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ABSTRACT 

 
Although significant progress has been achieved in understanding the genetic and 

biochemical bases of the spore germination process, the structural basis for breaking the 

dormant spore state remains poorly understood. We have used atomic force microscopy 

(AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus 

spores germinating under native conditions. Here we show that AFM can reveal 

previously unrecognized germination-induced alterations in spore coat architecture and 

topology as well as the disassembly of outer spore coat rodlet structures. These results 

and previous studies in other microorganisms suggest that the spore coat rodlets are 

structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the 

emerging germ cell revealed a porous network of peptidoglycan fibers. The results are 

consistent with a honeycomb model structure for synthetic peptidoglycan oligomers 

determined by nuclear magnetic resonance. AFM is a promising experimental tool for 

investigating the morphogenesis of spore germination and cell wall peptidoglycan 

structure.  
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INTRODUCTION 

When starved for nutrients Bacillus and Clostridium cells initiate a series of 

genetic, biochemical and structural events that results in the formation of a metabolically 

dormant endospore (1). Spores can remain dormant for extended time periods and 

possess a remarkable resistance to environmental insults (i.e. heat, radiation, toxic 

chemicals and pH extremes) (1-5) that are lethal to vegetative cells. The resistance and 

persistence of dormant spores is attributed to a multi-layer spore architecture (6). Upon 

exposure to favorable conditions, spores break dormancy through the process of 

germination (2, 7, 8) and eventually reenter the vegetative mode of replication.  

A comprehensive understanding of the mechanisms controlling spore germination 

is of fundamental importance both for practical applications related to the prevention of a 

wide range of diseases by spore-forming bacteria (including food poisoning and 

pulmonary anthrax), as well as for fundamental studies of cell development. Germination 

involves an ordered sequence of chemical, degradative, biosynthetic and genetic events 

(2, 8).  

Significant progress has been made in understanding the biochemical and genetic 

bases for the germination process (2). Germination is triggered by the interaction of 

germinants with specific receptors (2, 7, 9) in the inner spore core membrane, causing the 

release of the dipicolinic acid (DPA) and its replacement by water. Subsequent hydrolysis 

of the spore cortex, further uptake of water, core expansion, and spore coat hydrolysis 

allow emergence of the incipient vegetative cell. 

The role of the spore coat in the germination process is unclear (2,6) and is the 

focus of this study. Spore coat structure regulates the permeation of germinant molecules 
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(7-10). It is believed that penetration of germinants proceeds through pores in the coat 

structure and may involve GerP proteins (9). 

Atomic force microscopy (AFM) has been utilized to probe in vitro the 

architecture of large macromolecular ensembles and pathogens (reviewed in 11). In 

particular, high-resolution AFM studies of fungal spores (12, 13) have revealed native 

spore coat structure and surface adhesion properties accompanying spore germination 

(12). We have utilized AFM to investigate spore coat structure and assembly mechanisms 

in several species of Bacillus (14-16). We have also used AFM to study environmental 

effects on the structural dynamics of single ungerminated spores (14, 16). While AFM 

images of air-dried germinated Bacillus spores have been reported (17, 18), high-

resolution spore coat structures were not resolved. Here we report the development of in 

vitro AFM methods for molecular-scale examination of spore coat and germ cell wall 

dynamics during spore germination and outgrowth. 

 

RESULTS 

Spore Germination - Spore coat architecture and dynamics. In the present study, the 

germination of single Bacillus atrophaeus spores was investigated. At the micrometer 

scale, when spores are exposed to cognate germinant molecules, germination initiates 

with an increase in spore volume resulting from the uptake of water (19) and terminates 

with the release of emerging vegetative cells from spore coat remnants. The timing of 

germination and outgrowth varies stochastically among individual spores (20). The 

germination medium utilized for our germination experiments was designed to allow 

rapid and synchronous initiation of spore germination but does not have sufficient 

nutritional resources to allow extensive vegetative cell outgrowth.  Preliminary high-
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resolution AFM analysis of B. atrophaeus spores germinating in this medium indicated 

that swelling occurred within 0.5 hr of germinant contact. Initiation of etching of the coat 

layers and outgrowth typically occurred within 1-2 hrs and 3-7 hrs, respectively (data not 

shown), which allows successful real-time AFM visualization of the germination and 

outgrowth process. Individual germinating spores were followed in real time in order to 

probe molecular-scale structural transformations and to construct a complete cytological 

sequence of the germination process. 

A significant fraction (~ 30%) of spores did not proceed to outgrowth in the 

timeframe of the observation and did not exhibit degradation of the rodlet layer. 

However, after drying, over 90% of these spores showed a structural collapse, indicating 

the prior replacement of DPA in the spore core with water, i.e. they did proceed through 

the germination stage, but not to the outgrowth stage. 

To obtain a comprehensive understanding of the role of the spore coat in 

germination, AFM imaging on a nanometer scale is required. At this scale, the outer layer 

of the B. atrophaeus spore coat is composed of a crystalline rodlet array (16) (Fig. 1a) 

containing a small number of point and planar (stacking fault) defects (16). Upon 

exposure to the germination solution, disassembly of the rodlet structures was observed 

on ~ 70% of spores. During the initial stages of germination, the formation of 2-3 nm 

wide micro etch pits in the rodlet layer was observed (Fig. 1b). Subsequently, the etch 

pits formed fissures (Fig. 1b-1d) that were, in all cases, oriented perpendicular to the 

rodlet direction. Simultaneously, etching commenced on the stacking faults (Fig. 1e-1f) 

revealing a previously unrecognized hexagonal inner spore coat layer (Fig. 1g). During 

later stages of germination, further disintegration of the rodlet layer (Fig. 1e-1f) 
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proceeded by coalescence of existing fissures, their autonomous elongation (at a rate of ~ 

10 - 15 nm/hr) and widening (at ~ 5 nm/hr), and by continued formation of new fissures. 

 

Higher-order rodlet structure. Disassembly of the higher-order rodlet structure began 

prior to the outgrowth stage of germination (Fig. 2). Disaggregation of the rodlet layer 

occurred perpendicular to the orientation of individual rodlets resulting in the formation 

of banded remnants (Fig. 2). Further structural disruption led to the formation of 

extended, 2 - 3 nm wide, fibrils (indicated with arrows in Fig. 2e) which were also 

oriented perpendicular to the rodlet direction. 

The observed rodlet disassembly process appears not to be perturbed by the AFM 

scanning probe. Imaging using various scan angles did not influence either the 

appearance of the rodlet remnants and fibrils or their relative orientation. In addition, the 

rodlet disassembly processes producing fibrils were consistently observed both on spores 

that were imaged continuously from the onset of germination (Fig. 1), as well as on 

spores that were imaged only when rodlet degradation was already in progress. Finally, at 

all stages of the rodlet disassembly, prolonged scanning of a small area followed by a 

zoom-out to a large previously non-scanned area (Fig. 2b,c ) did not indicate any 

alterations in the morphology of the initially imaged area (such as increased etching). 

 

Emergence of vegetative cells. Etch pits were the initiation sites for early germination-

induced spore coat fissure formation. During intermediate stages of germination, small 

spore coat apertures developed that were up to 70 nm in depth (Fig. 3b). During late 
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stages of germination these apertures dilated (Fig. 3c-e) allowing vegetative cell 

emergence (data not shown). 

In vitro AFM visualization of germling emergence allowed high resolution 

visualization of nascent vegetative cell surface structure (Fig. 3e-g). Vegetative cell wall 

structure could be recognized through the apertures approximately 30-60 minutes prior to 

germ cell emergence. The emerging germ cell surface was initially partially covered with 

residual patches of spore integument (Fig. 3f). During the release of vegetative cells from 

the spore integument, the entire cell surface consisted of a porous fibrous network (Fig. 

3g).  

In order to compare the cell wall structure of germling and mature vegetative 

cells, we carried out separate experiments in which cultured vegetative B. atrophaeus 

cells were adhered to a gelatin-coated surface (21), and imaged with AFM in water. As 

seen in Fig. 3h, the cell wall of mature vegetative cells contained a porous, fibrous 

structure similar to the structure observed on the surface of germling cells (Fig. 3g).  

 

DISCUSSION 

The results presented here demonstrate that in vitro AFM is a powerful tool for 

revealing the structural dynamics and architectural topography of the spore germination 

process. The ability to image single emergent vegetative cells at nm scale, under native 

conditions, also provides a powerful tool for investigating of the biological structure of 

Gram-positive cell walls. 
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Electron microscopy (EM) techniques such as thin sectioning, freeze-fracturing, 

negative staining, and cryo-electron microscopy have been the primary tools used to 

study microbial surface structures (19, 22-24). AFM allows new approaches to high-

resolution real-time dynamic studies of single microbial cells under native conditions (in 

air or in aqueous solution). Environmental parameters (ex., temperature, chemistry or gas 

phase) can be easily changed during the course of AFM experiments, allowing dynamic 

environmental and chemical probing of microbial surface reactions. 

The AFM studies presented here elucidate the time-dependent structural dynamics 

of individual germinating spores and reveal previously unrecognized nano-structural 

alterations of the outer spore coat. Disassembly of the higher-order rodlet structure 

initiates at micro-etch pits, and proceeds by the expansion of the pits to form fissures 

perpendicular to the rodlet direction. What causes this breakdown of the rodlet layer? It is 

known that several lytic enzymes, which cause cortex hydrolysis, are located at the 

cortex-coat junction, inner membrane and in outer spore coat layers (2). We suggest by 

analogy that rodlet structure degradation is caused by specific hydrolytic enzyme(s), 

located within the spore integument and activated during the early stages of germination. 

The highly directional rodlet disassembly process suggests that coat degrading enzymes 

could be localized at the etch pits, and either recognize their structural features, or that 

the etch pits are predisposed to structural deformation during early stages of spore coat 

disassembly. The gradual elongation of the fissures, suggests that once hydrolysis is 

initiated at an etch pit, processive hydrolysis propagates perpendicular to the rodlet 

direction and to neighboring rodlets.  
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The locations of the small etch pits may coincide with point defects in the rodlet 

structure. These point defects could be caused by misoriented rodlet monomers or by the 

incorporation of impurities into the crystalline structure. In both cases, point defects 

could facilitate access of degradative enzymes to their substrate in an otherwise tightly 

packed structure.  

Recent proteomic and genetic studies suggest that the inner and outer spore coats 

of Bacillus subtilis, which is closely related to Bacillus atrophaeus, are composed of over 

50 polypeptide species (8, 25). However, it is unknown which of these proteins form the 

surface rodlet layer of the spore coat or how this outer spore coat layer is assembled. We 

have shown previously for Bacillus cereus spores (14) and here for Bacillus atrophaeus 

spores (Fig. 1g) that the outer spore coat rodlet layer is underlain by a crystalline 

honeycomb structure. 

The closest structural and functional orthologs to the Bacillus species rodlet 

structure (not its protein sequence) are found outside the Bacillus genus. Several classes 

of proteins, with divergent primary sequences, were found to form similar rodlet 

structures on the surfaces of cells of Gram-negative Escherichia coli and Salmonella 

enterica as well as spores of Gram-positive streptomycetes and various fungi (26). These 

rodlets were shown to be structurally highly similar to amyloid fibrils (26).  Amyloids 

possess a characteristic cross β-structure and have been associated with neural 

degenerative diseases (i.e., Alzheimer’s and prion diseases) (27).  Amyloid fibrils or 

rodlets form microbial surface layers (26), which play important roles in microbial 

attachment, dispersal and pathogenesis. Fungal hydrophobin rodlet layers cause hyphal 

fragments and spores to become water-repellant, which enables escape from the aqueous 
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environment and stimulates aerial release, dispersal and attachment to hydrophobic host 

surfaces (26). The structural similarity of B. atrophaeus spore coat rodlets and the 

amyloid rodlets found on other bacterial and fungal spores suggests that Bacillus rodlets 

have an amyloid structure. AFM characterization of the nanoscale properties of 

individual amyloid fibrils has revealed that these self-assembled structures can have a 

strength and stiffness comparable to structural steel (28). The extreme physical, chemical 

and thermal resistance of Bacillus endospores suggests that evolutionary forces have 

captured the mechanical rigidity and resistance of these amyloid self-assembling 

biomaterials to structure the protective outer spore surface. AFM has played a pivotal role 

in revealing the powerful and pervasive forces of convergent evolution that have shaped 

prokaryotic and eukaryotic spore surface architecture (12-16, 28). 

Structural studies of amyloids have identified an array of possible rodlet 

assemblies, each consisting of several (2 or 4) individual cross- β-sheet fibrils, which are 

often helically intertwined (26). The number of fibrils determines the diameter of the 

rodlet. Most amyloids resulting from protein-folding diseases, and some naturally 

occurring amyloids, form individual fibrils or disorganized rodlets networks. The in vitro 

self-assembly of fungal hydrophobin rodlet layers at hydrophobic/hydrophilic interfaces 

(29) may indicate that the amphiphilic nature of the hydrophobins is sufficient to 1) bring 

monomers and growing rodlets together in a confined 2D layer, 2) structurally orient their 

hydrophobic and hydrophilic residues in such a way that 3) monomers attach to growing 

rodlets, and 4) rodlets easily coalesce to form a closely packed layer. 

In spore coats of B. atrophaeus, the higher-order rodlet structure is organized as 

one major domain of parallel rodlets covering the entire spore surface (16). Because of 
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the close-packed, two-dimensional crystalline nature of these rodlet domains, their self-

assembly appears to be governed by principles similar to macromolecular crystallization, 

for which an extensive body of knowledge and theory exists. In particular, crystallization 

requires that there must be periodic bonds in every growth direction (30). Rodlet domain 

formation requires there must be periodic bonds in the rodlet direction (“parallel bonds”) 

as well in the direction perpendicular to it (“perpendicular bonds”). In the case of 

amyloid-like rodlets, the intra-rodlet, parallel bonds are known and consist primarily of 

hydrogen bonds associated with the cross-β sheets that form the backbone of the rodlet 

fibrils. However, the nature of the perpendicular bonds, i.e. the inter-rodlet bonds that 

keep the rodlets tightly packed, is unknown. Based on the high degree of order in the 

domains, it is expected that in addition to the macroscopic hydrophilic/hydrophobic effect 

mentioned previously, there are specific, attractive rodlet-rodlet interactions that stabilize 

the structure in the perpendicular direction. Interestingly, for B. atrophaeus the ratio of 

length (parallel to rodlet direction) and width (perpendicular to rodlet direction) of the 

rodlet domains is on average ~ 1, indicating that during formation of these domains, 

growth velocity was similar in both directions, and hence parallel and perpendicular 

bonds were similar in strength. 

Based on these rodlet features, one might expect that during germination 

individual rodlets would detach or erode, leaving a striated pattern parallel to the rodlet 

direction. Surprisingly, striations perpendicular to the rodlet direction were observed 

(Fig. 2), and 2 – 3 nm wide fibrils perpendicular to the rodlet direction (Fig. 2e) were the 

culmination product of coat degradation. This result indicates that during germination, 

perpendicular rodlet bonds are stronger, or are more resistant to hydrolysis, than bonds 
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parallel to the rodlet direction. Second, and most surprisingly, these perpendicular 

structures facilitate the formation, of 200-300 nm long fibers perpendicular to the rodlet 

direction. 

It is unclear how microbial amyloid fibers form these perpendicular structures. 

One possibility is that during formation of the rodlet layer, both intra-rodlet parallel 

bonds and inter-rodlet perpendicular bonds form, similar in strength and leading to tightly 

packed rodlets domains held together by a checkerboard-like bonding pattern. During 

germination, the intra-rodlet parallel bonds are hydrolyzed, while the inter-rodlet 

perpendicular bonds remain intact over longer time periods. Spore coat hydrolytic 

enzymes could target a specific residue or structure (in this case, that of the cross-β 

sheets) and leave other (here, perpendicular) residues or structures intact. Identification of 

the gene(s) encoding the rodlet structure and the enzymes responsible for rodlet 

degradation are important areas for future research. 

The bacterial cell wall consists of long chains of peptidoglycan that are cross-

linked via flexible peptide bridges (31, 32). While the composition and chemical structure 

of the peptidoglycan layer vary among bacteria, its conserved function is to allow 

bacteria to withstand high internal osmotic pressure (31). The length of peptidoglycan 

strands varies from 3-10 disaccharide units in S. aureus to ~ 100 disaccharide units in B. 

subtilis, with each unit having a length and diameter of ~1 nm (33). The fibrous network 

observed on the germ cell surface with 5 – 100 nm pores, (Fig. 3e, g), and the fibrous 

network observed on mature vegetative cells with 5 – 50 nm pores (Fig. 3h) appear to 

represent the nascent peptidoglycan architecture of newly-formed and mature cell wall, 

respectively, and is comprised of either individual or several intertwined peptidoglycan 
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strands. The cell wall density of mature cells appears to be higher with, on average, 

smaller pores and more fibrous material, as compared to the germ cells. These results are 

consistent with murein growth models whereby new peptidoglycan is inserted as single 

strands and subsequently cross-linked with preexisting murein (34). 

A similar fibrous network has been reported in AFM studies of Gram-positive 

Staphylococcus aureus cell growth and division (35). The AFM-resolved pore structure 

of the nascent B. atrophaeus germ and vegetative cell surfaces, as well as S. aureus 

vegetative cell peptidoglycan is similar to the honeycomb structure of peptidoglycan 

oligomers (elementary pore size of 7 nm) determined by NMR (32). The pore size range 

is expected to increase with decreasing degrees of cross-linking (32). The B. atrophaeus 

cell wall pore structure (Fig. 3e, g, h) is consistent with the lower degree of cross-linking 

and broad glycan chain length distribution (25 - 100 disaccharide units) that is typical for 

B. subtilis (24, 33). 

Spore germination provides an attractive experimental model system for 

investigating the genesis of the bacterial peptidoglycan structure. Dormant spore 

populations can be chemically cued to germinate with high synchrony (2), allowing the 

generation of homogenous populations of emergent vegetative cells suitable for structural 

analysis. 

Proposed models for the bacterial cell wall structure posit that peptidoglycan 

strands are arranged either parallel (planar model) or orthogonal (scaffold model) to the 

cell membrane (31, 32).  Existing experimental techniques are unable to confirm either 

the planar or the orthogonal model. The experiments described here do not contain 

sufficient high-resolution data, in particular of individual peptidoglycan strands, to 
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deduce with certainty the tertiary three-dimensional peptidoglycan structure. The pore 

structures (Fig 3 g, h) of the emergent germ and mature vegetative cell wall - an array of 

pores - suggest a parallel orientation of glycan strands with peptide stems positioned in 

stacked orthogonal planes (32). More detailed studies of germ cell surface architecture 

and morphogenesis will be required to confirm this peptidoglycan architecture and to 

investigate whether glycan biosynthesis precedes peptide cross-linking.  

 

MATERIALS AND METHODS 

Spore and vegetative cell preparation; purification and germination conditions. B. 

atrophaeus (ATCC 9372) was obtained from the American Type Culture Collection 

(ATCC; Manassas, VA). Spores were produced using Schaeffer’s sporulation medium 

and purified as described (36). Spore germination was induced by the addition of 100 

mM L-alanine, 1.65 mM L-asparagine, 2.8 mM D-glucose, 2.8 mM D-fructose, 5 mM 

potassium chloride, and 25 mM Tris buffer, pH 8.0. The germination time course was 

characterized by phase contrast microscopy prior to performing AFM imaging. More than 

95% of spores turned phase dark within 15 minutes and cell outgrowth typically occurred 

within 3-7 hrs. 

The same spore preparation was used to generate vegetative cells in liquid Difco 

nutrient broth (NB) media. After overnight incubation, the resulting suspension was 

streaked over NB agar plates. The next morning, single colonies could be isolated and 

were grown in tubes with NB. All incubation was done at 37°C.  

AFM imaging of spores. The outer surface of bacterial spores is highly hydrophobic.  

Thus, spores do not adhere well to hydrophilic substrates, such as mica and glass, when 
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used in liquid AFM imaging. We found that bacterial spores adhered to polycoated vinyl 

plastic substrates with sufficient avidity for successful AFM imaging in fluid. These 

substrates were used exclusively for imaging of germinating bacterial spores. For AFM 

observations, a 1-2.5 μL droplet of a spore suspension (108 spores/ml) was deposited on 

the substrate and incubated for 10 min to allow spore adherence. The substrate was gently 

rinsed with double distilled water and transferred to the AFM fluid cell, which was 

typically filled with water first, for imaging a group of spores prior to germination. 

Subsequently, water was replaced with germinant solution to initiate spore germination. 

Germination experiments were conducted at 37˚C. The time course of germination 

experiments varied between 2 and 15 hours to allow for the completion of vegetative cell 

emergence.  

Images were collected using a Digital Instruments Multimode Nanoscope IV 

atomic force microscope (Digital Instruments, Santa Barbara, CA) equipped with a 

tapping mode fluid cell, and exclusively operated in tapping mode. In our experiments 

light tapping-mode imaging was exclusively utilized in order to minimize possible tip-

induced effects on the spore coat structure. At these scanning conditions a minimal 

decrease in the applied force typically resulted in the detachment of the AFM tip from the 

scanning surface. Under stable conditions, the tapping amplitude was re-optimized at 

least once every hour to optimize resolution and contrast while keeping the tip-sample 

interaction forces low. The scan rate varied from ~ 1Hz for imaging of entire germinating 

spores to ~ 2 Hz for high-resolution imaging of the structural dynamics of the rodlet 

spore coat layer. 
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 A commercial Digital Instrument Multimode heater package, for use with 

standard scanners and AFM fluid cells, was utilized for sustained temperature control 

during the germination experiments. The temperature inside the AFM fluid cell was 

recorded with a thermocouple, and kept within 0.5˚C of 37˚C at all times. AFM probes 

consisting of silicon tips on silicon nitride cantilevers (force constants of approximately 

0.1 N/m, Digital Instruments) were used at tapping frequencies of ~ 9 kHz.  

 

AFM imaging of vegetative cells. For AFM imaging of B. atrophaeus vegetative cells, 

the cell suspension was washed 2x by centrifuging 1 ml of culture for 2 minutes at 

8,000g, and replacing the liquid with sterile ice cold double distilled water. After an 

additional centrifugation step, cells were resuspended in 100μl sterile water. Plastic cover 

slips cut into a 15mm circle were dipped briefly in liquid porcine gelatin suspension (type 

A, 300 bloom, Electron Microscopy Sciences, PA), and then left to dry vertically, 

resulting in a thin gelatin coverage. Following drying, the gelatin-coated plastic was 

attached to a metal 15 mm AFM specimen disc (Ted Pella, CA). A droplet of B. 

atrophaeus cell suspension (3-5 μl) was deposited directly onto a gelatin-covered AFM 

disc, and allowed to incubate for ~10-20 min. The disc was transferred into the AFM 

fluid cell and imaged in water as described above for spore imaging. 
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CAPTIONS 

 

Figure 1. (a) The intact rodlet layer covering the outer coat of dormant B. atrophaeus 

spores is ~ 11 nm thick, and has a periodicity of ~ 8 nm (14). (b-d) Series of AFM images 

tracking the initial changes of the rodlet layer after (b) 13 min., (c) 113 min., and (d) 295 

min. of exposure to germination solution. Small etch pits (indicated with arrows in b) 

evolve into fissures (indicated with an arrow in c) perpendicular to the rodlet direction. 

The fissures expand both in length and width. (e-f) Series of AFM images showing 

another germinating spore. The spore long axis, as well as major rodlet orientation is left-

right. Enhanced etching at stacking faults (running from left to center and indicated with 

an arrow in e), as well as increased etching at the perpendicular fissures were visible 

following (e) 135 min. and (f) 240 min. of germination. Fissure width and length 

increased from 10 – 15 nm and 100-200 nm (135 min.) to 15 – 30 nm and 125-250 nm 

(240 min.), respectively.  (g) Etching and/or fracture of the rodlet layer at a stacking fault 
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revealed the underlying hexagonal layer of particles with a 10-13 nm lattice period. Scale 

bars are 20 nm in (a) and (g, inset), 100nm in (b-g). 

 

 Figure 2. (a-d) Series of AFM height images showing the progress of rodlet 

disassembly. In the circled regions, banded remnants of rodlet structure (a) disassemble 

into thinner fibrous structures (d). Time between images was 36 min. (a) - (b); 3 min. (b)-

(c) and 6 min. (c) - (d), for a total time between (a) and (d) of 45 min. In (b), the area 

imaged in (c) is indicated with a light grey box. In (b) and (c) the area imaged in (a) and 

(d) is indicated with a dark grey box. In (e), which is an enlarged part of (d), arrows 

indicate the end point of rodlet disruption, i.e. fibrils with a diameter of 2 – 3 nm, 

oriented roughly perpendicular to the rodlets. Scale bars are 50 nm (a, c-e), 200 nm (b). 

 

Figure 3. Emergence of vegetative cells. (a-g) Series of AFM height images showing 60-

70 nm deep apertures in the rodlet layer (indicated with arrows in (b)) that gradually 

enlarged (c-d), and subsequently eroded the entire spore coat (e). Germ cells emerged 

from these apertures. (e) Prior to germ emergence from the spore coat, the peptidoglycan 

cell wall structure was evident. (f) At an early stage of emergence, the cell wall was still 

partly covered by spore remnants, while (g) immediately prior to cell emergence, the cell 

wall was free of spore integument debris. The germ cell surface contained 1 – 6 nm fibers 

forming a fibrous network enclosing pores of 5 – 100 nm. Images in (a-g) were collected 

on the same spore as those shown in Fig. 1e,f. Elapsed germination time (in hr:min) was 

(a) 3:40, (b) 5:45, (c) 7:05, (d) 7:30, (e) 7:45, (f) 7:15, (g) 7:50. (h) In separate 

experiments, cultured vegetative B. atrophaeus cells were adhered to gelatin surfaces and 

imaged in water. AFM height images show a slightly denser, similar fibrous network 

compared with the germ cell network structure (g), with 5 – 50 nm pores. In the inset, the 

imaged part (h) of the entire cell is indicated with a white rectangle. Scale bars are 500 

nm (a-e), 100 nm (f-h), and 1μm (h, inset). 
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