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Abstract 

Arguments are reviewed showing that helicity transport always flattens the temperature 

profile, yielding unit current amplification in SSPX and flat temperature profiles in RFP’s 

whenever the dynamo is active. The argument is based on transport theory yielding a hyper-

resistivity Λ ≈ (c2/ωpe
2)χe with electron thermal diffusivity χe, valid for any process producing a 

random-walk in electron constants of motion in the unperturbed field. The theory could be tested 

by deriving Λ from helicity transport in SSPX, by analogy with recent analysis yielding χe from 

heat transport. If the predicted ratio Λ/χe is confirmed, efforts to increase current amplification in 

SSPX must be based on scenarios consistent with slow helicity transport compared to heat 

transport (pulsed reactor, multipulse, neutral beam injection). 

 

1. Introduction 

The revival of interest in spheromaks that led to SSPX was motivated by high 

temperatures achieved in CTX [1]. This note is an update of Ref. [2], written in 1994, in which I 

tried to account for the high temperatures in CTX and, from this, to obtain a buildup scenario 

yielding high current amplification. It was noted that CTX temperatures could be explained by S-

scaling [3] applied to the Rechester-Rosenbluth thermal diffusivity χRR in a tangled magnetic 

field [4], giving: 

 
∂(nT)/∂t - ∇⋅nχe∇T = ηj2  = (B2/2τµo)  (1) 
 
                    

where we used µo j = λB giving the ohmic decay time τ = (µo /2ηλ2 ).  For steady state with χe = 

χRR, we obtain: 

 
   χRR = veLC(δB2/B2)     (2) 
 
  β = 2µonT/B2 =  (vA/ve)[1/(δB2/B2)S] (3) 
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In Eqs. (2) and (3), δB is the magnetic fluctuation relative to a mean field B; LC ≈ a is the 

correlation length with minor radius a; ve is the electron thermal speed; and S = vAτ/a with 

Alfven speed vA . 

For S scaling (δB2/B2 = S-1), Eq. (3) gives β = vA/ve ≈ (me/mi)1/3, which fit CTX results for 

two very different values of B and T. By similar arguments Connor and Taylor had predicted 

constant beta in RFP’s [5]; and this prediction of constant β ≈ 5 - 10 % seemed to be even better 

confirmed in SSPX. This seeming success in predicting temperatures led us to conclude, 

incorrectly, that even weak S-scaling fluctuations must transport helicity fast enough to exceed 

resistive losses, thereby building up the current. It was through NIMROD simulations that we 

came to realize that high temperatures were achieved only if helicity transport ceases. Then flux 

surfaces close, giving roughly ion classical transport that yields a similar β ≈ (me/mi)1/4 [5], now 

thought to be the more likely explanation for high temperatures.  

Here we show that helicity transport is always slower than heat transport. Then helicity 

transport across any width Δ should always flatten the temperature, giving the same result as if 

field lines connect across Δ , even if flux surfaces close intermittently. 

In Section 2 and in Appendix A, we review helicity transport theory, giving flat 

temperature profiles in Section 3 which in turn accounts for low current amplification in Section 

4. In Section 5 we suggest experimental tests, by extracting helicity transport coefficients from 

SSPX data much as the heat transport coefficient χ is extracted now. Section 6 discusses results 

in the context of buildup scenarios that might yet succeed in achieving high current 

amplification. 

 

2. Helicity Transport Theory 

Helicity transport is described by the hyper-resistive Ohm’s Law, derived in Appendix A, 

and given by: 

 
E| | = (m/ne2){νj| |    -   ∇⊥⋅DM ∇⊥ j| | } 
 = ηj| |  - B-1∇⊥⋅B2 Λ∇⊥λ   (4) 
 
Λ = (m/µone2)DM = (c2/ωpe

2)DM     (5) 
                                             

In the second line of Eq. (4) we have put results in helicity-conserving form [6] with λ = µo j| | /B, 

though as yet we cannot justify moving n inside the derivative (see Appendix B).  
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Eq. (4) is the moment equation for electron momentum neglecting inertia, with collision 

frequency ν giving resistivity η = (m/ne2)ν = µo(c2/ωpe
2)ν. Any kind of turbulence produces an 

additional effective collision frequency ∇⊥⋅DM ∇⊥ with momentum diffusion coefficient DM.  

According to Kaufman’s transport theory in action-angle space discussed in Appendix A 

[10], any process that transports electron momentum by Eq. (4) makes a comparable contribution 

≈ DM to the electron heat diffusivity, giving: 

 
χe ≥ DM        (6)  

 
and for magnetic perturbations, usually χe ≤ χRR. This result, obtained by several authors, is more 

general than might appear from derivations of “kinetic” hyper-resistivity in papers such as Refs. 

[7, 8, 9].  For example, contrary to various discussions in the literature, Eqs. (5) and (6) apply 

specifically to Strauss’s hyper-resistivity derived from the MHD dynamo <δvxδB> for tearing 

modes with χe ≤ χRR [11]. The correspondence of Kaufman’s more general theory with MHD is 

discussed in Appendix B.  

 

3. Flattening of the Temperature Profile 

If instability is strong enough to cause helicity to be transported, the right hand side of 

Eq. (4) must be negative so that helicity flow exceeds resistive losses. By inspection, making the 

right hand side of Eq. (4) negative requires: 

 
χe  ≥ DM  > νΔ2 = (ωpe

2/λ2c2)(Δ2/τ)  (7) 
                                       

where we use Eq. (6), and ∇ ≈ 1/Δ. Introducing Eq. (7) into Eq. (1) for steady state and dividing 

by nχeT gives: 

 
-∇⋅nχe ∇T > n(ωpe

2/λ2c2)(Δ2/τ)∇2T  = (B2/τµo) (8) 
 
δT/T  ≡ (Δ2 ∇2T/T)  < [1/β(ωpe

2/λ2c2)] (9) 
                                  

Here δT is the temperature change across the scalelength Δ for local gradients in j| |  in Eq. (4). 

For typical parameters, δT/T<< 1 even for β ≈ 1%. It is this that accounts for flat temperature 

profiles in MST whenever the dynamo is active, and for limitations on current amplification in 
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SSPX. Note that, for magnetic turbulence, this result does not depend explicitly on δB/B; 

instead, instability forces δB/B to satisfy Eq. (7).  

 

4. Flux and Current Amplification in Spheromaks 

For the spheromak, Eq. (9) implies that during gun injection the average electron 

temperature T is equal to that in the flux core connected to the gun, namely, that for short open 

field lines [3]: 

 
T ≈  0.4(V - VS)       (10) 
                                           

with gun voltage V and sheath voltage VS. Thus, during buildup, we should use Eq. (10) in 

calculating the resistivity appearing in the Ohm’s Law, Eq. (4).  

To calculate helicity buildup, we dot Eq. (4) into B and integrate over any volume 

including the flux core: 

 
dK/dt  ≡ d/dt ∫A⋅B = 2VΦ  -  ∫dS⋅Γ    -  K/τ   (11)   
 
Γ  = - 2B2Λ∇λ       (12) 
                  

where Φ is the gun bias flux and ∫dS⋅Γ  is helicity flow across the surface, usually taken zero if 

the volume includes the entire flux conserver. Dropping the surface term  gives at any time 

during the buildup [12]: 

 
K ≈ ψPOLψTOR ≈ ψPOL

2  ≤ 2VΦτ   (13) 
 
  ψPOL/Φ  ≤ (2Vτ/Φ)1/2     (14) 
                      

Eq. (14) gives the flux amplification (ψPOL/Φ) with τ calculated for resistivity η with T in Eq. 

(10). For large gun current [12], we can neglect the impedance that Eq. (11) presents to the gun 

and obtain the current amplification by substituting V ≥ IGUN RΩ into    Eq. (14), where RΩ = 

ηCLBC/Φ is the resistance of the flux core with length L and area Φ/BC where BC is the poloidal 

field at the geometric axis. Using ψPOL = 1/2µoITORa and τ = (µo /2ηλ2 ) with λa ≈ 2, the result is 

[12]: 

 
  ITOR /IGUN ≤  (BCL/µoITOR)    (15) 
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where, consistent with the flattened temperature profile, we took η inside the separatrix to equal 

ηC in the flux core. In the limit of large ITOR, BC ∝ ITOR/a whereby the maximum current 

amplification ITOR /IGUN approaches a constant ∝ L/a characteristic of the flux conserver, with a 

value of order unity in agreement with SSPX results [12].    

Eqs. (14) and (15) can be derived from modified Taylor relaxation theory using 

minimization of the energy dissipation rather than minimizing the energy itself [13]. 

 

5. Experimental Tests of the Transport Theory 

The most direct test of the theory would be obtained by substituting Eq. (6) into Eqs. (1) 

and (4) giving T and λ profiles to be compared with experimental data. Lacking a reliable 

calculation of δB, one could simply take DM to be a constant in Eqs. (4) and (5), to be determined 

by fitting λ profile data, as was done in Refs. [3] and [14] using the Ohm’s Law of Eq. (4) to 

calculate the λ profile using the Corsica code. The new feature would be a simultaneous T 

profile obtained by including Eq. (1) in Corsica in addition to the hyper-resistive Ohm’s Law. 

One might include a second fitting parameter α in χe = αDM , α being nominally unity according 

to the theory. One could also compare the empirically determined DM ≈ χRR ∝ δB2 with that 

calculated from δB in NIMROD simulations and edge probe measurements. 

Indirect tests of the transport theory are provided by comparison of Eq. (10) with 

temperatures measured during helicity injection, and the flux and current amplification derived 

from Eq. (10) in Section 4.  

Finally, NIMROD simulations have shown that spikes on the gun voltage represent 

events converting toroidal flux to poloidal flux, an almost-instantaneous helicity transport event 

[15]. Thus one might obtain direct evidence for maximum helicity transport rates and for 

temperature flattening during voltage spikes.  

A voltage spike δV is found by perturbing Eq. (11) applied to a volume including only 

the flux core with surface area AC. If we ignore helicity buildup and loss inside the flux core, this 

gives: 

 
2ΦδV  ≈  δ∫dS⋅Γ = (2ACB2∇λ)δΛ   (16) 
                               

Here we neglected δ∇λ near the flux core.  Dividing Eq. (16) by the steady state 2<V>Φ ≈ 

(2ACB2∇λ)<Λ> gives: 
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δΛ/<Λ>  ≈ δV/<V>     (17) 
                   

Thus voltage spikes are indicative of the maximum Λ near the flux core, as compared with the 

time-space average <Λ> obtained from Corsica fits.  

A jump in Λ during a voltage spike should produce a corresponding jump in χe, most 

easily observed as a temperature flattening event inside a local region of intermittently closed 

flux where low turbulence allows T to grow beyond the limits of Eq. (10), as is observed in some 

NIMROD runs [15].  According to NIMROD, this usually occurs near the magnetic axis. 

Instantaneous measurements of temperature near the magnetic axis before and after a voltage 

spike, using the double-pulsed Thomson capability soon to be available, might be able to observe 

a high local temperature during a quiet time and subsequent collapse of the temperature during a 

spurt of helicity injection correlated with a voltage spike [16]. 

 

6. Conclusions 

We have concluded from transport theory that helicity transport across any region flattens 

the electron temperature profile in that region, and it is this that limits current buildup in SSPX. 

We have suggested ways that the transport theory could be tested.  Indirect evidence 

based on limits on current amplification suggests that the theory is basically correct, and the 

discussion in Appendix A shows that the theory applies to any process that might transport 

helicity diffusively, not only tearing.  

If further analysis continues to support the theory, efforts to increase current 

amplification in SSPX must be based on scenarios consistent with slow helicity transport. Three 

scenarios that meet this requirement are the pulsed reactor, multipulsing and current drive by 

neutral beams. There may be others. 

The pulsed reactor could work because buildup is accomplished without current 

amplification [17]. The main issues are how much magnetic energy is lost in a transition from 

the Taylor state produced by electrostatic injection to a stable mode of decay, and whether a 

stable mode exists that is not supported by gun current at the edge. The latter point has gained 

support by Pearlstein’s results showing equilibria with zero λ at the edge that are stable to tearing 

in the straight-cylinder approximation [18]. 



 7 

Multipulsing, already explored to some extent [3], might have a better chance by 

reducing the bias flux and gun current after the initial formation phase [19], as is currently being 

explored on NIMROD [15]. Then helicity would be injected in a succession of small pulses. 

Again current amplification is not required for a single pulse. Success requires, first, that 

injection does not break flux surfaces in the interior, and secondly, that flux closure detaches 

each pulse from the gun, thereby allowing the newly injected helicity to merge into the 

spheromak already present [19]. Merger is aided by mutual attraction between toroidal current in 

a new pulse and that in the spheromak. Flux closure could be accomplished either inside the gun 

as the pulse leaves the gun, or in the flux conserver itself. 

Thirdly, the possibility of a stable state with no gun current suggests that other methods 

of current drive such as neutral beams could build up and maintain this state, perhaps starting 

from a “target” produced by gun injection [18]. 

That helicity transport flattens ∇T has been suspected for many years [9], but the theory 

is complicated in detail and only now are experiments and NIMROD simulations sufficiently 

advanced to warrant the kind of experimental campaign needed to test the theory in detail. 
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Appendix A. Hyper-Resistivity in Transport Theory 

We derive transport following Mahajan, Hazeltine and Hitchcock, who applied 

Kaufman’s quasi-linear theory [10] to Ohm’s Law and heat transport in tokamaks [20]. Using 

Kaufman’s approach, they were able to show why resistivity is approximately classical even 

when turbulence dominates heat transport, without recourse to details of the turbulence spectra. 

Here we use Kaufman’s approach to compare heat transport and hyper-resistivity.  

Kaufman’s theory for axisymmetric tori recasts the Vlasov equation in phase space x,v as 

a continuity equation in action-angle variables J,θ  where the J components are adiabatic 

approximations to canonical momenta for the mean field [10]: 

 

∂f/∂t +  ∂/∂θ  ⋅[(dθ/dt)f]  + ∂/∂J⋅[(dJ/dt)f]  =  collisions (A1)   

                  

where ∂/∂t is taken at constant J,θ , and so on. In equilibrium, the dynamics is Hamiltonian so 

that dθ/dt and dJ/dt can be removed outside the derivatives. Correspondence with the usual 

Vlasov equation is found by transforming back to x,v, giving, for J ≈ po = mv + qAo with 

equilibrium vector potential Ao:           

 (∂f/∂t)J,θ ≈   (∂f/∂t)p,x =  ∂f/∂t +  (dx/dt)J,θ⋅(∂f/∂x)  - q(∂Ao /∂t)⋅(∂f/∂v) (A2) 

 

dJ/dt ≈   dpo/dt =   m(dv/dt) + q[∂Ao /∂t + (v⋅∇)Ao]    

    = q[E + vxB] + q[∂Ao /∂t + (v⋅∇)Ao]  (A3) 

        

To obtain Kaufman’s quasi-linear equation, we linearize Eq. (A1) and substitute the 
solution into Eq. (A1) averaged over θ (with notation <⋅⋅> = ∫dθ  /(2π)3), <f> = fo). Neglecting 
collisions, the result is: 

 
  ∂fo/∂t  = ∂/∂J⋅D⋅∂fo/∂J    (A4) 
 
∂f1/∂t +  (dθ/dt)o⋅∂f1/∂θ ≡ Lf1 = - ∂/∂J⋅[(dJ/dt)1fo] (A5)  

  
  D  = < (dJ/dt)1L-1(dJ/dt)1>   (A6) 
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The generality of Kaufman’s approach lies in the fact that, while he conveniently approximates 

po ≈ J in equilibrium, the form of the transport equation remains the same for (dJ/dt)1 evaluated 

for any exact turbulence spectrum for any ω, k. 

Finally, we obtain Ohm’s Law by taking the moment of Eq. (4) for electron momentum, 
giving, with electron mass m and q = - e: 

 
q∫dv mv| | (∂fo/∂t) J,θ  = q∫dv mv| |  (∂/∂J⋅D⋅∂fo/∂J)  (A7)  
                                     

On the left, we substitute the average of the right hand side of Eq. (A2) expressed in x,v 

variables. Integrating by parts over v gives qnoEo with inductive mean field Eo = - ∂Ao /∂t, plus 

two terms that we will drop hereafter, nametly, inertia from ∂fo/∂t and the Ware pinch from 

(dx/dt)J,θ [20]. The electrostatic field drops out in averaging over θ (no contribution to the loop 

voltage.)  On the right, following Refs. [10] and [20], we replace ∫dv at fixed x by ∫dJdθ δ(x - 

r(J,θ ,t)) where r(J,θ,t) is the electron orbit, whereby the delta function adds up contributions to 

the current from all electrons passing through x. Then integrating by parts on J gives two terms, 

one being radial diffusion and the other, coming from ∂v| | /∂J, being a “source” term giving rise 

to both resistance and bootstrap current for collisions. This source term is proportional to k| | and 

hence usually negligible for collective turbulence [20, 21].  

With these understandings, and restoring the collision frequency ν, Eq. (A7) yields: 

 
Eo | | = (m/ne2){νj| | - ∇⊥⋅DM∇⊥ j| |}    (A8)  
                      

This is our main result, giving the Ohm’s Law of Eq. (4), with a momentum diffusion coefficient 

DM that would also appear in the energy moment of Eq. (A4), giving Eq. (6) of the main text. 

The characteristically small ratio Λ/DM = (c2/ωpe
2) yielding the main results of this paper arises 

from the factor (m/ne2), which accounts for inductive energy as it does in the resistive term 

above with collision frequency ν. Turbulent transport merely contributes an additive “collision 

frequency” ≈ ∇⊥⋅DM∇⊥. 

Following Mynick [22], Gatto has derived Ohm’s Law and heat transport from a Balescu-

Lenard extension of Kaufman’s theory, giving  [21]: 

 
 ∂fo/∂t  = - ∂/∂J⋅[ D⋅∂fo/∂J - Ff]    (A9) 
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where the vector F is a friction term, analogous to the “drag” term in the Fokker-Planck equation 

in velocity space, with essentially the same characteristic frequency ∇⊥⋅DM∇⊥. Gatto showed that 

F does not change the form of Eq. (4) [21]. 

 

Appendix B. Correspondence with MHD, Other Theory  

As noted throughout this paper, the virtue of Kaufman’s formulation is its generality, 

adding confidence in our conclusion that hyper-resistive transport of helicity is always slow 

compared to heat transport, for any kind of turbulence. Since Kaufman’s theory includes MHD 

as a limit, we would expect MHD hyper-resistivity to satisfy Eqs. (4) - (6) and indeed this is the 

case for Strauss’s hyper-resistivity for tearing modes, giving [11]: 

 

 <δv x δB> = - B-1∇⊥⋅B2 ΛMHD ∇⊥λ     (B1) 

 

ΛMHD = [γ/(∂k| | /∂r)2](δB2/B2) = F(c2/ωpe
2)χRR   (B2) 

   

F = [(Δ'a)/λMFPLC](a∂k| | /∂r)2   =    (Δ'a)(LC/λMFP)(Lq/nLC)2 (B3)  

                                                      

To compare with Eqs. (5) and (6) in the main text, we have rewritten ΛMHD in the form of Eq. (5) 

with a dimensionless multiplier F obtained as follows. The first expression on the right side of 

Eq. (B3) is the result of Ref. [11] (see Eq. (10) of that paper). We take the non-linear growth rate 

γ, as was done in Ref. [11]. However, rather than Strauss’s “direct interaction approximation,” 

we use the more conventional non-linear growth rate in the Rutherford regime, giving γ = 

d(w/a)/dt = (η/a2µo)(Δ'a) for the resistive growth of island widths w. For this case, it is η in the 

Rutherford γ that introduces the ubiquitous factor c2/ωpe
2 . On the far right in Eq. (B2), we replace 

(η/µo) = (c2/ωpe
2)ν with electron-ion collision frequency ν giving λMFP = ve/ν in Eq. (B3). Also in 

Eq. (B3), we take (a∂k| | /∂r) ≈ n/Lq where n is the toroidal mode number and Lq = q/(dq/dr) is the 

shear length. In writing χRR = veLC (δB2/B2) in Eq. (B6), we assume LC > λMFP giving a small 

factor (LC/λMFP) in F; if instead LC < λMFP, LC is replaced by λMFP in χRR, in which λMFP cancels. 

Also, usually (Δ'a) ≤ 1. With these understandings, we see that F ≤ 1 for most purposes and in 

any  case F << (a2ωpe
2/c2), giving ΛMHD similar to Eq. (5) with χe ≤ χRR.  
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An important feature of MHD hyper-resistivity is the fact that it conserves helicity. This 

follows from the general form for Ohm’s Law [6]: 

 

E + vxB = R       (B4) 

                                           

where v is the electron fluid velocity (by including the Hall term) and R includes inertia, 

collisions and turbulent resistivity, viscosity, hyper-resistivity etc. Then the helicity K satisfies: 

 

dK/dt  = - 2∫dx E⋅B = -2∫dx R⋅B   (B5) 

                                         

Helicity is conserved if R is small, as assumed in reduced MHD theory, and it is better conserved 

than is the magnetic energy with finite resistivity [6]. 

The MHD hyper-resistivity derived from vxB has the form of the second line of Eq. (4), 

which is manifestly helicity conserving [6, 11, 23]. In reduced MHD used in Ref. [11], this 

follows directly from the collisionless Ohm’s Law [11]: 

 

Eoz  = - ∂/∂t δAz  =    - <δvxδB>z =   ∇⋅<δvδAz>   (B6) 

 

R⋅B =  - <δvxδB>z Bz ≈    - ∇⋅(Bz <δvδAz>)    (B7)  

                                         

The last step in Eq. (B6) follows in reduced MHD from B = ∇δAzxz with z along the mean field 

direction, giving δvxδB as the convective derivative of Azz  (δv⋅∇δAz = ∇⋅(δvδAz) for ∇⋅δv = 0; 

though in fact MHD conservation of helicity does not depend on incompressible flow [25]). In 

Eq. (B7), we passed the relatively smooth mean field Bz through the derivative. Then (- Bz 

<δvδAz>) is half the helicity flux.  

The Ohm’s Law derived in this paper is not manifestly helicity conserving; in particular, 

n stands outside the divergence in Eqs. (4) and (A8). Even if we ignore gradients in the relatively 

smooth mean field, transforming to the helicity-conserving form in the second line of Eq. (4) 

would add a correction ∝ ∂(ln n)/∂r. 
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A contribution to R from v⋅∇f, omitted in reduced MHD, is also not obviously helicity 

conserving. Properly evaluated, this term makes a contribution comparable to the vxB 

contribution, as can be seen from estimating ∇⋅∫dv mv| | (v1r f1) with f1 ≈ (LC/ve) v1r∇fo  (in the 

limit ω→ 0 [21, 24]) and v1r ≈ v| | (δB/B). Kaufman’s approach takes account of both v⋅∇f and 

the <vxB> dynamo simultaneously [see Eq. (A3), containing both vxB explicitly and the 

convective derivative of A]. 

Nonetheless, the deeper reasons for the better conservation of K than energy apply both 

to turbulence and to collisions [6]. For any component Bi of the field expanded in eigenstates of 

curl B with energy Ei, the helicity Ki = Ei /λi so that, in summing over states with λi ‘s of varying 

sign, most of the helicity resides in the slowest-decaying relaxed state with lowest λ (the Taylor 

state).   

Two other points concerning Gatto’s Ohm’s Law [21]. First, an earlier debate whether 

Rechester-Rosenbluth heat and momentum transport are reduced by ambipolarity [24] appears to 

have been resolved in favor of transport at the electron speed as assumed here [26, 27]. 

Secondly, the profile consistency conjecture of Ref. [28] explored by Gatto yields Λ/χe larger 

than our general result by a factor ve
2/v2 with v = j/ne. 

 


