is known that the steady-state solution is
a potential flow that is proportional to the electric field with the constant of proportionality given by the
electroosmotic mobility [5]. In this case, we can check that the electric field and steady-state flow fields are
related by 4 = bE everywhere in space (not just at the fluid-solid boundaries). Figure 2 shows that near
steady-state, the fluid velocity field produced by the simulation is in good agreement with this expectation.
While the fluid has not quite yet reached steady-state, the similarity between the electric and velocity fields
is evident. The value of the mobility computed by taking a few random points in the physical domain yields
b = 7.81e — 04 which is getting close to the electroosmotic mobility value of 0.001 prescribed at the boundaries.



Figure 3 shows the time evolution of the fluid flow in response to an instantaneously applied electric field at
t = 0s.

Figure 2: Comparison of electric field to steady fluid flow field in a rectangular
channel containing a cylindrical post near steady-state (¢t = 11.572s). The top row
compares the z- component of the electric and velocity fields (electric field on left,
velocity field on right); the bottom compares the y- components. Electrokinetic slip
occurs at the top and bottom boundaries as well as on the surface of the post. A
potential drop of 10 V' in the x direction is instantaneously switched on at ¢ = 0s.
For reference, the channel is 1 cm wide, the post has a radius of 1 mm, the fluid is
an aqueous solution with a kinematic viscosity of 0.01cm? /s, and the electroosmotic
mobility on all physical boundaries is 0.001.

2.2 Staggered Array of Posts

Our next proposed test geometry is a small staggered array of cylindrical posts. Due to the high resolution
required to simulate this geometry and the severe time step size constraints imposed to ensure stability of the
time-stepping algorithm at low Reynolds numbers, we have not yet been able to carry out this computation
to any meaningful time. Figure 4 shows the electric field for this geometry. Because all of the fluid-solid
boundaries have the same electroosmotic mobility, the steady-state velocity field is just scaled by the mobility.



Figure 3: Two-dimensional fluid flow in a rectangular channel containing a cylin-
drical post at times ¢t = 0.0610s, t = 1.221s, t = 4.272s, t = 6.104s, t = 8.545s, and
t = 11.572s (ordered left to right, top to bottom). Electrokinetic slip occurs at the
top and bottom boundaries as well as on the surface of the post. A potential drop
of 10 V in the x direction is instantaneously switched on at ¢ = 0s. For reference,
the channel is 1 cm wide, the post has a radius of 1 mm, the fluid is an aqueous
solution with a kinematic viscosity of 0.01cm?/s, and the electroosmotic mobility
on all physical boundaries is 0.001.

3 Future Improvements and Directions

While the current version of the electrokinetics simulation code is capable of handling simple electrokinetically
driven flows, there are many areas that could be improved. What follows is a list of future improvements and
directions that extend this summer’s work.

e Inlight of recent interest in AC electrokinetic effects, it would be useful to add support for time-dependent
electric fields. To support time-dependent electric fields, the primary algorithmic change would be to
include the solution of the electrostatics problem within the main time-stepping loop.

e In the EKModule, the capabilities of the simulation code would be significantly improved by supporting
the option of using different electroosmotic mobilities for different boundaries. This enhancement would
allow the code to handle multi-material devices. Along these same lines, support for nonuniform zeta-
potentials (possible via a nonuniform mobility) would make it possible to simulate induced-charged
effects which become important if there are polarizable components of the device (e.g. electrodes).

e In order to accurately simulate the motion of fluid-particles systems (e.g. DNA flowing through a
microfluidic device), we need to include electrokinetic effects of the particles themselves, especially for
those particles that possess a significant diffuse charge layer (e.g. DNA). One possible approach to this
problem would be to attribute a finite volume to each particle and use the particle positions at the



Figure 4: Electric field for a rectangular channel containing a a staggered array of
cylindrical posts (E, on left, F, on right). Electrokinetic slip occurs at the top
and bottom boundaries as well as on the surface of all posts. A potential drop of
1 V in the z direction is instantaneously switched on at t = 0s. For reference, the
channel is 2 mm wide, the each post has a radius of 25 um, the fluid is an aqueous
solution with a kinematic viscosity of 0.01cm? /s, and the electroosmotic mobility
on all physical boundaries is 0.001.

beginning of each time step to generate a new geometry. This geometry could then be used to compute a
new solution to the electrostatics problem which would give new slip-velocities for the fluid flow problem.

e Because electrokinetic effects are surface driven phenomena, high resolution of fluid-solid boundaries is
important in order to obtain accurate solutions. However, it is unlikely that this high resolution will
be required throughout the entire computational domain. To address these issues, it might be useful
to leverage adaptive mesh refinement (AMR) technologies. Also, because electrokinetically driven flows
are low Reynold’s number flows, AMR might also prove helpful in dealing with the severe time step size
constraints needed to maintain numerical stability.

e The low Reynold’s number nature of electrokinetic flows complicates the choice of time step size by
making it necessary (in some algorithms) to include considerations of the viscous term when analyzing
numerical stability. At the moment, the time step size is determined by using a heuristic that includes
both the convective and viscous time scales. However, this heuristic calculation seems to be incorrect
because for problems with small physical dimensions (& 100um), even the viscous time step size seems
inadequate. It would, thus, be beneficial to further investigate the stability criteria for this problem and
base the maximum time step size calculation on a more careful analysis.

e Further verification and validation of the code is required before we can be confident that the results
produced by the simulation are physically accurate. To be more specific, a few possibilities include:

— Grid convergence studies should be done to check that the numerical solution converges as the grid
spacing decreases;

— Numerical solutions in more complex geometries could be compared with analytical or experimental
results;

— In addition to comparison of steady-state flows, perhaps it would be possible to compare numerical
results to experimentally observed transient flows.

One concrete problem that may be of scientific interest is simulating the 3D flow around a non-stationary,
metallic cylinder in the presence of an AC electric field. Being able to simulate the flow field for this problem
has the potential to be useful in understanding some experiments being conducted by Klint Rose et. al. at
Stanford University.
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Appendix A: Derivation of Embedded Boundary Slip-Velocity For-
mula

To compute the slip-velocity at embedded boundaries, we add the following leading-order correction to each
component of the cell-centered value of “slip-velocity”:

¢EB — $cc = —VoEB ® 0%, (7)

where 6Z, = (fcc —Zgp). In this formula, Végp is computed from the values of ¢ at the centers of
neighboring cells using weights determined by observing that the gradient of ¢ at £gp can be estimated as
the solution of a least squares fit problem [3]:

A eV =g, (8)
where
A = (6,..,08,)" 9)
6¢ = (8¢1,...,00p) (10)
5%, = & —TEp (11)
S¢m = ¢m— 5B (12)

and p is the number of neighbor points used to estimate V¢. Letting A+ = (ATA)f1 AT denote the
pseudoinverse of A, we see that we can write the least squares solution for Vogp as

AYop= AT (f1,.s0p) —GEBAT(1,.,1)7 (13)
Substituting this formula into Eq. (5) and solving for ¢gg, we arrive at Eq. (5):

boc — 07,8 [AT (31, p)" |
167, [A+ (1,...,1)T}

¢EB = (14)

References

[1] T. M. SQUIRES AND M. Z. BAZANT, Induced-charge electro-osmosis, J. Fluid Mech., 509 (2004), pp. 217—
252.

[2] M. Z. BazanT, K. THORNTON, A. AIDARIL, Diffuse-Charge Dybamics in Electrochemical Systems,
preprint, http://arxiv.org/abs/cond-mat/0401118.

[3] D. TREBOTICH, Working Notes for BCG Projection in EB Framework, private communication.

[4] J. B. BELL, P. COLELLA, AND H. M. GLAZ A Second-Order Projection Method for the Incompressible
Navier-Stokes Equations, J. Comp. Phys., 85 (1989), pp. 257-283.

[5] R. J. HUNTER, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.

10



